
Chapter 1

Vector spaces

These notes are about linear maps and bilinear forms on vector spaces, how we represent
them by matrices, how we manipulate them, and what we use this for.

1.1 Definitions

Let’s start by recalling some definitions from Introduction to Algebra and Linear Alge-
bra I .

Definition 1.1. A field is an algebraic system consisting of a non-empty set K equipped
with two binary operations + (addition) and · (multiplication) satisfying the conditions:

(A) (K,+) is an abelian group with identity element 0;

(M) (K \ {0}, ·) is an abelian group with identity element 1;

(D) the distributive law
a(b + c) = ab + ac

holds for all a, b, c ∈ K.

If you have forgotten what an abelian group is, you should refer to Introduction to
Algebra. In fact, the only fields we’ll encounter in these notes are

• Q, the field of rational numbers;

• R, the field of real numbers;

• C, the field of complex numbers;

• Fp, the field of integers mod p, where p is a prime number.

We will not stop to prove that these structures really are fields. You may have seen Fp

referred to as Zp.
The above laws or axioms are the ones we should have in mind when performing

manipulations involving elements of K. However there are a lot of axioms, and a good
survival technique is to have in mind a concrete field, say R that we are familiar with.
However, it is worthwhile operating at this level of abstraction, as vector spaces over
fields other than R and C have important applications. For example, much of Coding
Theory relates to vector spaces over F2
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2 CHAPTER 1. VECTOR SPACES

Definition 1.2. A vector space V over a field K is an algebraic system consisting of a
non-empty set V equipped with a binary operation + (vector addition), and an operation
of scalar multiplication

(a, v) ∈ K× V 7→ av ∈ V

such that the following rules hold:

(VA) (V,+) is an abelian group, with identity element 0 (the zero vector).

(VM) Rules for scalar multiplication:

(VM1) For any a ∈ K, u, v ∈ V , we have a(u + v) = au + av.

(VM2) For any a, b ∈ K, v ∈ V , we have (a + b)v = av + bv.

(VM3) For any a, b ∈ K, v ∈ V , we have (ab)v = a(bv).

(VM4) For any v ∈ V , we have 1v = v (where 1 is the identity element of K).

Since we have two kinds of elements, namely elements of K and elements of V , we
distinguish them by calling the elements of K scalars and the elements of V vectors.
Typically we’ll use use letters around u, v, w in the alphabet to stand for vectors, and
letters around a, b and c for scalars.

A vector space over the field R is often called a real vector space, and one over C
is a complex vector space. In some sections of the course, we’ll be thinking specifically
of real or complex vector spaces; in others, of vector spaces over general fields. As we
noted, vector spaces over other fields are very useful in some applications, for example
in coding theory, combinatorics and computer science.

Example 1.3. The first example of a vector space that we meet is the Euclidean plane
R2. This is a real vector space. This means that we can add two vectors, and multiply
a vector by a scalar (a real number). There are two ways we can make these definitions.

• The geometric definition. Think of a vector as an arrow starting at the origin
and ending at a point of the plane. Then addition of two vectors is done by
the parallelogram law (see Figure 1.1). The scalar multiple av is the vector whose
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Figure 1.1: The parallelogram law

length is |a| times the length of v, in the same direction if a > 0 and in the opposite
direction if a < 0.
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• The algebraic definition. We represent the points of the plane by Cartesian coor-
dinates. Thus, a vector v is just a pair (a1, a2) of real numbers. Now we define
addition and scalar multiplication by

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2),

c(a1, a2) = (ca1, ca2).

Not only is this definition much simpler, but it is much easier to check that the
rules for a vector space are really satisfied! For example, we may check the law
c(v + w) = cv + cw. Let v = (a1, a2) and w = (b1, b2). Then we have

c(v + w) = c((a1, a2) + (b1, b2))

= c(a1 + b1, a2 + b2)

= (ca1 + cb1, ca2 + cb2)

= (ca1, ca2) + (cb1, cb2)

= cv + cw.

In the algebraic definition, we say that the operations of addition and scalar multipli-
cation are coordinatewise: this means that we add two vectors coordinate by coordinate,
and similarly for scalar multiplication.

Using coordinates, this example can be generalised.

Example 1.4. Let n be any positive integer and K any field. Let V = Kn, the set of
all n-tuples of elements of K. Then V is a vector space over K, where the operations are
defined coordinatewise:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn),

c(a1, a2, . . . , an) = (ca1, ca2, . . . , can).

Example 1.5. The set RS of all real functions on a set S is a vector space over R.
Vector addition is just addition of functions. Scalar multiplication is just scaling of a
function by a real number.

Example 1.6. The set of all polynomials of degree n − 1 with coefficients in a field K
is a vector space over K. Vector addition is just usual addition of polynomials; scalar
multiplication is just scaling of a polynomial by an element of K. Equivalently, one can
say that vector addition is coefficientwise addition, and scalar multiplication is multipli-
cation of all coefficients by a field element. Note that from this perspective, this example
is a disguised version of Example 1.4. This example was a favourite in Linear Algebra I !

1.2 Bases

Example 1.4 is much more general than it appears: Every finite-dimensional vector space
looks like Example 1.4. (The meaning of “finite-dimensional” will become apparent
shortly.) In Linear Algebra I we already verified that Kn is an example of a vector
space over K; in this section we go on to prove that that there are essentially no further
examples.

Definition 1.7. Let V be a vector space over the field K, and let v1, . . . , vn be vectors
in V .
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(a) The vectors v1, v2, . . . , vn are linearly dependent if there are scalars c1, c2, . . . , cn,
not all zero, satisfying

c1v1 + c2v2 + · · ·+ cnvn = 0.

The vectors v1, v2, . . . , vn are linearly independent if they are not linearly depen-
dent. Equivalently, they are linearly independent if, whenever we have scalars
c1, c2, . . . , cn satisfying

c1v1 + c2v2 + · · ·+ cnvn = 0,

then necessarily c1 = c2 = · · · = cn = 0.

(b) The vectors v1, v2, . . . , vn are spanning if, for every vector v ∈ V , we can find
scalars c1, c2, . . . , cn ∈ K such that

v = c1v1 + c2v2 + · · ·+ cnvn.

(c) The list of vectors v1, v2, . . . , vn is a basis for V if it is linearly independent and
spanning.

Remark 1.8. Linear independence is a property of a list of vectors. A list containing
the zero vector is never linearly independent. Also, a list in which the same vector occurs
more than once is never linearly independent.

Definition 1.9. The span 〈v1, . . . , vn〉 of vectors v1, . . . , vn is the set of all vectors that
can be written as linear combinations of vectors from v1, . . . , vn:

〈v1, . . . , vn〉 =
{
c1v1 + c2v2 + · · ·+ cnvn : (c1, . . . , cn) ∈ Kn

}
.

So vectors v1, v2, . . . , vn are spanning if V = 〈v1, v2, . . . , vn〉. We will see later that
the span of vectors is a vector space (or you can verify it now from the definitions).

We will say “Let B = (v1, . . . , vn) be a basis for V ” to mean that the list of vectors
v1, . . . , vn is a basis, and that we refer to this list as B.

Definition 1.10. Let V be a vector space over the field K. We say that V is finite-
dimensional if we can find vectors v1, v2, . . . , vn ∈ V that form a basis for V .

Remark 1.11. In these notes (apart from in this chapter) we are only concerned with
finite-dimensional vector spaces. However, it should be noted that in various contexts, in
mathematics and physics, we encounter vector spaces which are not finite dimensional.

A linearly dependent list of vectors has redundancy. It is possible to remove at least
one vector from the list while keeping the span of the list the same. Here is a systematic
way to do so.

Lemma 1.12. Suppose v1, . . . , vm is a linearly dependent list of vectors in V . There
exists an index i ∈ {1, . . . ,m} such that

(a) vi ∈ 〈v1, . . . , vi−1〉, and

(b) 〈v1, . . . , vi−1, vi+1, . . . , vm〉 = 〈v1, . . . , vm〉.
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Proof. Since v1, . . . , vm are linearly dependent, there exist scalars c1, . . . , cm, not all zero,
such that c1v1 + · · ·+cmvm = 0. Choose i to be the largest index such that ci 6= 0. Then

vi = −
(c1
ci

)
v1 − · · · −

(ci−1
ci

)
vi−1 (1.1)

is an explicit expresion for vi in terms of v1, . . . , vi−1, demonstrating that vi ∈ 〈v1, . . . , vi−1〉.
This deals with (a).

For part (b), suppose v is any vector in 〈v1, . . . , vm〉; by definition of span, v =
a1v1 + · · · + amvm, for some a1, . . . , am ∈ K. Now substitute for vi, using (1.1), to
obtain an expression for v as a linear combination of vectors in v1, . . . , vi−1, vi+1, . . . , vm.
This expression demonstrates that v ∈ 〈v1, . . . , vi−1, vi+1, . . . , vm〉. Since v was arbitrary,
part (b) follows.

Lemma 1.13. The length of any linearly independent list of vectors in V is less than
or equal to the length of any spanning list of vectors.

Proof. Suppose v1, . . . , vn are linearly independent and w1, . . . , wm are spanning. Start
with the list w1, . . . , wm and repeat the following step, which adds some vector vi to the
list and removes some wj . For the first step, add vector v1 to the front of the list to obtain
v1, w1, . . . , wm. Since the original list was spanning, the new one is linearly dependent
as well as spanning. By Lemma 1.12, we may remove some wj so that the remaining
list is still spanning. By reindexing some of the wj ’s we may write the resulting list as
v1, w2, w3, . . . , wm.

In general, suppose, after some number of steps, the procedure has reached the
spanning list v1, . . . , vk−1, wk, . . . , wm (where some reindexing of vectors in w1, . . . , wm

has taken place). Add the vector vk between vk−1 and wk in the list. As before, the new
list is linearly dependent, and we may apply Lemma 1.12 to remove one of the vectors in
the list while retaining the property that the list is spanning. The important observation
is the following: because v1, . . . , vk are linearly independent, the removed vector cannot
be one of the vi’s and so must be one of the wj ’s. (See part (a) of Lemma 1.12.)

At each step we add one vector and remove one vector keeping the length of the list
unchanged. We end up with a list of the form v1, . . . , vn, wn+1, . . . , vm. It follows that
m ≥ n.

Remark 1.14. The proof establishes a little more than we needed. In fact we have
essentially proved the Steinitz Exchange Lemma. (See, e.g., Wikipedia.)

Theorem 1.15. Let V be a finite-dimensional vector space over a field K. Then

(a) any two bases of V have the same number of elements;

(b) any spanning list of vectors can be shortened (by removing some vectors) to a basis;

(c) any linearly independent list of vectors can be extended (by adding some vectors)
to a basis.

Proof. (a) Suppose B1 and B2 are any two bases for V , of lengths n1 and n2 respectively.
By Lemma 1.13, since B1 is linearly independent and B2 is spanning, n1 ≤ n2. Also,
since B2 is linearly independent and B1 is spanning, n2 ≤ n1.

(b) Suppose v1, . . . , vm is any spanning list for V . By Lemma 1.12, if this list is
linearly dependent, we can remove some vector vi from it, leaving a smaller spanning
list. By repeating this step we must eventually reach a basis.
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(c) Suppose v1, . . . , vm is a linearly independent list of vectors. If this list is not
spanning then there must exist a vector vm+1 ∈ V such that vm+1 /∈ 〈v1, . . . , vm〉.
The extended list v1, . . . , vm, vm+1 remains linearly independent. (To see this, assume
to the contrary that there exist scalars a1, . . . , am+1, not all zero, such that a1v1 +
· · · + am+1vm+1 = 0. Since v1, . . . , vm are linearly independent, am+1 cannot be 0.
Then vm+1 = −(a0/am+1)v1 − · · · − (am/am+1)vn, and vm+1 ∈ 〈v1, . . . vm〉 contrary to
assumption.) By repeating this step we must eventually reach a basis. (Note that the
process must terminate, since the vector space V is finite dimensional.)

Definition 1.16. The number of elements in a basis of a vector space V is called the
dimension of V . Theorem 1.15 assures us that this parameter is well defined.

We will say “an n-dimensional vector space” instead of “a finite-dimensional vector
space whose dimension is n”. We denote the dimension of V by dim(V ).

Remark 1.17. We allow the possibility that a vector space has dimension zero. Such
a vector space contains just one vector, the zero vector 0; a basis for this vector space
consists of the empty set.

Since the notion of basis of a vector space is so fundamental, it is useful in what
follows to note some equivalent characterisations. These alternatives are not too difficult
to verify, given Theorem 1.15.

Proposition 1.18. The following five conditions are equivalent for a list B of vectors
from vector space V of dimension n over K

(a) B is a basis;

(b) B is a maximal linearly independent list (that is, if we add any vector to the list,
then the resulting list is linearly dependent);

(c) B is a minimal spanning list (that is, if we remove any vector from the list, then
the result is no longer spanning);

(d) B is linearly independent and has length n;

(e) B is spanning and has length n.

Now let V be an n-dimensional vector space over K. This means that there is a basis
v1, v2, . . . , vn for V . Since this list of vectors is spanning, every vector v ∈ V can be
expressed as

v = c1v1 + c2v2 + · · ·+ cnvn

for some scalars c1, c2, . . . , cn ∈ K. The scalars c1, . . . , cn are the coordinates of v (with
respect to the given basis), and the coordinate representation of v is the n-tuple

(c1, c2, . . . , cn) ∈ Kn.

Now the coordinate representation is unique. For suppose that we also had

v = c′1v1 + c′2v2 + · · ·+ c′nvn

for scalars c′1, c
′
2 . . . , c

′
n. Subtracting these two expressions, we obtain

0 = (c1 − c′1)v1 + (c2 − c′2)v2 + · · ·+ (cn − c′n)vn.
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Now the vectors v1, v2 . . . , vn are linearly independent; so this equation implies that
c1 − c′1 = 0, c2 − c′2 = 0, . . . , cn − c′n = 0; that is,

c1 = c′1, c2 = c′2, . . . cn = c′n.

Remark 1.19. In this course, the notation vi, wi, etc., stands for the ith vector in a
sequence of vectors. It will not be used to denote the ith coordinate of the vector v (which
would be a scalar). We’ll use different letters for the vector and for its coordinates.

Now it is easy to check that, when we add two vectors in V , we add their coordinate
representations in Kn (using coordinatewise addition); and when we multiply a vector v ∈
V by a scalar c, we multiply its coordinate representation by c. In other words, addition
and scalar multiplication in V translate to the same operations on their coordinate
representations. This is why we only need to consider vector spaces of the form Kn, as
in Example 1.4.

Here is how the result would be stated in the language of abstract algebra:

Theorem 1.20. Any n-dimensional vector space over a field K is isomorphic to the
vector space Kn.

1.3 Row and column vectors

The elements of the vector space Kn are all the n-tuples of scalars from the field K.
There are two different ways that we can represent an n-tuple: as a row, or as a column.
Thus, the vector with components 1, 2 and −3 can be represented as a row vector[

1 2 −3
]

or as a column vector  1
2
−3

 .

(Note that we use square brackets, rather than round brackets or parentheses. But you
will see the notation (1, 2,−3) and the equivalent for columns in other books!)

Both systems are in common use, and you should be familiar with both. The choice
of row or column vectors makes some technical differences in the statements of the
theorems, so care is needed.

There are arguments for and against both systems. Those who prefer row vectors
would argue that we already use (x, y) or (x, y, z) for the coordinates of a point in 2- or
3-dimensional Euclidean space, so we should use the same for vectors.

Those who prefer column vectors point to the convenience of representing, say, the
linear equations

2x + 3y = 5,

4x + 5y = 9

in matrix form [
2 3
4 5

] [
x
y

]
=

[
5
9

]
.

Statisticians also prefer column vectors: to a statistician, a vector often represents data
from an experiment, and data are usually recorded in columns on a datasheet.

We will use column vectors in these notes. So we make a formal definition:
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Definition 1.21. Let V be a vector space with a basis B = (v1, v2, . . . , vn). If v =
c1v1 + c2v2 + · · ·+ cnvn, then the coordinate representation of v relative to the basis B is

[v]B =


c1
c2
...
cn

 .

In order to save space on the paper, we often write this as

[v]B =
[
c1 c2 . . . cn

]>
,

where the symbol > is read “transpose”.

Note that the coordinate representation of a vector is always relative to a basis.

Let B = (v1, . . . , vn) and B′ = (v′1, . . . , v
′
n) be different bases of an n-dimensional

vector space V over the field K. Recall from Linear Algebra I that there is an n × n
transitition matrix PB,B′ that translates coordinate representations relative to B′ to
coordinate representations relative to B. Specifically, [v]B = PB,B′ [v]B′ for all vectors
v ∈ V .

In this course, we will see four ways in which matrices arise in linear algebra. Here
is the first occurrence: matrices arise as transition matrices between bases of a
vector space.

Let I denote the identity matrix, the matrix having 1s on the main diagonal and 0s
everywhere else. Given a matrix P , we denote by P−1 the inverse of P , that is to say,
the matrix Q satisfying PQ = QP = I. Not every matrix has an inverse: we say that P
is invertible or non-singular if it has an inverse.

We recall from Linear Algebra I some facts about transition matrices, which come
directly from the definition, using uniqueness of the coordinate representation. Let
B,B′,B′′ be bases of the vector space V . Then

(a) PB,B = I,

(b) PB′,B = (PB,B′)
−1; in particular, the transition matrix is invertible, and

(c) PB,B′′ = PB,B′PB′,B′′ .

To see that (b) holds, let’s transform the coordinate representation of u relative to
basis B by multiplication by PB′,B:

PB′,B[u]B = PB′,B
(
PB,B′ [u]B′

)
=
(
P−1B,B′PB,B′

)
[u]B′ = [u]B′ .

We obtain the coordinate representation of u relative to basis B′, as desired.

To see that (c) holds, transform the coordinate representation of u relative to basis B′′
by multiplication by PB,B′′ :

PB,B′′ [u]B′′ =
(
PB,B′PB′,B′′

)
[u]B′′ = PB,B′

(
PB′,B′′ [u]B′′

)
= PB,B′ [u]B′ = [u]B.

We obtain the coordinate representation of u relative to basis B, as desired.
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Example 1.22. Suppose that B = (v1, v2) and B′ = (v′1, v
′
2) are different bases of a

2-dimensional vector space V over R. Since B is a basis of V we can express the basis
vectors of B′ in terms of B. Suppose, in fact, that

v′1 = v1 + v2 and v′2 = 2v1 + 3v2.

Then the transition matrix from B′ to B is

PB,B′ =

[
1 2
1 3

]
,

Note that the first column of PB,B′ is just [v′1]B, i.e., the coordinate representation of the
vector v′1 relative to the basis B, and the second column is just [v′2]B. This gives an easy
way to write down PB,B′ .

Suppose that the coordinate representation of some vector u relative to the basis B′
is [u]B′ =

[
a b

]ᵀ
. Then, from the definition of transition matrix, we should have

[u]B =

[
1 2
1 3

] [
a
b

]
=

[
a + 2b
a + 3b

]
.

We can check the result as follows:

u = av′1 + bv′2 = a(v1 + v2) + b(2v1 + 3v2) = (a + 2b)v1 + (a + 3b)v2.

So indeed [u]B =
[
a + 2b a + 3b

]ᵀ
as expected.

The transition matrix from B to B′ is the inverse of PB,B′ :

PB′,B = P−1B,B′ =

[
1 2
1 3

]−1
=

[
3 −2
−1 1

]
.

Finally, suppose B′′ = (v′′1 , v
′′
2) is a third basis of V , related to B′ by v′′1 = 3v′1 − 2v′2

and v′′2 = −2v′1 + v′2. Then

PB′,B′′ =

[
3 −2
−2 1

]
,

and

PB,B′′ = PB,B′PB′,B′′ =

[
1 2
1 3

] [
3 −2
−2 1

]
=

[
−1 0
−3 1

]
.

Note that this example provides additional insight into why matrix multiplication
is defined the way it is: in this instance, it provides the correct rule for composing
transition matrices.

1.4 Subspaces and direct sums

Definition 1.23. Suppose V is a vector space over K. We say that U is a subspace of
V if U is a subset of V , and U is itself a vector space (with respect the same operations
of vector addition and scalar multiplication).

We write U ≤ V to mean “U is a subspace of V ”.

Lemma 1.24. Suppose U is a non-empty subset of a vector space V . The following
conditions are equivalent:
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1. U is a subspace of V ;

2. U is closed under vector addition and scalar multiplication. (That is to say, u+u′ ∈
U and cu ∈ U for any vectors u, u′ ∈ U and scalar c ∈ K.)

Proof. Since any vector space is closed under vector addition and scalar multiplication,
it is clear that (1) implies (2).

Suppose now that (2) holds. For any vector u ∈ U , we know that −u = (−1)u is
in U (by closure under scalar multiplication). Also, since U is non-empty, the additive
identity 0 = u − u is in U . So (2) assures us that the operations of vector addition,
taking the inverse of a vector, and scalar multiplication all make sense in U ; moreover,
U contains an additive identity. The vector space axioms (VA) and (VM) for U are
inherited from V : since they hold in the larger set, they certainly hold in the smaller.
(Go through all five axioms and convince yourself of this fact.)

Subspaces can be constructed in various ways:

(a) Recall that the span of vectors v1, . . . , vk ∈ V is the set

{c1v1 + c2v2 + · · ·+ ckvk : c1, . . . , ck ∈ K}.

This is a subspace of V . Moreover, vectors v1, . . . , vk are spanning in this subspace.

(b) Let U and W be subspaces of V . Then

– the intersection U ∩W is the set of all vectors belonging to both U and W ;

– the sum U +W is the set {u+w : u ∈ U,w ∈W} of all sums of vectors from
the two subspaces.

Both U ∩W and U + W are subspaces of V .

We will just check (a) here, leaving (b) as an exercise. By Lemma 1.24, we just
need to check closure under vector addition and scalar multiplication. So suppose v =
c1v1 + · · · + ckvk and v′ = c′1v1 + · · · + c′kvk are vectors in the span 〈v1, . . . , vk〉 of
v1, . . . , vk ∈ V . Then v + v′ = (c1v1 + · · · + ckvk) + (c′1v1 + · · · + c′kvk) = (c1 + c′1)v1 +
· · · + (ck + c′k)vk, which is clearly also in the span 〈v1, . . . , vk〉. Also for any a ∈ K, we
have av = a(c1v1) + · · · + a(ckvk) = (ac1)v1 + · · · + (ack)vk, which is again clearly in
〈v1, . . . , vk〉.

Theorem 1.25. Let V be a vector space over K. For any two subspaces U and W of
V , we have

dim(U ∩W ) + dim(U + W ) = dim(U) + dim(W ).

Proof. Let v1, . . . , vi be a basis for U ∩W . By Theorem 1.15(c) we can extend this basis
to a basis v1, . . . , vi, u1, . . . , uj of U and a basis v1, . . . , vi, w1, . . . , wk of W . If we can
show that v1, . . . , vi, u1, . . . , uj , w1, . . . , wk is a basis of U + W then we are done, since
then

dim(U ∩W ) = i, dim(U) = i + j, dim(W ) = i + k, and dim(U + V ) = i + j + k,

and both sides of the identity we are aiming to prove are equal to 2i + j + k.
Since every vector in U (respectively W ) can be expressed as a linear combination

of v1, . . . , vi, u1, . . . , uj (respectively v1, . . . , v1, w1, . . . , wk), it is clear that the list of
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vectors v1, . . . , v1, u1, . . . , uj , w1, . . . , wk spans U +W . So we just need to show that the
list v1, . . . , v1, u1, . . . , uj , w1, . . . , wk is linearly independent.

Consider any linear relationship

a1v1 + · · ·+ aivi + b1u1 + · · ·+ bjuj + c1w1 + · · ·+ ckwk = 0;

we need to show that a1, . . . , ai, b1, . . . , bj , c1, . . . , ck are all zero. Writing

c1w1 + · · ·+ ckwk = −a1v1 − · · · − aivi − b1u1 − · · · − bjuj ,

we see that c1w1 + · · ·+ ckwk ∈ U . But, by construction, c1w1 + · · ·+ ckwk ∈ W , so in
fact c1w1 + · · ·+ ckwk ∈ U ∩W . Since v1, . . . , vi is a basis for U ∩W we have

c1w1 + · · ·+ ckwk = d1v1 + · · · divi,

for some scalars d1, . . . di. But this implies that c1 = · · · = ck = 0 (and, incidentally, d1 =
· · · = di = 0), since v1, . . . , vi, w1, . . . , wk is a basis for W and hence linearly independent.
A similar argument establishes b1 = · · · = bk = 0. But now a1 = · · · = ai = 0, since the
list v1, . . . , vi is linearly independent.

An important special case occurs when U ∩W is the zero subspace {0}. In this case,
the sum U +W has the property that each of its elements has a unique expression in the
form u + w, for u ∈ U and w ∈ W . For suppose that we had two different expressions
for a vector v, say

v = u + w = u′ + w′, for some u, u′ ∈ U and w,w′ ∈W.

Then

u− u′ = w′ − w.

But u− u′ ∈ U , and w′ − w ∈W , and hence

u− u′ = w′ − w ∈ U ∩W = {0}.

It follows that u = u′ and w = w′; that is, the two expressions for v are not different
after all! In this case we say that U + W is the direct sum of the subspaces U and W ,
and write it as U ⊕W . Note that

dim(U ⊕W ) = dim(U) + dim(W ).

The notion of direct sum extends to more than two summands, but is a little com-
plicated to describe. We state a form which is sufficient for our purposes.

Definition 1.26. Let U1, . . . , Ur be subspaces of the vector space V . We say that V is
the direct sum of U1, . . . , Ur, and write

V = U1 ⊕ · · · ⊕ Ur,

if every vector v ∈ V can be written uniquely in the form v = u1 + · · ·+ ur with ui ∈ Ui

for i = 1, . . . , r.

There is an equivalent characterisation of direct sum that will be useful later.
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Lemma 1.27. Suppose U1, . . . , Ur are subspaces of V , and V = U1 + · · ·+Ur. Then the
following are equivalent:

(a) V is the direct sum of U1, . . . , Ur.

(b) For all vectors u1 ∈ U1, . . . , ur ∈ Ur, it is the case that u1 + · · · + ur = 0 implies
u1 = · · · = ur = 0.

Proof. (1) =⇒ (2). Suppose u1 + · · ·+ ur = 0, where u1 ∈ U1, . . . , ur ∈ Ur. Certainly
u1 = · · · = ur = 0 is one way this situation may occur. But the definition of direct sum
tells us that such an expression is unique. So, indeed, u1 = · · · = ur = 0 as required.

(2) =⇒ (1). Suppose v ∈ V and that v = u1 + · · · + ur and v = u′1 + · · · + u′r are
two ways of expressing v, with u1, u

′
1 ∈ U1, . . . , ur, u

′
r ∈ Ur. Then

(u1 − u′1) + · · ·+ (ur − u′r) = (u1 + · · ·+ ur)− (u′1 + · · ·+ u′r) = v − v = 0.

From condition (2), we deduce that u1−u′1 = · · · = ur−u′r = 0. Thus, u1 = u′1, . . . , ur =
u′r as required.

Note the similarity between the condition described in Lemma 1.27(b) and the def-
inition of linear independence. In fact, v1, . . . , vn is a basis for a vector space V if and
only if V = 〈v1〉 ⊕ · · · ⊕ 〈vn〉. In a sense, a direct sum generalises the concept of basis.

Lemma 1.28. If V = U1 ⊕ · · · ⊕ Ur, then

(a) if Bi is a basis for Ui for i = 1, . . . , r, then B = (B1, · · · ,Br), i.e., the concatenation
of the lists B1, . . . ,Br, is a basis for V ;

(b) dim(V ) = dim(U1) + · · ·+ dim(Ur).

Proof. Since every vector v ∈ V may be expressed as v = u1 + · · ·+ur with ui ∈ Ui, and
every ui ∈ Ui may be expressed as a linear combination of basis vectors in Bi, we see
that V is contained in the span of B. So we just need to verify that the list B is linearly
independent.

Let di = dim(Ui) and Bi = (ui,1, . . . , ui,di), for 1 ≤ i ≤ r, be an explicit enumeration
of the basis vectors Bi. Suppose that some linear combination of the basis vectors B
sums to 0. We can express this linear combination as u1 + · · · + ur = 0, where ui =
ai,1ui,1 + · · ·+ ai,diui,di for some scalars ai,1, . . . , ai,di ∈ K.

By Lemma 1.27, ui = 0 for all 1 ≤ i ≤ r. Then, since Bi is a basis and hence linearly
independent, ai,1 = · · · = ai,di = 0. Since the linear combination of basis vectors B was
arbitrary, we deduce that B is linearly independent.

This deals with part (a). Part (b) follows immediately, since

dim(V ) = |B| = |B1|+ · · ·+ |Br| = dim(U1) + · · ·+ dim(Ur).

Remark 1.29. The results in this chapter apply to all finite dimensional vector spaces
over K, regardless of the field K. In our proofs, we used nothing beyond the general
axioms of a field. In some later chapters we need restrict our attention to particular
fields, typically R or C.


