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Chapter 7

The Spectral Theorem

We come to one of the most important topics of the course. In simple terms, any real
symmetric matrix is diagonalisable. But there is more to be said!

7.1 Orthogonal projections and orthogonal decompositions

Definition 7.1. We say that two vectors u,w in an inner product space V are orthogonal
if u ·w = 0. We say that two subspaces U and W of V are orthogonal if u ·w = 0 for all
u ∈ U and w ∈W .

Definition 7.2. Let V be a real inner product space, and U a subspace of V . The
orthogonal complement of U is the set of all vectors that are orthogonal to everything
in U :

U⊥ = {w ∈ V : w · u = 0 for all u ∈ U}.

Thus, the orthogonal complement of U is the largest subspace of V that is orthogonal
to U .

Proposition 7.3. If V is a real inner product space and U a subspace of V , with
dim(V ) = n and dim(U) = r, then U⊥ is a subspace of V , and dim(U⊥) = n − r.
Moreover, V = U ⊕ U⊥.

Proof. Proving that U⊥ is a subspace is straightforward from the properties of the inner
product. If w1, w2 ∈ U⊥, then w1 · u = w2 · u = 0 for all u ∈ U , so (w1 + w2) · u = 0 for
all u ∈ U , whence w1 + w2 ∈ U⊥. The argument for scalar multiples is similar.

Now choose a basis (u1, u2, . . . , ur) for U and extend it to a basis (u1, u2, . . . , un)
for V . Then apply the Gram-Schmidt process to this basis (processing the vectors in
the order u1, u2, . . . , un), to obtain an orthonormal basis (v1, . . . , vn) of V . Since the
process only modifies vectors by adding multiples of earlier vectors, the first r vectors
in the resulting basis will form an orthonormal basis for U . The last n − r vectors
will be orthogonal to U , and so lie in U⊥. Summarising, we have v1, . . . , vr ∈ U and
vr+1, . . . , vn ∈ U⊥. Since v1, . . . , vn is a basis for V , it follows that every vector in V can
be written as the sum of a vector in U and a vector in U⊥ or, equivalently, V = U +U⊥.

To show that V is actually a direct sum of U and U⊥ we just need to show that
U ∩ U⊥ = {0}. But if u ∈ U and u ∈ U⊥ then u · u = 0 which implies u = 0.

The claim about the dimension of subspaces follows from Lemma 1.28.
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Recall the connection between direct sum decompositions and projections. If we have
projections π1, . . . , πr whose sum is the identity and which satisfy πiπj = 0 for i 6= j,
then the space V is the direct sum of their images. This can be refined in an inner
product space as follows.

Definition 7.4. Let V be an inner product space, A linear map π : V → V is an
orthogonal projection if

(a) π is a projection, that is, π2 = π, and

(b) π is self-adjoint, that is, π∗ = π.

Definition 7.5. Suppose V is an inner product space, and U1, . . . , Ur are subspaces
of V . A direct sum V = U1 ⊕ · · · ⊕ Ur is an orthogonal decomposition of V if Ui is
orthogonal to Uj for all i 6= j.

Proposition 7.6. Suppose π1, π2, . . . , πr are orthogonal projections on an inner product
space V , satisfying

(a) π1 + π2 + · · ·+ πr = I, where I is the identity map, and

(b) πiπj = 0, for i 6= j.

Let Ui = Im(πi), for i = 1, . . . , r. Then V = U1 ⊕ U2 ⊕ · · · ⊕ Ur is an orthogonal
decomposition of V .

Proof. The fact that V is the direct sum of the images of the πi follows from Proposi-
tion 5.4. We only have to prove that Ui and Uj are orthogonal for all i 6= j. Recall that
if π is a projection, then v ∈ Im(π) if and only if π(v) = v. So take ui ∈ Ui and uj ∈ Uj

with i 6= j. Then πi(ui) = ui and πj(uj) = uj and hence

ui · uj = πi(ui) · πj(uj) = ui · π∗i (πj(uj)) = ui · πi(πj(uj)) = 0,

where the second equality is the definition of the adjoint, and the third holds because πi
is self-adjoint.

As with Proposition 5.4, there is a converse.

Proposition 7.7. Suppose V = U1⊕· · ·⊕Ur is an orthogonal decomposition of an inner
product space V . Then there exist orthogonal projections π1, π2, . . . , πr on V satisfying

(a) π1 + π2 + · · ·+ πr = I,

(b) πiπj = 0, for i 6= j, and

(c) Im(πi) = Ui, for all i.

Proof. From Proposition 5.5 we know that there are projections πi, for 1 ≤ i ≤ r,
satisfying conditions (a)–(c). Only one extra thing needs to be checked, namely that
these projections are orthogonal, i.e., that the πi are self adjoint. To see this, suppose
v, w are arbitrary vectors in V . Then

πi(v) · w = πi(v) · (π1(w) + · · ·+ πr(w))

= πi(v) · πi(w)

= (π1(v) + · · ·+ πr(v)) · πi(w)

= v · πi(w),
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where the first and fourth equalities follow from π1 + · · · + πr = I and the second and
third from the fact that Im(πi) = Ui is orthogonal to Im(πj) = Uj when i 6= j. It follows
that πi is self-adjoint.

7.2 The Spectral Theorem

The main theorem can be stated in different ways. We list three alternatives here.

Theorem 7.8. If α is a self-adjoint linear map on a real inner product space V , then
there is an orthonormal basis of V consisting of eigenvectors of α. Thus, the eigenspaces
of α form an orthogonal decomposition of V .

Equivalently, we can state the result as follows.

Corollary 7.9. Suppose α and V are as in the previous theorem, and λ1, . . . , λr are the
distinct eigenvalues of α. Then there exist orthogonal projections π1, . . . , πr satisfying

(a) π1 + · · ·+ πr = I,

(b) πiπj = 0, whenever i 6= j, and

(c) α = λ1π1 + · · ·+ λrπr.

Proof of Corollary 7.9. By Theorem 7.8 we known that V has an orthogonal decomposi-
tion V = E(λ1, α)⊕· · ·⊕E(λr, α), where E(λi, α) is the eigenspace correponding to the
eigenvector λi. Then, by Proposition 7.7, there exist orthogonal projections, satisfying
(a) and (b), such that Im(πi) = E(λi, α) for 1 ≤ i ≤ r. Condition (c) then follows from
the following chain of equalities:

α(v) = α(π1(v) + · · ·+ πr(v)) = λ1π1(v) + · · ·+ λrπr(v) = (λ1π1 + · · ·+ λrπr)(v).

Yet another statement of the spectral theorem is in terms of matrices. Since a
symmetric matrix represents a self-adjoint linear map with respect to some orthonormal
basis, e.g., the standard basis of Rn:

Corollary 7.10. Let A be a real symmetric matrix. Then there exists an orthogonal
matrix P such that P−1AP is diagonal. In other words, any real symmetric matrix is
orthogonally similar to a diagonal matrix.

Proof of Theorem 7.8. The proof will be by induction on n = dim(V ). There is nothing
to do if n = 1. So we assume that the theorem holds for (n − 1)-dimensional spaces.
The first job is to show that α has an eigenvector.

Choose an orthonormal basis; then α is represented by a real symmetric matrix A.
Its characteristic polynomial has a root λ over the complex numbers. (The so-called
“Fundamental Theorem of Algebra” asserts that any polynomial over C has a root.) We
temporarily enlarge the field from R to C. Now we can find a column vector v ∈ Cn

such that Av = λv. Taking the complex conjugate, remembering that A is real, we have
Av = λv. Then we have

λ v>v = (Av)>v = (v>A)v = v>(Av) = v>(λv) = λv>v.
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Since v is not the zero vector, λ = λ, that is, λ is real. Now since α has a real eigenvalue,
we can choose a real eigenvector v, and (multiplying by a scalar if necessary) we can
assume that |v| = 1.

Let U be the subspace U = {u ∈ V : v ·u = 0}. This is a subspace of V of dimension
n− 1, by Proposition 7.3. We claim that α : U → U . For take u ∈ U . Then

α(u) · v = u · α∗(v) = u · α(v) = λ(u · v) = 0,

where we use the fact that α is self-adjoint. So α(u) ∈ U .
So α restricted to U is a self-adjoint linear map on the (n − 1)-dimensional inner

product space. By the inductive hypothesis, U has an orthonormal basis consisting of
eigenvectors of α. They are all orthogonal to the unit vector v; so, adding v to the basis,
we get an orthonormal basis for V , as required.

The fact that V is a direct sum of eigenspaces comes from Theorem 5.14, so for the
final part of the theorem we just need to show that these eigenspaces are orthogonal.
We could use the orthonormal basis just constructed to prove this but it is easier to go
directly. Suppose v ∈ E(λ, α) and w ∈ E(µ, α) are vectors in distinct eigenspaces. Then
α(v) = λv and α(w) = µw, and

λ(v · w) = λv · w = α(v) · w = v · α∗(w) = v · α(w) = v · µw = µ(v · w),

so, since λ 6= µ, we see that v · w = 0.

Remark 7.11. The theorem is almost a canonical form for real symmetric relations
under the relation of orthogonal congruence. If we require that the eigenvalues occur
in decreasing order down the diagonal, then the result is a true canonical form: each
matrix is orthogonally similar to a unique diagonal matrix with this property.

Example 7.12. Let

A =

10 2 2
2 13 4
2 4 13

 .
The characteristic polynomial of A is∣∣∣∣∣∣

x− 10 −2 −2
−2 x− 13 −4
−2 −4 x− 13

∣∣∣∣∣∣ = (x− 9)2(x− 18),

so the eigenvalues are 9 and 18.
For eigenvalue 18 the eigenvectors satisfy10 2 2

2 13 4
2 4 13

xy
z

 =

18x
18y
18z

 ,
so the eigenvectors are multiples of

[
1 2 2

]>
. Normalising, we can choose a unit

eigenvector
[
1
3

2
3

2
3

]>
.

For the eigenvalue 9, the eigenvectors satisfy10 2 2
2 13 4
2 4 13

xy
z

 =

9x
9y
9z

 ,
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that is, x+2y+2z = 0. (This condition says precisely that the eigenvectors are orthogonal
to the eigenvector for λ = 18, as we know.) Thus the eigenspace is 2-dimensional. We
need to choose an orthonormal basis for it. This can be done in many different ways:

for example, we could choose
[
0 1/

√
2 −1/

√
2
]>

and
[
−4/3

√
2 1/3

√
2 1/3

√
2
]>

.
Then we have an orthonormal basis of eigenvectors. We conclude that, if

P =

1/3 0 −4/3
√

2

2/3 1/
√

2 1/3
√

2

2/3 −1/
√

2 1/3
√

2

 ,
then P is orthogonal, and

P>AP =

18 0 0
0 9 0
0 0 9

 .
You might like to check that the orthogonal matrix in the example in the last chapter

of the notes also diagonalises A.


