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Chapter 5

Linear maps on a vector space

In this chapter we consider a linear map α from a vector space V to itself. If dim(V ) = n
then, as in the last chapter, we can represent α by an n× n matrix relative to any basis
for V . However, this time we have less freedom: instead of having two bases to choose,
there is only one. This makes the theory much more interesting!

5.1 Projections and direct sums

We begin by looking at a particular type of linear map whose importance will be clear
later on.

Definition 5.1. The linear map π : V → V is a projection if π2 = π (where, as usual,
π2 is defined by π2(v) = π(π(v))).

Proposition 5.2. If π : V → V is a projection, then V = Im(π)⊕Ker(π).

Before starting the proof, it is worth making a tiny observation that will simplify our
task here and later in the chapter. Suppose π is a projection on V and v ∈ V . Then
we claim that v ∈ Im(π) if and only if π(v) = v. The “if” direction is immediate: there
is a vector u ∈ V , namely u = v, such that v = π(u). The “only if” direction is hardly
more difficult: v ∈ Im(π) implies that there exists u ∈ V such that v = π(u). Then
π(v) = π(π(u)) = π2(u) = π(u) = v.

Proof of Proposition 5.2. We have two things to show:

Im(π) + Ker(π) = V : Take any vector v ∈ V , and let w = π(v) ∈ Im(π). We claim
that v − w ∈ Ker(π). This holds because

π(v − w) = π(v)− π(w) = π(v)− π(π(v)) = π(v)− π2(v) = 0,

since π2 = π. Now v = w + (v − w) is the sum of a vector in Im(π) and one in
Ker(π).

Im(π) ∩ Ker(π) = {0}: Take v ∈ Im(π) ∩ Ker(π). Since v is in Im(π) we know that
π(v) = v (see above). Also, since v is in Ker(π), we have π(v) = 0. Putting these
facts together yields v = 0.
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42 CHAPTER 5. LINEAR MAPS ON A VECTOR SPACE

There is a converse to this result.

Proposition 5.3. if V = U ⊕W , then there is a projection π : V → V with Im(π) = U
and Ker(π) = W .

Proof. (Sketch.) Every vector v ∈ V can be uniquely written as v = u+w, where u ∈ U
and w ∈ W ; we define π by the rule that π(v) = u. You should check that with this
definition for π it is indeed the case that Im(π) = U and Ker(π) = W , and that π is
indeed a projection.

The diagram in Figure 5.1 shows geometrically what a projection is. It moves any
vector v in a direction parallel to Ker(π) to a vector lying in Im(π).
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Figure 5.1: A projection

We can extend this to direct sums with more than two terms. Suppose that π is
a projection and π′ = I − π (where I is the identity map, satisfying I(v) = v for all
vectors v). Note that π′ is also a projection, since

(π′)2 = (I − π)2 = I − 2π + π2 = I − 2π + π = I − π = π′.

Note also that π + π′ = I and ππ′ = π(I − π) = π − π2 = 0. It follows (as we shall see
below) that Ker(π) = Im(π′), and hence V = Im(π)⊕ Im(π′). These observations show
the way to generalise Proposition 5.2.

Proposition 5.4. Suppose that π1, π2, . . . , πr are projections on V satisfying

(a) π1 + π2 + · · ·+ πr = I, where I is the identity map;

(b) πiπj = 0 for i 6= j.

Then V = U1 ⊕ U2 ⊕ · · · ⊕ Ur, where Ui = Im(πi).

Proof. Let v be any vector in V . Using the fact that π1 + π2 + · · ·+ πr = I we have

v = I(v) = (π1 + π2 + · · ·+ πr)(v) = π1(v) + π2(v) + · · ·+ πr(v)

= u1 + u2 + · · ·+ ur, (5.1)
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where ui = πi(v) ∈ Im(πi) = Ui for i = 1, . . . , r. Since v was an arbitrary member of V ,
this shows that V = U1 + U2 + · · ·+ Ur.

Now we need to show that V is actually a direct sum of the subspaces {Ui}, which
amounts to showing that the expression (5.1) for v is unique. Suppose that we have any
expression

v = u′1 + u′2 + · · ·+ u′r, where u′i ∈ Ui for i = 1, . . . , r. (5.2)

We observed earlier that if a vector u is in Im(πi) then πi(u) = u. Now observe that if u
is in Im(πj), for some j 6= i, then πj(u) = u and hence πi(u) = πi(πj(u)) = πjπi(u) = 0.

With these observations in mind, apply πi to (5.1) to obtain πi(v) = ui and apply πi
to (5.2) to obtain πi(v) = u′i. We see that u′i = ui, and it follows that the expression for
v is unique.

There is a converse to the above.

Proposition 5.5. Suppose V is a vector space which is the direct sum of r subspaces:
V = U1 ⊕ U2 ⊕ · · · ⊕ Ur. Then there exists projections π1, π2, . . . , πr on V satisfying

(a) π1 + π2 + · · ·+ πr = I, where I is the identity map;

(b) πiπj = 0 for i 6= j; and

(c) Ui = Im(πi) for all i.

Proof. (Sketch.) Since V = U1⊕U2⊕· · ·⊕Ur, any vector v ∈ V has a unique expression
as

v = u1 + u2 + · · ·+ ur

with ui ∈ Ui for i = 1, . . . , r. Then we may define πi(v) = ui, for i = 1, . . . , r. In a
similar manner to the Proof of Proposition 5.5, we may check that {πi} are projections
with the required properties. (Try this!)

The point of this is that projections give us another way to recognise and describe
direct sums.

5.2 Linear maps and matrices

Let α : V → V be a linear map. If we choose a basis v1, . . . , vn for V , then V can be
written in coordinates as Kn, and α is represented by a matrix A, say, where

α(vj) =
n∑
i=1

aijvi.

Then just as in the last section, the action of α on V is represented by the action of A
on Kn: α(v) is represented by the product Av. Also, as in the last chapter, sums and
products (and hence arbitrary polynomials) of linear maps are represented by sums and
products of the matrices representing them: that is, for any polynomial f(x), the map
f(α) is represented by the matrix f(A).

What happens if we change the basis? This also follows from the formula we worked
out in the last chapter. However, there is only one basis to change.
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Proposition 5.6. Let α be a linear map on V which is represented by the matrix A
relative to a basis B, and by the matrix A′ relative to a basis B′. Let P = PB,B′ be the
transition matrix between the two bases. Then

A′ = P−1AP.

Proof. This is just Proposition 4.6, since P and Q are the same here.

Definition 5.7. Two n× n matrices A and B are said to be similar if B = P−1AP for
some invertible matrix P .

Thus similarity is an equivalence relation, and

two matrices are similar if and only if they represent the same linear map
with respect to different bases.

There is no simple canonical form for similarity like the one for equivalence that
we met earlier. For the rest of this section we look at a special class of matrices or
linear maps, the “diagonalisable” ones, where we do have a nice simple representative
of the similarity class. In the final section we give without proof a general result for the
complex numbers.

5.3 Eigenvalues and eigenvectors

Definition 5.8. Let α be a linear map on V . A vector v ∈ V is said to be an eigenvector
of α, with eigenvalue λ ∈ K, if v 6= 0 and α(v) = λv. The set {v : α(v) = λv} consisting
of the zero vector and the eigenvectors with eigenvalue λ is called the λ-eigenspace of α,
and we’ll denote it by E(λ, α).

It is not difficult to check that an eigenspace E(λ, α) as defined above is a linear
subspace of V . (Do this!) Note that we require that v 6= 0 for any eigenvector of α,
otherwise the zero vector would be an eigenvector of α for any value of λ. With this
requirement, each eigenvector has a unique eigenvalue: for if α(v) = λv = µv, then
(λ− µ)v = 0, and so (since v 6= 0) we have λ = µ.

The name eigenvalue is a mixture of German and English; it means “characteristic
value” or “proper value” (here “proper” is used in the sense of “property”). Another
term used in older books is “latent root”. Here “latent” means “hidden”: the idea is that
the eigenvalue is somehow hidden in a matrix representing α, and we have to extract it
by some procedure. We’ll see how to do this soon.

Example 5.9. Let

A =

[
−6 6
−12 11

]
.

The vector v =

[
3
4

]
satisfies

[
−6 6
−12 11

] [
3
4

]
= 2

[
3
4

]
,

so is an eigenvector with eigenvalue 2. Similarly, the vector w =

[
2
3

]
is an eigenvector

with eigenvalue 3.
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If we knew that, for example, 2 is an eigenvalue of A, then we could find a corre-

sponding eigenvector

[
x
y

]
by solving the linear equations

[
−6 6
−12 11

] [
x
y

]
= 2

[
x
y

]
.

In the next-but-one section, we will see how to find the eigenvalues, and the fact that
there cannot be more than n of them for an n× n matrix.

5.4 Diagonalisability

Some linear maps have a particularly simple representation by matrices.

Definition 5.10. The linear map α on V is diagonalisable if there is a basis of V relative
to which the matrix representing α is a diagonal matrix.

Suppose that v1, . . . , vn is such a basis showing that α is diagonalisable, and that
A = (aij) is the matrix representing α in this basis. Since aij = 0 whenever i 6= j, we
have α(vi) = aiivi for i = 1, . . . , n. Thus, the basis vectors are eigenvectors. Conversely,
if we have a basis of eigenvectors, then the matrix representing α is diagonal. So:

Proposition 5.11. The linear map α on V is diagonalisable if and only if there is a
basis of V consisting of eigenvectors of α.

Example 5.12. The matrix from Example 5.9 is diagonalisable, as the two eigenvectors
we computed there do form a basis of R2.

The matrix

[
1 2
0 1

]
is not diagonalisable. It is easy to see that its only eigenvalue

is 1, and the only eigenvectors are scalar multiples of
[
1 0

]>
. So we cannot find a basis

of eigenvectors.

Before looking at some equivalent characterisations of diagonalisability, we require a
preparatory lemma.

Lemma 5.13. Let v1, . . . , vr be eigenvectors of α with distinct eigenvalues λ1, . . . , λr.
Then v1, . . . , vr are linearly independent.

Proof. Suppose to the contrary that v1, . . . , vr are linearly dependent, so that there exists
a linear relation

c1v1 + · · ·+ crvr = 0, (5.3)

with coefficients ci not all zero. Some of these coefficients may be zero; choose a relation
with the smallest number of non-zero coefficients. It is clear that there must be at least
two non-zero coefficients. Suppose that c1 6= 0. (If c1 = 0 just re-number the eivenvectors
and their coefficients.) Now, applying α to both sides of (5.3) and using the fact that
α(vi) = λivi, we get

α(c1v1 + · · ·+ crvr) = c1α(v1) + · · ·+ crα(vr) = c1λ1v1 + · · ·+ crλrvr = 0.

Subtracting λ1 times equation (5.3) from the last equation we get

c2(λ2 − λ1)v2 + · · ·+ cr(λr − λ1)vr = 0.



46 CHAPTER 5. LINEAR MAPS ON A VECTOR SPACE

Now this equation has one fewer non-zero coefficient than the one we started with, which
was assumed to have the smallest possible number. And since we started with at least
two non-zero coefficients, not all the coefficients in this new identity are zero. So the
linear dependency (5.3) is not minimal, contrary to our assumption. So the eigenvectors
must have been linearly independent.

Note that Lemma 5.13 implies, in particular, that a linear map α : V → V has at
most n distinct eigenvalues, where n = dim(V ).

Theorem 5.14. Suppose α : V → V is a linear map, and let λ1, . . . , λr be the distinct
eigenvalues of α. Then the following are equivalent:

(a) α is diagonalisable;

(b) V = E(λ1, α)⊕ · · · ⊕ E(λr, α) is the direct sum of eigenspaces of α;

(c) α = λ1π1 + · · ·+λrπr, where π1, . . . , πr are projections satisfying π1 + · · ·+πr = I
and πiπj = 0 for i 6= j.

Proof. (a) ⇒ (b). If α is diagonalisable, then there is a basis of V composed of
eigenvectors of α. Each of these basis vectors lies in one of the eigenspaces; thus,
V = E(λ1, α) + · · ·+E(λr, α). We need to show that this sum is actually a direct sum.
If some vector v ∈ V may be expressed in two different ways u1+ · · ·+ur = u′1+ · · ·+u′r,
with ui, u

′
i ∈ E(λi, α), for i = 1, . . . , r, then (u1−u′1)+ · · ·+(ur−u′r) = 0. Each of these

terms must be zero, otherwise we would have a non-trivial linear dependency between
eigenvectors with distinct eigenvectors, which is disallowed by Lemma 5.13.

(b)⇒ (c). Proposition 5.5 shows that there are projections π1, . . . , πr satisfying the
conditions of (c), with Im(πi) = E(λi, α). We just need to check that α and λ1π1 + · · ·+
λrπr are equal. Let v ∈ V be arbitrary. Then,

α(v) = α((π1 + · · ·+ πr)(v))

= α(π1(v) + · · ·+ πr(v))

= α(π1(v)) + · · ·+ α(πr(v))

= λ1π1(v) + · · ·+ λrπr(v)

= (λ1π1 + · · ·+ λrπr)(v),

where the penultiomate equality comes from the fact that πi(v) ∈ Im(πi) = E(λi, α), for
i = 1, . . . , r. So α = λ1π1 + · · ·+ λrπr, as required.

(c) ⇒ (a). Since the projections πi satisfy the conditions of Proposition 5.4, V is
the direct sum of the subspaces Im(πi). We now observe that Im(πi) ⊆ E(λi, α). To see
this, take any u ∈ Im(πi) and consider α(u):

α(u) = (λ1π1 + · · ·+ λrπr)(u) = λ1π1(u) + · · ·+ λrπr(u) = λiu,

where we have used the facts that πi(u) = u and πj(u) = 0, for j 6= i. Thus Im(πi) ⊆
E(λi, α) and

V = Im(π1) + · · ·+ Im(πr) ⊆ E(λ1, α) + · · ·+ E(λr, α) ⊆ V.

(The containments must of course be equality.) Thus we can choose a basis of V con-
sisting entirely of eigenvectors of α.
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Example 5.15. Continuing our previous exercise, our matrix A =

[
−6 6
−12 11

]
is diag-

onalisable, since the eigenvectors

[
3
4

]
and

[
2
3

]
are linearly independent, and so form a

basis for R. Indeed, we see that[
−6 6
−12 11

] [
3 2
4 3

]
=

[
3 2
4 3

] [
2 0
0 3

]
,

so that AP = PD where

P =

[
3 2
4 3

]
and D =

[
2 0
0 3

]
.

Note that the columns of P are the eigenvectors of A, and D is a diagonal matrix formed
from the eigenvalues of A. (Of course, we must list the eigenvectors and the eigenvalues
in a consistent order!) Also note that P−1AP = D, so A is similar to a diagonal matrix.
Since A = PDP−1, we may write A as

A =

[
−6 6
−12 11

]
=

[
3 2
4 3

] [
2 0
0 3

] [
3 −2
−4 3

]
.

Furthermore, we can find two projection matrices as follows:

Π1 =

[
3 2
4 3

] [
1 0
0 0

] [
3 −2
−4 3

]
=

[
9 −6
12 −8

]
Π2 =

[
3 2
4 3

] [
0 0
0 1

] [
3 −2
−4 3

]
=

[
−8 6
−12 9

]
.

(Note that we have replacedD in the previous expression for A by a matrices with a single
1 on the diagonal.) You can check directly that Π2

1 = Π1, Π2
2 = Π2, Π1Π2 = Π2Π1 = O,

Π1 + Π2 = I, and 2Π1 + 3Π2 = A. You should stop for a moment to think about why
this calculational method works.

The expression for a diagonalisable matrix A in terms of projections is useful in
calculating powers of A, or polynomials in A.

Proposition 5.16. Let

A =

r∑
i=1

λiΠi

be the expression for the diagonalisable matrix A in terms of projections Πi satisfying
the conditions of Theorem 5.14, that is,

∑r
i=1 Πi = I and ΠiΠj = O for i 6= j. Then

(a) for any non-negative integer m, we have

Am =
r∑
i=1

λmi Πi;

(b) for any polynomial f(x), we have

f(A) =

r∑
i=1

f(λi)Πi.
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As usual, we employ the convention A0 = I and λ0i = 1 (even when λi = 0).

Proof. (a) The proof is by induction on m, the base case being

A0 = I =

r∑
i=1

Πi =

r∑
i=1

λ0iΠi.

Suppose now that the result holds for m = k − 1. Then

Ak = Ak−1A

=

(
r∑
i=1

λk−1i Πi

)(
r∑
j=1

λjΠj

)
.

When we multiply out this product, all the terms ΠiΠj are zero for i 6= j, and we obtain
simply

∑r
i=1 λ

k−1
i λiΠi, as required. So the induction goes through.

(b) Suppose f(x) =
∑d

m=0 amx
m is a polynomial of degree d. We obtain the expres-

sion for f(A) by multiplying the identity from part (a) by am and summing over m:

f(A) =

d∑
m=0

amA
m =

d∑
m=0

am

r∑
i=1

λmi Πi =

r∑
i=1

Πi

d∑
m=0

amλ
m
i =

r∑
i=1

f(λi)Πi.

5.5 Characteristic and minimal polynomials

We defined the determinant of a square matrix A. Now we want to define the determinant
of a linear map α. The obvious way to do this is to take the determinant of any matrix
representing α. For this to be a good definition, we need to show that it doesn’t matter
which matrix we take; in other words, that det(A′) = det(A) if A and A′ are similar.
But, if A′ = P−1AP , then

det(P−1AP ) = det(P−1) det(A) det(P ) = det(A),

since det(P−1) det(P ) = 1. So our plan will succeed:

Definition 5.17. (a) The determinant det(α) of a linear map α : V → V is the
determinant of any matrix representing α.

(b) The characteristic polynomial pα(x) of a linear map α : V → V is the characteristic
polynomial of any matrix representing α.

(c) The minimal polynomial mα(x) of a linear map α : V → V is the monic polynomial
of smallest degree that is satisfied by α.

The second part of the definition is OK, by the same reasoning as the first, since
pA(x) is just a determinant. Specifically, the characteristic polynomial of a matrix
A′ = P−1AP similar to A is

pA′(x) = det(xI − P−1AP )

= det(P−1(xI −A)P )

= det(P−1) det(xI −A) det(P )

= det(xI −A)

= pA(x).



5.5. CHARACTERISTIC AND MINIMAL POLYNOMIALS 49

The third part of the definition also requires care. We know from that Cayley-Hamilton
Theorem that there is some polynomial (namely the characteristic polynomial) that
is satisfied by α. But is the minimal polynomial, as defined, unique? Well, suppose
that there were two different monic polynomials mα(x) and m′α(x) of minimum degree
satisfying mα(α) = m′α(α) = 0. Then the polynomial (mα − m′α)(x) satisfies (mα −
m′α)(α) = mα(α) −m′α(α) = 0, and is of lower degree than mα(x) or m′α(x). Since we
can make this polynomial monic by multiplication by an appropriate scalar, this is a
contradiction to minimality of mα(x). The next result gives more information.

Proposition 5.18. For any linear map α on V , its minimal polynomial mα(x) divides
its characteristic polynomial pα(x) (as polynomials).

Proof. Suppose not; then we can divide pα(x) by mα(x), getting a quotient q(x) and
non-zero remainder r(x); that is,

pα(x) = mα(x)q(x) + r(x).

Substituting α for x, using the fact that pα(α) = mα(α) = 0, we find that r(α) = 0. But
the degree of r is less than the degree of mα, so this contradicts the definition of mα as
the polynomial of least degree satisfied by α.

Theorem 5.19. Let α be a linear map on V . Then the following conditions are equiv-
alent for an element λ of K:

(a) λ is an eigenvalue of α;

(b) λ is a root of the characteristic polynomial of α;

(c) λ is a root of the minimal polynomial of α.

Example 5.20. This gives us a recipe to find the eigenvalues of α: take a matrix A
representing α; write down its characteristic polynomial pA(x) = det(xI − A); and find
the roots of this polynomial. In our earlier example,∣∣∣∣x+ 6 −6

12 x− 11

∣∣∣∣ = (x+ 6)(x− 11) + 72 = x2 − 5x+ 6 = (x− 2)(x− 3),

so the eigenvalues are 2 and 3, as we found.

Proof of Theorem 5.19. (a) ⇒ (c). Let λ be an eigenvalue of α with eigenvector v. We
have α(v) = λv. By induction, αk(v) = λkv for any k, and so f(α)(v) = f(λ) v for any
polynomial f . Choosing f = mα, we have mα(α)(v) = mα(λ) v. But mα(α) = 0 by
definition, so mα(λ) v = 0. Since v 6= 0, we have mα(λ) = 0, as required.

(c) ⇒ (b). Suppose that λ is a root of mα(x). Then (x − λ) divides mα(x). But
mα(x) divides pα(x), by Proposition 5.18, so (x − λ) divides pα(x), whence λ is a root
of pα(x).

(b) ⇒ (a). Suppose that pα(λ) = 0, that is, det(λI − α) = 0. Then λI − α is not
of full rank (i.e., the dimension of Im(λI − α) is strictly less than dim(V )), so kernel of
λI −α has dimension greater than zero. Pick a non-zero vector v in Ker(λI −α). Then
(λI − α)v = 0, so that α(v) = λv; that is, λ is an eigenvalue of α.

Using this result, we can give a necessary and sufficient condition for α to be diago-
nalisable.
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Theorem 5.21. The linear map α on V is diagonalisable if and only if its minimal
polynomial is the product of distinct linear factors, that is, its roots all have multiplicity 1.

Bonus material

The following proof is beyond the scope of the module and is non-examinable.

Proof. Suppose first that α is diagonalisable, with eigenvalues λ1, . . . , λr. Then there is
a basis such that α is represented by a diagonal matrix D whose diagonal entries are the
eigenvalues. Now for any polynomial f , f(α) is represented by f(D), a diagonal matrix
whose diagonal entries are f(λi) for i = 1, . . . , r. Choose

f(x) = (x− λ1) · · · (x− λr).

Then all the diagonal entries of f(D) are zero; so f(D) = O. We claim that f is the
minimal polynomial of α; clearly it has no repeated roots, so we will be done. We know
that each λi is a root of mα(x), so that f(x) divides mα(x); and we also know that
f(α) = 0, so that the degree of f cannot be smaller than that of mα. So the claim
follows.

Conversely, we have to show that if mα is a product of distinct linear factors then α
is diagonalisable. This is a little argument with polynomials. Let f(x) =

∏
(x− λi) be

the minimal polynomial of α, with the roots λi all distinct. Let hi(x) = f(x)/(x − λi).
Then the polynomials h1, . . . , hr have no common factor except 1; for the only possible
factors are (x− λi), but this fails to divide hi. Now the Euclidean algorithm shows that
we can write the h.c.f. as a linear combination:

1 =
r∑
i=1

hi(x)ki(x).

Let Ui = Im(hi(α)). The vectors in Ui are eigenvectors of α with eigenvalue λi; for if
u ∈ Ui, say u = hi(α)v, then

(α− λiI)ui = (α− λiI)hi(α)(v) = f(α)v = 0,

so that α(v) = λi(v). Moreover every vector can be written as a sum of vectors from
the subspaces Ui. For, given v ∈ V , we have

v = Iv =

r∑
i=1

hi(α)(ki(α)v),

with hi(α)(ki(α)v) ∈ Im(hi(α). The fact that the expression is unique follows from the
lemma, since the eigenvectors are linearly independent.

End of bonus material

So how, in practice, do we “diagonalise” a matrix A, that is, find an invertible
matrix P such that P−1AP = D is diagonal? We saw an example of this earlier. The
matrix equation can be rewritten as AP = PD, from which we see that the columns of P
are the eigenvectors of A. So the procedure is: Find the eigenvalues of A, and find a basis
of eigenvectors; then let P be the matrix which has the eigenvectors as columns, and D
the diagonal matrix whose diagonal entries are the eigenvalues. Then P−1AP = D.
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How do we find the minimal polynomial of a matrix? We know that it divides the
characteristic polynomial, and that every root of the characteristic polynomial is a root
of the minimal polynomial; then it’s trial and error. For example, if the characteristic
polynomial is (x−1)2(x−2)3, then the minimal polynomial must be one of (x−1)(x−2)
(this would correspond to the matrix being diagonalisable), (x−1)2(x−2), (x−1)(x−2)2,
(x − 1)2(x − 2)2, (x − 1)(x − 2)3 or (x − 1)2(x − 2)3. If we try them in this order, the
first one to be satisfied by the matrix is the minimal polynomial.

Example 5.22. Consider first the matrix

A =

0 1 0
0 0 1
1 0 0

 .
The characteristic polynomial is

pA(x) = det(xI −A) =

∣∣∣∣∣∣
x −1 0
0 x −1
−1 0 x

∣∣∣∣∣∣ = x3 − 1 = (x− 1)(x2 + x+ 1).

The polynomial pA(x) does not factor further over R, as two of the roots are complex.
So, viewed as a linear map on R3, the matrix A does not diagonalise.

This problem can be fixed by extending the field to the complex numbers C. Then
the characteristic polynomial is a product of linear factors, namely, pA(x) = (x− 1)(x−
ω)(x− ω2), where ω = −1

2 +
√
3
2 i. (Note that 1, ω and ω2 are the cube roots of unity.)

By Theorem 5.19, the minimal polynomial mA(x) divides pA(x) and hence mA(x) also
is a product of distinct linear factors. Thus, viewed as a linear map on C3, the matrix
A is diagonalisable, and its diagonal form is

D =

1 0 0
0 ω 0
0 0 ω2

 .
You can check that the eigenvectors are

[
1 1 1

]>
,
[
1 ω ω2

]>
, and

[
1 ω2 ω

]>
. So

the matrix P that diagonalises A, in the sense that D = P−1AP , is

P =

1 1 1
1 ω ω2

1 ω2 ω

 ;

its columns are just the eigenvectors of A taken in order.
In the example just considered, the obstacle to diagonalisation is that the character-

istic polynomial did not have a full set of roots over R; this problem can be dealt with
by extending the field to C. The next example illustrates a deeper problem that can
arise. Consider the matrix

B =

2 1 0
0 2 0
0 0 1

 .
Its characteristic polynomial is pB(x) = (x−2)2(x−1). The minimal polynomial divides
pB(x) and has the same roots, so the possibilties are either mB(x) = (x − 2)(x − 1) or
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mB(x) = (x − 2)2(x − 1). Can it be the former? Evaluating (B − 2I)(B − I) we find
that

(B − 2I)(B − I) =

0 1 0
0 0 0
0 0 −1

1 1 0
0 1 0
0 0 0

 =

0 1 0
0 0 0
0 0 0

 6= O.

By a (short!) process of elimination we have found that mA(x) = pA(x) = (x−2)2(x−1).
The minimal polynomial is not a product of distinct linear factors, so the matrix B is
not diagonalisable. This is a more fundamental problem, which cannot be solved by
extending the field.

5.6 Jordan form

We briefly consider, without proof, a canonical form for matrices over the complex
numbers that deals to some extent with the problem identified iin the previous exercise.

Definition 5.23. (a) A Jordan block J(n, λ) is a matrix of the form

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0

0 0 λ
. . . 0 0

...
. . .

. . .

0 0 0 · · · λ 1
0 0 0 · · · 0 λ


,

that is, it is an n×n matrix with λ on the main diagonal, 1 in positions immediately
above the main diagonal, and 0 elsewhere. (We take J(1, λ) to be the 1× 1 matrix
[λ].)

(b) A matrix is in Jordan form if it can be written in block form with Jordan blocks
on the diagonal and zeros elsewhere.

Theorem 5.24. Over C, any matrix is similar to a matrix in Jordan form; that is, any
linear map can be represented by a matrix in Jordan form relative to a suitable basis.
Moreover, the Jordan form of a matrix or linear map is unique apart from putting the
Jordan blocks in a different order on the diagonal.

Remark 5.25. A matrix over C is diagonalisable if and only if all the Jordan blocks in
its Jordan form have size 1.

Example 5.26. Any 3× 3 matrix over C is similar to one ofλ 0 0
0 µ 0
0 0 ν

 ,
λ 1 0

0 λ 0
0 0 µ

 ,
λ 1 0

0 λ 1
0 0 λ

 ,
for some λ, µ, ν ∈ C (not necessarily distinct).

Notice that the matrix B from the previous example (the one that is not diagonal-
isable) is already in Jordan form.

Though it is beyond the scope of this course, it can be shown that if all the roots
of the characteristic polynomial lie in the field K, then the matrix is similar to one in
Jordan form.
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5.7 Trace

Here we meet another function of a linear map, and consider its relation to the eigenvalues
and the characteristic polynomial.

Definition 5.27. The trace Tr(A) of a square matrix A is the sum of its diagonal entries.

Proposition 5.28. (a) For any two n × n matrices A and B, we have Tr(AB) =
Tr(BA).

(b) Similar matrices have the same trace.

Proof. Let A = (aij) and B = (bij). For part (a), note that

Tr(AB) =

n∑
i=1

(AB)ii =

n∑
i=1

n∑
j=1

aijbji =

n∑
j=1

n∑
i=1

bjiaij =

n∑
j=1

(BA)jj = Tr(BA),

by the rules for matrix multiplication.
For part (b), we just observe that Tr(P−1AP ) = Tr(APP−1) = Tr(AI) = Tr(A).

The second part of this proposition shows that, if α : V → V is a linear map, then
any two matrices representing α have the same trace; so, as we did for the determinant,
we can define the trace Tr(α) of α to be the trace of any matrix representing α.

The trace and determinant of α are coefficients in the characteristic polynomial of
α.

Proposition 5.29. Let α : V → V be a linear map, where dim(V ) = n, and let pα be
the characteristic polynomial of α, a polynomial of degree n with leading term xn.

(a) The coefficient of xn−1 is −Tr(α), and the constant term is (−1)n det(α).

(b) If α is diagonalisable, then the sum of its eigenvalues (taking account of multiplic-
ities) is Tr(α) and their product is det(α).

Proof. Let A = (aij) be a matrix representing α. We have

pα(x) = det(xI −A) =

∣∣∣∣∣∣∣∣
x− a1,1 −a1,2 . . . −a1,n
−a2,1 x− a2,2 . . . −a2,n

. . .
−an,1 −an,2 . . . x− an,n

∣∣∣∣∣∣∣∣ .
The only way to obtain a term in xn−1 in the determinant is from the product (x −
a1,1)(x − a2,2) · · · (x − an,n) of diagonal entries, taking −ai,i from the ith factor and x
from each of the others. (If we take one off-diagonal term, we would have to have at
least two, so that the highest possible power of x would be xn−2.) So the coefficient of
xn−1 is minus the sum of the diagonal terms.

Putting x = 0, we find that the constant term is pα(0) = det(−A) = (−1)n det(A).

If α is diagonalisable then the eigenvalues are the roots of pα(x):

pα(x) = (x− λ1)(x− λ2) · · · (x− λn).

Now the coefficient of xn−1 is minus the sum of the roots, and the constant term is (−1)n

times the product of the roots.


