
Chapter 4

Linear maps between vector
spaces

We return to the setting of vector spaces in order to define linear maps between them.
We will see that these maps can be represented by matrices, decide when two matri-
ces represent the same linear map, and give another proof of the canonical form for
equivalence.

4.1 Definition and basic properties

Definition 4.1. Let V and W be vector spaces over a field K. A function α from V to
W is a linear map if it preserves addition and scalar multiplication, that is, if

• α(v1 + v2) = α(v1) + α(v2) for all v1, v2 ∈ V ;

• α(cv) = cα(v) for all v ∈ V and c ∈ K.

Remark 4.2. (a) We can combine the two conditions into one as follows:

α(c1v1 + c2v2) = c1α(v1) + c2α(v2).

(b) In other literature the term “linear transformation” is often used instead of “linear
map”.

Definition 4.3. Let α : V →W be a linear map. The image of α is the set

Im(α) = {w ∈W : w = α(v) for some v ∈ V },

and the kernel of α is

Ker(α) = {v ∈ V : α(v) = 0}.

Proposition 4.4. Let α : V → W be a linear map. Then the image of α is a subspace
of W and the kernel is a subspace of V .

Proof. We have to show that each subset is closed under addition and scalar multiplica-
tion, and is non-empty. Non-emptiness is immediate: the zero vector 0 is in both Im(α)
and Ker(α) since α(0) = 0.
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Suppose that w1, w2 are vectors in the image of α. By definition of Im(α), there exist
v1, v2 ∈ V such that w1 = α(v1) and w2 = α(v2). Then

w1 + w2 = α(v1) + α(v2) = α(v1 + v2),

by linearity of α. It follows that w1 + w2 ∈ Im(α). Now suppose w ∈ Im(α) and c ∈ K.
By definition of Im(α), there exists v ∈ V such that w = α(v). Then

cw = cα(v) = α(cv),

demonstrating that cw ∈ Im(α).

Next suppose v1, v2 are vectors in the kernel of α. By definition of Ker(α), we know
that α(v1) = α(v2) = 0. Thus

α(v1 + v2) = α(v1) + α(v2) = 0 + 0 = 0,

from which it follows that v1 + v2 ∈ Ker(α). Finally, suppose v ∈ Ker(α) and c ∈ K.
Then α(v) = 0 and

α(cv) = cα(v) = c0 = 0,

demonstrating that cv ∈ Ker(α).

Definition 4.5. We define the rank of α to be %(α) = dim(Im(α)) and the nullity of
α to be ν(α) = dim(Ker(α)). (We use the Greek letters ‘rho’ and ‘nu’ here to avoid
confusing the rank of a linear map with the rank of a matrix, though they will turn out
to be closely related!)

Theorem 4.6 (Rank–Nullity Theorem). Let α : V →W be a linear map. Then %(α) +
ν(α) = dim(V ).

Proof. Choose a basis u1, u2, . . . , uq for Ker(α), where q = dim(Ker(α)) = ν(α). The
vectors u1, . . . , uq are linearly independent vectors of V , so we can add further vectors
to get a basis for V , say u1, . . . , uq, v1, . . . , vs, where q + s = dim(V ).

We claim that the vectors α(v1), . . . , α(vs) form a basis for Im(α). We have to show
that they are linearly independent and spanning.

Linearly independent: Suppose that c1α(v1) + · · ·+ csα(vs) = 0. We need to show that
c1 = · · · = cs = 0. Applying the linear map α we have

α(c1v1 + · · ·+ csvs) = c1α(v1) + · · ·+ csα(vs) = 0,

so that c1v1 + · · ·+ csvs ∈ Ker(α). The vector c1v1 + · · ·+ csv can be expressed in
terms of the basis for Ker(α):

c1v1 + · · ·+ csvs = a1u1 + · · ·+ aquq,

whence

−a1u1 − · · · − aquq + c1v1 + · · ·+ csvs = 0.

But the list (u1, . . . , uq, v1, . . . , vs) is a basis for V , and hence is linearly indepen-
dent. It follows that c1 = · · · = cs = 0 (and incidentally a1 = · · · = aq = 0), as
required.
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Spanning: Take any vector in Im(α), say w. We need to show that w ∈ 〈α(v1), . . . , α(vs)〉.
Since w ∈ Im(α) we know that w = α(v) for some v ∈ V . Write v in terms of the
basis for V :

v = a1u1 + · · ·+ aquq + c1v1 + · · ·+ csvs

for some a1, . . . , aq, c1, . . . , cs. Applying α, we get

w = α(v)

= a1α(u1) + · · ·+ aqα(uq) + c1α(v1) + · · ·+ csα(vs)

= c1α(v1) + · · ·+ csα(vs),

where we used the fact that ui ∈ Ker(α) and hence α(ui) = 0. So the vectors
α(v1), . . . , α(vs) span Im(α).

Thus, %(α) = dim(Im(α)) = s. Since ν(α) = q and q + s = dim(V ), the theorem is
proved.

4.2 Representation by matrices

We come now to the second role of matrices in linear algebra: they represent linear
maps between vector spaces.

Let α : V →W be a linear map, where dim(V ) = n and dim(W ) = m. Let v1, . . . , vn
be a basis for V and w1, . . . , wm a basis for W . Then for j = 1, . . . , n, the vector α(vj)
belongs to W , so we can write it as a linear combination of w1, . . . , wm.

Definition 4.7. The matrix representing the linear map α : V → W relative to the
bases (v1, . . . , vn) for V and (w1, . . . , wm) for W is the m× n matrix whose (i, j) entry
is aij , where

α(vj) =

m∑
i=1

aijwi

for j = 1, . . . , n. (The indices on the right hand side are reversed from what you might
expect by analogy with matrix multiplication, but it will all turn out right in the end!)

In practice this means the following. Take α(vj) and write it as a as a linear com-
bination α(vj) = a1jw1 + · · · + amjwm of basis vectors of W . Then the column vector[
a1j a2j · · · amj

]>
is the jth column of the matrix representing α. So, for example,

if n = 3, m = 2, and

α(v1) = w1 + w2, α(v2) = 2w1 + 5w2, α(v3) = 3w1 − w2,

then the matrix representing α is [
1 2 3
1 5 −1

]
.

Now the most important thing about this representation is that the action of α is
now easily described:

Proposition 4.8. Let α : V →W be a linear map. Choose bases B for V and B′ for W
and let A be the matrix representing α with respect to these bases. Then

[α(v)]B′ = A[v]B.
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Proof. Let B = (v1, . . . , vn) be the basis for V , and B′ = (w1, . . . , wm) the basis for W .
Suppose v =

∑n
j=1 cjvj ∈ V , so that in coordinates

[v]B =

c1...
cn

 .
Then

α(v) =
n∑

j=1

cjα(vj) =
n∑

j=1

cj

m∑
i=1

aijwi =
m∑
i=1

wi

n∑
j=1

aijcj ,

so the ith coordinate of [α(v)]B′ is
∑n

j=1 aijcj , which is precisely the ith coordinate in
the matrix product A[v]B.

In our example, if v = 2v1 + 3v2 + 4v3, so that the coordinate representation of v

relative to the basis (v1, v2, v3) is
[
2 3 4

]>
, then

[α(v)]B′ = A[v]B =

[
1 2 3
1 5 −1

]2
3
4

 =

[
20
13

]
.

The column vector on the right gives the coordinate representation of α(v) relative to
the basis (w1, w2), that is, α(v) = 20w1 + 13w2.

Addition and multiplication of linear maps correspond to addition and multiplication
of the matrices representing them.

Definition 4.9. Let α and β be linear maps from V to W . Define their sum α+ β by
the rule

(α+ β)(v) = α(v) + β(v)

for all v ∈ V . It is routine to check that α+ β is a linear map.

Proposition 4.10. If α and β are linear maps represented relative to some basis by
matrices A and B, respectively, then α+ β is represented by the matrix A+B, relative
to the same basis.

The proof of this is not too difficult: just apply the definitions as in the Proof of
Proposition 4.12 below.

Definition 4.11. Let U , V and W be vector spaces over K, and let α : U → V and
β : V →W be linear maps. The product βα is the function U →W defined by the rule

(βα)(u) = β(α(u))

for all u ∈ U . Again it is routine to check that βα is a linear map. Note that the order
is important: we take a vector u ∈ U , apply α to it to get a vector in V , and then apply
β to get a vector in W . So βα means “apply α, then β”.

Proposition 4.12. If α : U → V and β : V → W are linear maps represented by
matrices A and B respectively, then βα is represented by the matrix BA.

Proof. Suppose linear maps α and β are represented by matrices A and B relative to
bases B of U , B′ of V , and B′′ of W . Then

[(βα)u]B′′ = [β(α(u))]B′′ = B [α(u)]B′ = B(A[u]B) = (BA)[u]B,

where we have used, in turn, the definition of product of maps, Proposition 4.8 (twice)
and associatively of matrix multiplication.
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Remark Let l = dim(U), m = dim(V ) and n = dim(W ), then A is m × l, and B is
n ×m; so the product BA is defined, and is n × l, which is the right size for a matrix
representing a map from an l-dimensional to an n-dimensional space.

The significance of all this is that the strange rule for multiplying matrices is chosen
so as to make Proposition 4.12 hold. The definition of multiplication of linear maps
is the natural one (composition), and we could then say: what definition of matrix
multiplication should we choose to make the Proposition valid? We would find that the
usual definition was forced upon us.

4.3 Change of basis

The matrix representing a linear map depends on the choice of bases we used to represent
it. We briefly discuss what happens if we change the basis.

Recall the notion of transition matrix from Chapter 1. If B = (v1, . . . , vn) and
B′ = (v′1, . . . , v

′
n) are two bases for a vector space V of dimension n, then the transition

matrix PB,B′ is the matrix whose jth column is the coordinate representation of v′j
relative to the basis B. We saw that

[v]B = PB,B′ [v]B′ ,

where [v]B is the coordinate representation of an arbitrary vector v relative to the basis
B, and similarly for B′. The transition matrix PB′,B that transforms [v]B back to [v]B′ is
just the inverse of the matrix PB,B′ .

Proposition 4.13. Let α : V →W be a linear map represented by matrix A relative to
the bases B for V and C for W , and by the matrix A′ relative to the bases B′ for V and
C′ for W . If P = PC′,C and Q = PB,B′ are transition matrices relating the unprimed to
the primed bases, then

A′ = PAQ.

Proof. At a high level the claim seems reasonable. Suppose we apply the matrix A′ to
a coordinate representation of some vector relative to the primed basis for V . Multi-
plication by Q will transform from the primed to unprimed basis, multiplication by A
will apply the linear transformation relative to the unprimed bases, and finally P will
transform back to the primed basis.

We just need to write that scheme down in symbols, which is not too difficult:

(PAQ)[v]B′ = PA(Q [v]B′) = P (A [v]B) = P [α(v)]C = [α(v)]C′ .

So A′ = PAQ is the representation of the linear map α relative to the primed bases.

In practical terms, the above result is needed for explicit calculations. For theoretical
purposes its importance lies the following corollary. Recall that two matrices A and B
are equivalent if B is obtained from A by multiplying on the left and right by invertible
matrices.

Proposition 4.14. Two matrices represent the same linear map with respect to different
bases if and only if they are equivalent.
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Proof. We saw in Proposition 4.13 that two matrices A and A′ representing the same
linear map are equivalent. This is the “only if” direction.

Nothing in the rest of the course rests on the “if ” direction, but we include the
proof for completeness. Suppose A and B are equivalent n × n matrices. Then there
exist invertible matrices P and Q with A′ = PAQ. The idea is that we can view the
invertible matrix Q as a transition matrix PB,B′ . Since P is invertible it has rank n and
hence its columns are linearly independent. The columns can thus be interpreted as the
basis vectors B′ written in terms of the basis vectors B. This is exactly the transition
matrix from B′ to B. Similarly, P can be interpreted as a transition matrix PC′,C . Thus
if A represents a linear map α with respect to the bases B and C then A′ represents α
with respect to B′ and C′.

4.4 Canonical form revisited

We return Theorem 2.3 about canonical forms for equivalence with a view to showing
that rank of a linear map and rank of a matrix are essentially the same thing.

Theorem 4.15. Let α : V →W be a linear map of rank r = %(α). Then there are bases
for V and W such that the matrix representing α is, in block form,[

Ir O
O O

]
.

Proof. As in the proof of Theorem 4.6, choose a basis v1, . . . , vr, vr+1, . . . , vn for V such
that vr+1, . . . , vn is a basis for Ker(α). (We can do this by choosing the basis vr+1, . . . , vn
of Ker(α) first, and then extending it to a basis for the whole space V .)

As we saw earlier, w1 = α(v1), . . . , wr = α(vr) is a basis for Im(α), and can be
extended to a basis w1, . . . , wr, wr+1, . . . , wm of W . We have

α(vi) =

{
wi, if 1 ≤ i ≤ r;
0, otherwise,

so the matrix of α relative to these bases is[
Ir O
O O

]
as claimed.

We recognise the matrix in the theorem as the canonical form for equivalence. It is
now not difficult to see that rank of a linear map and rank of a matrix are consistent.

Corollary 4.16. Suppose α : V → W is a linear map of rank r. For any choice of
bases B for V and B′ for W , the rank of the matrix representing α relative to B and B′
is also r.

Proof. We know from Theorem 4.15 that there is some choice of bases for which the
matrix A representing α takes the canonical form. In this case the rank of the linear
map α and the matrix A certainly agree. Any other matrix A′ representing α will be
equivalent to A by Proposition 4.13. Equivalent matrices have the same rank, so the
rank of A′ is also r.
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So how many equivalence classes of m × n matrices are there, for given m and n?
The rank of such a matrix can take any value from 0 up to the minimum of m and n; so
the number of equivalence classes is min{m,n}+ 1. Thus the number of distinct linear
maps from a vector space of dimension n to one of dimension m is also min{m,n}+ 1.


