
22



Chapter 3

Determinants

We recall the Leibniz formula for the determinant of a square matrix, and show that
the function it defines is the unique function on square matrices satisfying certain nice
properties. This provides an axiomatic definition of the determinant, and demystifies, to
a certain extent, why the determinant is defined the way it is. We examine methods of
calculating the determinant and some of its properties. We study two polynomials asso-
ciated with a matrix, the minimal and characteristic polynomials. Finally we prove the
Cayley-Hamilton Theorem, that states that every matrix satisfies its own characteristic
equation.

The determinant is a function defined on square matrices; its value is a scalar. It
has some very important properties: perhaps most important is the fact that a matrix
is invertible if and only if its determinant is not equal to zero.

We denote the determinant function by det, so that det(A) is the determinant of A.
For a matrix written out as an array, the determinant is denoted by replacing the square
brackets by vertical bars:

det

[
1 2
3 4

]
=

∣∣∣∣1 2
3 4

∣∣∣∣ .
The formula for the determinant involves some background notation.

Definition 3.1. A permutation of {1, . . . , n} is a bijection from the set {1, . . . , n} to
itself. The symmetric group Sn consists of all permutations of the set {1, . . . , n}. (There
are n! such permutations.) For any permutation π ∈ Sn, there is a number sign(π) = ±1,
computed as follows: write π as a product of disjoint cycles; if there are k cycles (includ-
ing cycles of length 1), then sign(π) = (−1)n−k. A transposition is a permutation which
interchanges two symbols and leaves all the others fixed. Thus, if τ is a transposition,
then sign(τ) = −1.

The last fact holds because a transposition has one cycle of size 2 and n− 2 cycles of
size 1, so n−1 altogether; so sign(τ) = (−1)n−(n−1) = −1. We need one more fact about
signs: if π is any permutation and τ is a transposition, then sign(πτ) = sign(τπ) =
− sign(π), where πτ denotes the composition of π and τ (apply first τ , then π).

Definition 3.2. Let A = (aij) be an n × n matrix over K. The determinant of A is
defined by the Leibniz formula

det(A) =
∑
π∈Sn

sign(π)a1,π(1)a2,π(2) · · · an,π(n).
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This gives us a nice mathematical formula for the determinant of a matrix. Unfortu-
nately, it is a terrible formula for practical computation, since it involves working out n!
terms, each a product of matrix entries, and adding them up with + and − signs. For
n of moderate size, this will take a very long time! (For example, 10! = 3628800.)

Let’s come at this from another direction. Consider the following three properties of
a function D defined on n× n matrices.

(D1) For every 1 ≤ i ≤ n, D(A) is linear in the ith row of the matrix A. (We’ll spell
out below what this means.)

(D2) If A has two equal rows, then D(A) = 0.

(D3) D(In) = 1, where In is the n× n identity matrix.

Some clarification of property (D1). Suppose we have any matrices A and B such
that B agrees with A, except that row i is multiplied by some scalar c. Thus,

A =



v1
...

vi−1
vi
vi+1

...
vn


B =



v1
...

vi−1
cvi
vi+1

...
vn


, (3.1)

where v1, . . . , vn are row vectors. Then (D1) legislates that D(B) = cD(A). Further-
more, suppose we have three matrices A, A′ and B, such that A and A′ agree except at
the ith row, and such that the ith row of B is the sum of the corresponding rows of A
and A′:

A =



v1
...

vi−1
vi
vi+1

...
vn


A′ =



v1
...

vi−1
v′i
vi+1

...
vn


B =



v1
...

vi−1
vi + v′i
vi+1

...
vn


. (3.2)

Then (D1) legislates that D(B) = D(A) +D(A′).
Why are these natural? Well, condition (D1) says that if we fix all the entries of A

apart from those in the ith row, then D is some linear function of the remaining entries
a1i, . . . , ani. This is a linear algebra course, so this property seems reasonable enough.
A matrix A with two equal rows has rank less than n. Property (D2) says that the
function D(A) is zero on at least some (in fact all) matrices of rank less than n. If
we are looking for a function that is non-zero exactly for invertible matrices, this is a
reasonable condition to impose. The conditions (D1) and (D2) cannot define a unique
function, since if D satisfies (D1) and (D2) then so does any multiple of D. So if we
want to pin down the function D precisely, we need some condition like (D3) to fix the
function at a particular point.

If we believe (D1)–(D3) are nice conditions, then the determinant is a nice function.
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Lemma 3.3. The function det() satisfies (D1)–(D3).

Proof. (D1) Suppose A = (ak`) is an n× n matrix, and A′ and B are matrices agreeing
with A apart from in the ith row. Furthermore, suppose matrices A, A′ and B
are related as in (3.2): thus the ith row of B is the sum of the ith rows of A and
A′. Then, denoting the ith row of A′ by a′i1, a

′
i2, . . . , a

′
in, we obtain, by the Leibniz

formula,

det(B) =
∑
π∈Sn

sign(π) a1,π(1) · · · ai−1,π(i−1) (ai,π(i) + a′i,π(i))︸ ︷︷ ︸
bi,π(i)

ai+1,π(i+1) · · · an,π(n)

=
∑
π∈Sn

sign(π) a1,π(1) · · · ai−1,π(i−1)ai,π(i)ai+1,π(i+1) · · · an,π(n)

+
∑
π∈Sn

sign(π) a1,π(1) · · · ai−1,π(i−1)a′i,π(i)ai+1,π(i+1) · · · an,π(n)

= det(A) + det(A′).

The case (3.1), where B is obtained from A by multiplying the ith row of A by c, is
similar, but easier, and is left as an exercise. Thus (D1) holds for the determinant.

(D2) Suppose that the ith and jth rows of A are equal. Let τ be the transposition that
interchanges i and j and leaves the other numbers fixed. Then,

ai,πτ(i) = ai,π(j) = aj,π(j) and aj,πτ(j) = aj,π(i) = ai,π(i),

where the second equality in each case uses the fact that the ith and jth rows of
A are identical. For any k /∈ {i, j} we naturally have ak,πτ(k) = ak,π(k). Thus, we
see that the products

a1,π(1)a2,π(2) · · · an,π(n) and a1,πτ(1)a2,πτ(2) · · · an,πτ(n)

are equal. But sign(πτ) = − sign(π). So the corresponding terms in the formula
for the determinant cancel one another. The elements of Sn can be divided up into
n!/2 pairs of the form {π, πτ}. As we have seen, each pair of terms in the formula
cancel out. We conclude that det(A) = 0. Thus (D2) holds.

(D3) If A = In, then the only permutation π which contributes to the sum is the
identity permutation ι; any other permutation π satisfies π(i) 6= i for some i, so
that aiπ(i) = 0. The sign of ι is +1, and all the factors aii are equal to 1, so
det(A) = 1, as required.

So there exists at least one function that satisfies (D1)–(D3). We now show, perhaps
surprisingly, that there is only one.

Theorem 3.4. There is a unique function D on n × n matrices satisfying (D1)–(D3).
That function is det().

Proof. Suppose that D is any function on square matrices satisfying (D1)–(D3). First,
we show that applying elementary row operations to matrix A has a well-defined effect
on D(A).
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(a) If B is obtained from A by adding c times the jth row to the ith, then D(B) =
D(A).

(b) If B is obtained from A by multiplying the ith row by a non-zero scalar c, then
D(B) = cD(A).

(c) If B is obtained from A by interchanging two rows i and j, then D(B) = −D(A).

For (a), let A′ be the matrix which agrees with A in all rows except the ith, which
is equal to the jth row of A. By rule (D2), D(A′) = 0. By rule (D1),

D(B) = D(A) + cD(A′) = D(A).

Part (b) follows immediately from condition (D1).
To prove part (c), we observe that we can interchange the ith and jth rows by the

following sequence of operations:

• add the ith row to the jth;

• multiply the ith row by −1;

• add the jth row to the ith;

• subtract the ith row from the jth.

Symbolically,

...
vi
...
vj
...


Rj+Ri−−−−→



...
vi
...

vi + vj
...


−1×Ri−−−−→



...
−vi

...
vi + vj

...


Ri+Rj−−−−→



...
vj
...

vi + vj
...


Rj−Ri−−−−→



...
vj
...
vi
...


The first, third and fourth steps don’t change the value of D, while the second multiplies
it by −1.

We now understand how elementary row operations on the matrix A affect the value
of D(A). The proof now proceeds in two cases, depending on whether A is invertible.

• If A is not invertible, then its row rank is less than n (Corollary 2.18). So the rows
of A are linearly dependent, and one row can be written as a linear combination of
the others. Suppose, without loss of generality that the first row v1 can be written
v1 = c2v2 + c3v3 + · · ·+ cnvn. Applying property (D1), we see that

D


c2v2 + c3v3 + · · ·+ cnvn

v2
...
vn

 = c2D


v2
v2
...
vn

+ c3D


v3
v2
...
vn

+ · · ·+ cnD


vn
v2
...
vn

 = 0.

Note that each of the terms in the above sum is zero by (D2), as each matrix has
a repeated row. So, assuming (D1)–(D3) we have shown D(A) = 0. Since det
satisfies (D1)–(D3) (Lemma 3.3), we know in particular that det(A) = 0. So D(A)
and det(A) agree on non-invertible matrices A: they are both zero.
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• If A is invertible, then we can reduce it to the identity by applying elementary
row operations (Corollary 2.20). Suppose that these row operations correspond to
elementary matrices R1, R2, . . . , Rt, so that Rt . . . R2R1A = I. Each row operation
Ri multiplies D() by a certain factor ci, determined by (a)–(c). Thus, on the one
hand, D(Rt . . . R2R1A) = c1c2 . . . ctD(A) = cD(A), where c = c1c2 . . . ct. On the
other hand Rt . . . R2R1A = I, and so D(Rt . . . R2R1A) = D(I) = 1, by (D3). It
follows that D(A) = c−1. Again, we deduce in particular that det(A) = c−1. Thus,
D(A) and det(A) agree on invertible matrices.

Putting together the two cases, we see that if D is any function satisfying (D1)–(D3),
then D(A) = det(A) for all A.

Corollary 3.5. A square matrix is invertible if and only if det(A) 6= 0.

Proof. See the case division at the end of the proof of the theorem.

Note that Theorem 3.4 immediately yields a result from Linear Algebra I.

Lemma 3.6. (a) If B is obtained from A by adding c times the jth row to the ith,
then det(B) = det(A).

(b) If B is obtained from A by multiplying the ith row by a scalar c, then det(B) =
cdet(A).

(c) If B is obtained from A by interchanging two rows, then det(B) = −det(A).

One of the most important properties of the determinant is the following.

Theorem 3.7. If A and B are n× n matrices over K, then det(AB) = det(A) det(B).

Proof. Suppose first that A is not invertible. Then det(A) = 0. Also, AB is not invert-
ible. (For, suppose that (AB)−1 = X, so that (AB)X = I = A(BX). Then BX is the
inverse of A.) So det(AB) = 0, and the theorem is true.

In the other case, A is invertible, so we can apply a sequence of elementary row
operations to A to get to the identity matrix. Suppose those row operations corre-
spond to elementary matrices R1, . . . , Rt and that the effect of the operations is to
multiply the determinant in turn by by c1, . . . , ct. Then, for any matrix X, we have
det(Rt . . . R2R1X) = cdet(X), where c = c1c2 . . . ct. Noting that Rt . . . R2R1 = A−1 we
can write our finding as det(A−1X) = cdet(X).

Setting X = A, we find that

cdet(A) = det(A−1A) = det(I) = 1,

and setting X = AB that

cdet(AB) = det(A−1(AB)) = det((A−1A)B) = det(B).

combining these equalities we obtain det(AB) = det(A) det(B), as required.

Finally, we have defined determinants using rows, but we could have used columns
instead:

Corollary 3.8. The determinant is the unique function D of n × n matrices which
satisfies the conditions



28 CHAPTER 3. DETERMINANTS

(D1′) for 1 ≤ i ≤ n, D is a linear function of the ith column;

(D2′) if two columns of A are equal, then D(A) = 0;

(D3′) D(In) = 1.

Proof. Swapping the roles of rows and columns in the Proof of Theorem 3.4 shows that
there is a unique function satisfying (D1′)–(D3′) given by the formula

det(A) =
∑
π∈Sn

sign(π)aπ(1),1aπ(2),2 · · · aπ(n),n,

which is the usual formula, but with the role of rows and columns reversed. But this
formula contains the same terms as the usual one, but in a different order. (Check this.
The term corresponding to π in the usual formula is equal, after rearrangement, to the
term corresponding to π−1 in the above formula. Furthermore, sign(π−1) = sign(π).)

Since det() is the unique function on matrices satisfying (D1′)–(D3′) and (D1)–(D3),
and since these properties are invariant under interchange of rows and columns, the same
must be true of det() itself.

Corollary 3.9. If A> denotes the transpose of A, then det(A>) = det(A).

3.1 Calculating determinants

Here is a second formula, which is also theoretically important but very inefficient in
practice.

Definition 3.10. Let A be an n × n matrix. For 1 ≤ i, j ≤ n, denote by Ai,j the
(n − 1) × (n − 1) matrix obtained by deleting the ith row and jth column of A. The
(i, j) cofactor of A is defined to be (−1)i+j det(Ai,j). (These signs have a chessboard
pattern, starting with sign + in the top left corner.) We denote the (i, j) cofactor of A
by Kij(A). Note that the cofactor is a scalar, even though we’ve denoted it by an upper
case latter! Finally, the adjugate of A is the n × n matrix Adj(A) whose (i, j) entry is
the (j, i) cofactor Kji(A) of A. (Note the transposition!)

Theorem 3.11. (a) For 1 ≤ i ≤ n, we have

det(A) =
n∑
j=1

aijKij(A).

(b) For 1 ≤ j ≤ n, we have

det(A) =

n∑
i=1

aijKij(A).

This theorem says that, if we take any column or row of A, multiply each element
by the corresponding cofactor, and add the results, we get the determinant of A. The
expressions (a) and (b) appearing in Theorem 3.11 are the cofactor or Laplace expansion
along row i and column j respectively.
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Example 3.12. Using a cofactor expansion along the first column, we see that∣∣∣∣∣∣
1 2 3
4 5 6
7 8 10

∣∣∣∣∣∣ =

∣∣∣∣5 6
8 10

∣∣∣∣− 4

∣∣∣∣2 3
8 10

∣∣∣∣+ 7

∣∣∣∣2 3
5 6

∣∣∣∣
= (5 · 10− 6 · 8)− 4(2 · 10− 3 · 8) + 7(2 · 6− 3 · 5)

= 2 + 16− 21

= −3

using the standard formula for a 2× 2 determinant.

Theorem 3.11 looks plausible. Note that Kij(A) is an (n− 1)× (n− 1) determinant.
Expanding aijKij(A) by the Leibniz formula yields (n − 1)! terms that ought to corre-
spond to those (n − 1)! terms in the Leibniz formula for A that satisfy π(i) = j. But
keeping track of the subscripts and the signs is fiddly and not very edifying, so we won’t
go into that here. The details can be found on the Wikipedia page on the “Laplace
expansion”.

Another way of going about proving Theorem 3.11 is to show that the expression∑n
j=1 aijKij(A) satisfies (D1)–(D3). The issue here is how to show (D2) when one of

the two equal rows is row i. Again, there is no essential problem but we won’t go into
the details here.

At first sight, the Laplace expansion looks like a simple formula for the determinant,
since it is just the sum of n terms, rather than n! as in the Leibniz formula. But each
term is an (n − 1) × (n − 1) determinant. Working down the chain we find that this
method is just as labour-intensive as the other one. But the cofactor expansion has
further nice properties:

Theorem 3.13. For any n× n matrix A, we have

A ·Adj(A) = Adj(A) ·A = det(A) I.

Remark 3.14. In the above identity, the A ·Adj(A) and Adj(A) ·A are matrix products,
while det(A) I is the product of a scalar with a matrix. We can get into big trouble by
ignoring this distinction and using matrices where scalars should go. Just in this section,
we’ll use dots to emphasise matrix multiplication.

Proof of Theorem 3.13. We calculate the matrix product. Recall that the (i, j) entry of
Adj(A) is Kji(A).

Now the (i, i) entry of the product A ·Adj(A) is

n∑
k=1

aik(Adj(A))ki =
n∑
k=1

aikKik(A) = det(A),

by the cofactor expansion. On the other hand, if i 6= j, then the (i, j) entry of the
product is

n∑
k=1

aik(Adj(A))kj =

n∑
k=1

aikKjk(A).

This last expression is the cofactor expansion of the matrix A′ which is the same of A
except for the jth row, which has been replaced by the ith row of A. (Note that changing
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the jth row of a matrix has no effect on the cofactors of elements in this row.) So the
sum is det(A′). But A′ has two equal rows, so its determinant is zero.

Thus A · Adj(A) has entries det(A) on the diagonal and 0 everywhere else; so it is
equal to det(A) I.

The proof for the product the other way around is the same, using columns instead
of rows.

Corollary 3.15. If the n× n matrix A is invertible, then its inverse is equal to

(det(A))−1 Adj(A).

So how can you work out a determinant efficiently? The best method in practice is
to use elementary operations.

Apply elementary operations to the matrix, keeping track of the factor by which the
determinant is multiplied by each operation. If you want, you can reduce all the way
to the identity, and then use the fact that det(I) = 1. Often it is simpler to stop at an
earlier stage when you can recognise what the determinant is. For example, if the matrix
A has diagonal entries a11, . . . , ann, and all off-diagonal entries are zero, then det(A) is
just the product a11 · · · ann.

Example 3.16. Let

A =

1 2 3
4 5 6
7 8 10

 .
Subtracting twice the first column from the second, and three times the second column
from the third (these operations don’t change the determinant) gives1 0 0

4 −3 −6
7 −6 −11

 .
Now the cofactor expansion along the first row gives

det(A) =

∣∣∣∣−3 −6
−6 −11

∣∣∣∣ = 33− 36 = −3.

(At the last step, it is easiest to use the formula for the determinant of a 2 × 2 matrix
rather than do any further reduction.)

3.2 The Cayley-Hamilton Theorem

Since we can add and multiply matrices, we can substitute them into a polynomial. For
example, if

A =

[
0 1
−2 3

]
,

then the result of substituting A into the polynomial x2 − 3x+ 2 is

A2 − 3A+ 2I =

[
−2 3
−6 7

]
+

[
0 −3
6 −9

]
+

[
2 0
0 2

]
=

[
0 0
0 0

]
.
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We say that the matrix A satisfies the equation x2 − 3x + 2 = 0. (Notice that for the
constant term 2 we substituted 2I.)

It turns out that, for every n× n matrix A, we can calculate a polynomial equation
of degree n satisfied by A.

Definition 3.17. Let A be a n × n matrix. The characteristic polynomial of A is the
polynomial

pA(x) = det(xI −A).

This is a polynomial in x of degree n.

For example, if

A =

[
0 1
−2 3

]
,

then

pA(x) =

∣∣∣∣x −1
2 x− 3

∣∣∣∣ = x(x− 3) + 2 = x2 − 3x+ 2.

Indeed, it turns out that this is the polynomial we want in general:

Theorem 3.18 (Cayley–Hamilton Theorem). Let A be an n×n matrix with character-
istic polynomial pA(x). Then pA(A) = O.

Example 3.19. Let us just check the theorem for 2× 2 matrices. If

A =

[
a b
c d

]
,

then

pA(x) =

∣∣∣∣x− a −b
−c x− d

∣∣∣∣ = x2 − (a+ d)x+ (ad− bc),

and so

pA(A) =

[
a2 + bc ab+ bd
ac+ cd bc+ d2

]
− (a+ d)

[
a b
c d

]
+ (ad− bc)

[
1 0
0 1

]
= O,

after a small amount of calculation.

Proof. We use the theorem

A ·Adj(A) = det(A) I.

In place of A, we put the matrix xI −A into this formula:

(xI −A) ·Adj(xI −A) = det(xI −A) I = pA(x) I.

Now it is very tempting (for lesser beings than the MTH6140 class) just to substitute
x = A into this formula: on the right we have pA(A) I = pA(A), while on the left there
is a factor AI − A = O. Unfortunately this is not valid, and the reason is connected to
the remark following the statement of Theorem 3.13. The expression pA(A) is a matrix,
and not valid in this context, where a scalar is expected. (A similar problem exists on
the left side of the incorrect identity.)
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Instead, we argue as follows. Adj(xI −A) is a matrix whose entries are polynomials,
so we can write it as a sum of powers of x times matrices, that is, as a polynomial whose
coefficients are matrices. For example,[

x2 + 1 2x
3x− 4 x+ 2

]
= x2

[
1 0
0 0

]
+ x

[
0 2
3 1

]
+

[
1 0
−4 2

]
.

The entries in Adj(xI −A) are (n− 1)× (n− 1) determinants, so the highest power
of x that can arise is xn−1. So we can write

Adj(xI −A) = xn−1Bn−1 + xn−2Bn−2 + · · ·+ xB1 +B0,

for suitable n× n matrices B0, . . . , Bn−1. Hence

pA(x)I = (xI −A) ·Adj(xI −A)

= (xI −A) · (xn−1Bn−1 + xn−2Bn−2 + · · ·+ xB1 +B0)

= xnBn−1 + xn−1(−ABn−1 +Bn−2) + · · ·+ x(−AB1 +B0)−AB0.

So, if we let
pA(x) = xn + cn−1x

n−1 + · · ·+ c1x+ c0,

then we read off that
Bn−1 = I,

−ABn−1 + Bn−2 = cn−1I,
...

−AB1 + B0 = c1I,
−AB0 = c0I.

We take this system of equations, and multiply the first by An, the second by An−1,
. . . , and the last by A0 = I. What happens? On the left, all the terms cancel in pairs:
we have

AnBn−1 +An−1(−ABn−1 +Bn−2) + · · ·+A(−AB1 +B0) + I(−AB0) = O.

On the right, we have

An + cn−1A
n−1 + · · ·+ c1A+ c0I = pA(A).

So pA(A) = O, as claimed.


