
Chapter 2

Matrices

In this chapter, we review matrix algebra from Linear Algebra I, consider row and column
operations on matrices, and define the rank of a matrix. Along the way prove that the
“row rank” and “column rank” defined in Linear Algebra I are in fact equal.

2.1 Matrix algebra

Definition 2.1. A matrix of size m × n over a field K, where m and n are positive
integers, is an array with m rows and n columns, where each entry is an element of K.
The matrix will typically be denoted by an upper case letter, and its entries by the
corresponding lower case letter. Thus, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, the entry in row i
and column j of matrix A is denoted by aij , and referred to as the (i, j) entry of A.

Example 2.2. A column vector in Kn can be thought of as a n× 1 matrix, while a row
vector is a 1× n matrix.

Definition 2.3. We define addition and multiplication of matrices as follows.

(a) Let A = (aij) and B = (bij) be matrices of the same size m × n over K. Then
the sum C = A + B is defined by adding corresponding entries of A and B; thus
C = (cij) is given by

cij = aij + bij .

(b) Let A be an m × n matrix and B an n × p matrix over K. Then the product
C = AB is the m × p matrix whose (i, j) entry is obtained by multiplying each
element in the ith row of A by the corresponding element in the jth column of B
and summing:

cij =
n∑

k=1

aikbkj .

Remark Note that we can only add or multiply matrices if their sizes satisfy appro-
priate conditions. In particular, for a fixed value of n, we can add and multiply n × n
matrices. Technically, the set Mn(K) of n × n matrices over K together with matrix
addition and multiplication is a ring (with identity). The zero matrix, which we denote
by O, is the matrix with every entry zero, while the identity matrix, which we denote
by I, is the matrix with entries 1 on the main diagonal and 0 everywhere else. Note that
matrix multiplication is not commutative: BA is usually not equal to AB.
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14 CHAPTER 2. MATRICES

We already met matrix multiplication in Section 1 of the notes: recall that if PB,B′

denotes the transition matrix between two bases of a vector space, then

PB,B′PB′,B′′ = PB,B′′ .

2.2 Row and column operations

Given an m × n matrix A over a field K, we define certain operations on A called row
and column operations.

Definition 2.4. Elementary row operations. There are three types:

Type 1. Add a multiple of the jth row to the ith, where j 6= i.

Type 2. Multiply the ith row by a non-zero scalar.

Type 3. Interchange the ith and jth rows, where j 6= i.

Elementary column operations. There are three types:

Type 1. Add a multiple of the jth column to the ith, where j 6= i.

Type 2. Multiply the ith column by a non-zero scalar.

Type 3. Interchange the ith and jth columns, where j 6= i.

We can describe the elementary row and column operations in a different way. For
each elementary row operation on an m×n matrix A, we define a corresponding elemen-
tary matrix by applying the same operation to the m×m identity matrix I. Similarly
for each elementary column operation we define a corresponding elementary matrix by
applying the same operation to the n× n identity matrix.

We don’t have to distinguish between rows and columns for our elementary matrices:
each matrix can be considered either as a row or a column operation. This observation
will be important later. For example, the matrix1 2 0

0 1 0
0 0 1


corresponds to the elementary column operation of adding twice the first column to the
second, or to the elementary row operation of adding twice the second row to the first.
For the other types, the matrices for row operations and column operations are identical.

Lemma 2.5. The effect of an elementary row operation on a matrix is the same as that
of multiplying on the left by the corresponding elementary matrix. Similarly, the effect
of an elementary column operation is the same as that of multiplying on the right by the
corresponding elementary matrix.

The proof of this lemma is somewhat tedious calculation.

Example 2.6. Let A be a 2×3 real matrix. The matrices corresponding to the elemen-
tary row operation of subtracting 4 times row 1 from row 2, and the elementary column
operation of subtracting twice column 1 from column 2 are[

1 0
−4 1

]
and

1 −2 0
0 1 0
0 0 1

 ,
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respectively. If A is the matrix

A =

[
1 2 3
4 5 6

]
,

then the matrix that results from applying the above two elementary operations ought
to be [

1 0
−4 1

] [
1 2 3
4 5 6

]1 −2 0
0 1 0
0 0 1

 =

[
1 0 3
0 −3 −6

]
.

You should check that this is indeed the case.

An important observation about the elementary operations is that each of them can
have its effect undone by another elementary operation of the same kind, and hence
every elementary matrix is invertible, with its inverse being another elementary matrix
of the same kind. For example, the effect of adding twice the first row to the second is
undone by adding −2 times the first row to the second, so that[

1 2
0 1

]−1
=

[
1 −2
0 1

]
.

2.3 Rank

Recall from Linear Algebra I the definitions of row space, column space, row rank and
column rank of a matrix.

Definition 2.7. Let A be an m × n matrix over a field K. The row space of A is the
vector space spanned by rows of A and the column space the vector space spanned by
columns. The row rank of A is the dimension of the row space, and the column rank of
A the dimension of the column space of A. (We regard columns or rows as vectors in
Km and Kn respectively.)

Remark 2.8. Since a maximal linearly independent set of vectors is a basis, we could
alternatively define row rank as the maximum number of linearly independent rows, and
the column rank analogously.

Recall also that elementary row operations preserve row rank, and elementary column
operations preserve column rank. In Linear Algebra I, the rank of a matrix was defined
as its row rank. Why? The definition privileges rows over columns, and hence seems
somewhat arbitrary. In any case, why should the dimension of the row space be a
significant parameter?

The next lemma goes beyond Linear Algebra I by showing that elementary row
operations preserve column rank, not just row rank.

Lemma 2.9. (a) Elementary column operations preserve the column space of a matrix
(and hence don’t change the column rank).

(b) Elementary row operations preserve the row space of a matrix (and hence don’t
change the row rank).

(c) Elementary row operations don’t change the column rank of a matrix.

(d) Elementary column operations don’t change the row rank of a matrix.
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Proof. (a) Suppose some elementary column operation is applied to matrix A to
yield A′. Each column of A′ is a linear combination of columns of A. Thus the
column space of A′ is contained in the column space of A. On the other hand, the
inverse of an elementary operation is an elementary operation of the same kind
taking A′ to A. It follows that the column space of A is contained in the column
space of A′, and hence the column spaces of A and A′ are equal. Since the column
spaces of the matrices are equal, their column ranks are equal too.

(b) Follows by symmetry from (a).

(c) Suppose some elementary row operation is applied to matrix A to yield A′. It is
not to difficult to check (some details below) that any linear dependency between
the columns of A is also a linear dependency between the columns of A′. So any
list of columns that is linearly dependent in A is also linearly dependent in A′.
Another way of saying the same thing is that every list of columns that is linearly
independent in A′ is linearly independent in A. It follows that the column rank
of A is greater than or equal to the column rank of A′. As before, the inverse of an
elementary operation is an elementary operation of the same kind, which implies
that the column ranks of A and A′ are equal.

Let us check the above claim that linear dependencies are preserved by row oper-
ations. We’ll just deal with Type 1 operations; the easier Type 2 and 3 operations
are left as exercises. Denote the columns of A by column vectors v1, . . . , vn. Con-
sider some linear dependency c1v1 + · · ·+ cnvn = 0 on the columns of A, where the
scalars ci not all zero. In terms of the matrix entries of A, this means, for every
row k of A, that c1ak1 + · · · + cnakn = 0. Now apply the Type 1 operation that
adds a multiple d of row j to row i. The only row of A that has changed is row
i, so we just need to check that the linear dependency continues to hold for that
particular row. We have

c1(ai1 + daj1) + · · ·+ cn(ain + dajn) = c1ai1 + · · ·+ cnain

+ d(c1aj1 + · · ·+ cnajn)

= 0 + d · 0 = 0.

In a similar manner, you may check that if an elementary row operation of Type
2 or Type 3 is applied, then the new columns satisfy exactly the same linear
relations as the old ones (that is, the same linear combinations are zero). So a
linearly (in)dependent set of columns in A remains linearly (in)dependent in A′

after any elementary row operation.

(d) Follows from (c) by symmetry.

It is important to note that elementary row operations do not in general preserve the
column space of a matrix, only the column rank. Provide a counterexample to illustrate
this fact. (An elementary row operation on a 2× 2 matrix is enough for this purpose.)

By applying elementary row and column operations, we can reduce any matrix to a
particularly simple form:

Theorem 2.10. Let A be an m × n matrix over the field K. Then it is possible to
transform A by elementary row and column operations into a matrix D = (dij) of the
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same size as A, with the following special form: there is an r ≤ min{m,n}, such that
dii = 1 for 1 ≤ i ≤ r, and dij = 0 otherwise.

The matrix D (and hence the number r), is uniquely defined: if A can be reduced
to two matrices D and D′, both of the above form, by different sequences of elementary
operations then D = D′.

Definition 2.11. The number r in the above theorem is called the rank of A; while a
matrix of the form described for D is said to be in the canonical form for equivalence.
We can write the canonical form matrix in “block form” as

D =

[
Ir O
O O

]
,

where Ir is an r× r identity matrix and O denotes a zero matrix of the appropriate size
(that is, r × (n− r), (m− r)× r, and (m− r)× (n− r) respectively for the three Os).
Note that some or all of these Os may be missing: for example, if r = m, we just have[
Im O

]
.

Proof of Theorem 2.10. We first outline the proof that the reduction is possible. The
proof is by induction on the size of the matrix A = (aij). Specifically, we assume as
inductive hypothesis that any smaller matrix can be reduced as in the theorem. Let the
matrix A be given. We proceed in steps as follows:

• If A = O (the all-zero matrix), then the conclusion of the theorem holds, with
r = 0; no reduction is required. So assume that A 6= O.

• If a11 6= 0, then skip this step. If a11 = 0, then there is a non-zero element aij
somewhere in A; by swapping the first and ith rows, and the first and jth columns,
if necessary (Type 3 operations), we can bring this entry into the (1, 1) position.

• Now we can assume that a11 6= 0. Multiplying the first row by a−111 , (row operation
Type 2), we obtain a matrix with a11 = 1.

• Now by row and column operations of Type 1, we can assume that all the other
elements in the first row and column are zero. For if a1j 6= 0, then subtracting a1j
times the first column from the jth gives a matrix with a1j = 0. Repeat this until
all non-zero elements have been removed.

• Now let A′ be the matrix obtained by deleting the first row and column of A.
Then A′ is smaller than A and so, by the inductive hypothesis, we can reduce A′

to canonical form by elementary row and column operations. The same sequence
of operations applied to A now finishes the job.

Suppose that we reduce A to canonical form D by elementary operations, where D
has r 1s on the diagonal. These elementary operations don’t change the row or column
rank, by Lemma 2.9. Therefore, the row ranks of A and D are equal, and their column
ranks are equal. But it is not difficult to see that, if

D =

[
Ir O
O O

]
,

then the row and column ranks of D are both equal to r. It doesn’t matter which
elementary operations we use to reduce to canonical form, we will always obtain the
same matrix D. So the theorem is proved.
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Corollary 2.12. For any matrix A, the row rank, the column rank, and the rank are
all equal. In particular, the rank is independent of the row and column operations used
to compute it.

Example 2.13. Here is a small example. Let

A =

[
1 2 3
4 5 6

]
.

We have a11 = 1, so we can skip the first three steps. So first we subtract 4 times the
first row from the second, then subtract twice the first column from the second, and
then 3 times the first column from the third. These steps yield the following sequence
of matrices

A =

[
1 2 3
4 5 6

]
R2−4R1−−−−−→

[
1 2 3
0 −3 −6

]
C2−2C1−−−−−→

[
1 0 3
0 −3 −6

]
C3−3C1−−−−−→

[
1 0 0
0 −3 −6

]
.

At this point we have successfully set to zero the first row and column of the matrix,
except for the top left entry. From now on, we have to operate on the smaller matrix[
−3 −6

]
, but we continue to apply the operations to the large matrix.

Multiply the second row of the matrix by −1
3 and finally subtract twice the second

column from the thord. Picking up from where we left off, this yields the sequence[
1 0 0
0 −3 −6

]
− 1

3
R2−−−−→

[
1 0 0
0 1 2

]
C3−2C2−−−−−→

[
1 0 0
0 1 0

]
= D.

For compactness, se are using (as in Linear Algebra I ) shorthand such as R2 − 4R1 for
R2 := R2−4R1 and −1

3R2 for R2 := −1
3R2. We have finished the reduction to canonical

form, and we conclude that the rank of the original matrix A is equal to 2.

Theorem 2.14. For any m × n matrix A there are invertible matrices P and Q of
sizes m ×m and n × n respectively, such that D = PAQ is in the canonical form for
equivalence. The rank of A is equal to the rank of D. Moreover, P and Q are products
of elementary matrices.

Proof. We know from Theorem 2.10 that there is a sequence of elementary row and
column operations that reduces A to D. These operations correspond to certain elemen-
tary matrices. Take the matrices R1, R2, . . . , Rs corresponding to the row operations
and multiply them together (right to left). This is the matrix P = RsRs−1 · · ·R1. Take
the matrices C1, C2, . . . , Ct corresponding to the column operations and multiply them
together (left to right). This is the matrix Q = C1C2 . . . Ct.

Example 2.15. We illustrate the construction of P and Q in the above proof, in a
continuation of our previous example. In order, here is the list of elementary matrices
corresponding to the operations we applied to A. (Here, 2×2 matrices are row operations
while 3× 3 matrices are column operations).

R1 =

[
1 0
−4 1

]
, C1 =

1 −2 0
0 1 0
0 0 1

 , C2 =

1 0 −3
0 1 0
0 0 1

 ,

R2 =

[
1 0
0 −1/3

]
, C3

1 0 0
0 1 −2
0 0 1

 .
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So the whole process can be written as a matrix equation:

D = R2R1AC1C2C3 =

[
1 0
0 −1/3

] [
1 0
−4 1

]
A

1 −2 0
0 1 0
0 0 1

1 0 −3
0 1 0
0 0 1

1 0 0
0 1 −2
0 0 1


or more simply

D =

[
1 0

4/3 −1/3

]
A

1 −2 1
0 1 −2
0 0 1

 ,

where, as before,

A =

[
1 2 3
4 5 6

]
, D =

[
1 0 0
0 1 0

]
.

There is a slightly easier (for humans) method for constructing the matrices P and
Q, which we examined in the lectures. Let’s recall how it works in the context of
computing the matrix Q. The idea is to use the same column operations we applied
to A, but starting instead with the 3× 3 identity matrix I3 :

I3 =

1 0 0
0 1 0
0 0 1

 C2−2C1−−−−−→

1 −2 0
0 1 0
0 0 1

 C3−3C1−−−−−→

1 −2 −3
0 1 0
0 0 1

 C3−2C2−−−−−→

1 −2 1
0 1 −2
0 0 1

 = Q.

Think about why this method works. It is doing essentially the same calculation, but
arranging it in a more human-friendly way.

Definition 2.16. The m× n matrices A and B are said to be equivalent if B = PAQ,
where P and Q are invertible matrices of sizes m×m and n× n respectively.

Remark 2.17. The relation “equivalence” defined above is an equivalence relation on
the set of all m× n matrices; that is, it is reflexive, symmetric and transitive.

Corollary 2.18. An n× n matrix is invertible if and only if it has rank n.

Proof. Suppose that n × n matrices A and B are equivalent. Then A is invertible if
and only if B is invertible. (If A is invertible and B = PAQ, then Q−1A−1P−1 is the
inverse of B, and similarly in the other direction.) We know from Theorem 2.14 that
every matrix A is equivalent to some matrix D in the canonical form for equivalence.
Moreover the rank of A is equal to the rank of D. Thus, we have the the following chain
of implications:

A is invertible ⇐⇒ D is invertible ⇐⇒ D = In ⇐⇒ A has rank n.

Corollary 2.19. Every invertible square matrix is a product of elementary matrices.

Proof. If A is an invertible n × n matrix, then it has rank n and its canonical form is
the identity matrix In. Thus there are invertible matrices P and Q, each a product of
elementary matrices, such that

PAQ = In.

From this we deduce that

A = P−1InQ
−1 = P−1Q−1.

Since the elementary matrices are closed under taking inverses, the above is an expression
for A as a product of elementary matrices.
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Corollary 2.20. If A is an invertible n×n matrix, then A can be transformed into the
identity matrix by elementary column operations alone (or by elementary row operations
alone).

Proof. We observed, when we defined elementary matrices, that they can represent either
elementary column operations or elementary row operations. In the previous corollary,
we saw that A can be written as a product of elementary matrices, say A = C1C2 . . . Ct.
We can transform A to the identity by multiplying on the right by C−1t , . . . , C−12 , C−11

in turn. This is equivalent to applying a sequence of column operations. Equally, we
can transform A to the identity by multiplying on the left by C−11 , C−12 , . . . , C−1t in turn.
This is equivalent to applying a sequence of row operations.

Theorem 2.21. Two matrices are equivalent if and only if they have the same rank.

Proof. Suppose A and B are (not necessarily square) equivalent matrices, i.e., B = PAQ
for some invertible matrices P and Q. By Corollary 2.19 we can write P and Q as the
product of elementary matrices. It follows that we can transform A to B by elementary
row and column operations, and hence the ranks of A and B are the same. (Elementary
operations preserve the rank.)

Conversely, if the ranks of A and B are the same then we can transform one to the
other (e.g., via the common canonical form D) by elementary row and column operations,
and hence A and B are equivalent.

When mathematicians talk about a “canonical form” for an equivalence relation,
they mean a set of objects which are representatives of the equivalence classes: that is,
every object is equivalent to a unique object in the canonical form. Theorem 2.21 says
that in this case there are min{m,n}+ 1 equivalence classes, and the canonical form for
equivalence is a canonical form in this sense.

Remark 2.22. As with Chapter 1, the results in this chapter apply to all fields K.


