\a_@_s’ Queen Mary

University of London

MTHA4100 Calculus |

Lecture notes for Week 11

Thomas’ Calculus, Sections 5.5 and 7.1 to 7.8
(except Sections 7.5, 7.6)

Rainer Klages

School of Mathematical Sciences
Queen Mary, University of London

Autumn 2009



example: Evaluate
/ 2z
V22 +5
1. Substitute u = 22 + 5, du = 2z dz:

2z o -1/3
[ e [

/u1/3du = gu2/3 +C

2. Integrate:

3. Replace u = 2% + 5:
z 3
= _dz==(2+5+C
/ V22 +5 2( )
Transform integrals by using trigonometric identities.

example: Evaluate [ sin’zdz:

Use half-angle formula sin®z = (1 — cos 22)/2 to write

—_

/sianda: = —(1 — cos2z)d

= Q/dx——/COSQI‘dx

1
= §x—zsm2x+0

Move on to substitution in definite integrals:

l\D

Theorem 1 If ¢’ is continuous on |a,b] and f is continuous on the range of g, then

9(b)
/ f(g x)dr = f(u)du

9(a)
(note that u = g(x)! proof straightforward, see book p.377)
1

example: Evaluate / 32°V a3 + 1d.

1
Substitute v = 23 + 1, du = 322dx.
r=—1gvesu=(-12+1=0;2=1gives u=1>+1= 2, and we obtain

1 2
/ 32°Va3 + ldx = / Vudu
-1 0

_ 2 3/22
= 3u
= 223/2—0
42

3

0



Definite integrals of symmetric functions

Theorem 2 Let [ be continuous on the symmetric interval [—a, a).
(a) If [ is even, then [* f(x)dz =2 [ f(z)dz.
(b) If f is odd, then [, f(x)dx = 0.

(proof by splitting the integrals and straightforward formal manipulations, see book p.379
for part (a))

examples:

>

/\ 0 &
% \/ |
-a 0 a

(a) (b)

Areas between curves
example:

Upper curve

y=f(x)

s > X

T_/ b
Lower curve
y =gk

DEFINITION Area Between Curves

If f and g are continuous with f(x) = g(x) throughout [a, b], then the area of
the region between the curves y = f(x) and y = g(x) from a to b is the inte-
gral of (f — g) froma to b:

b
% =f [f(x) — g(x)] dx.




example: Find the area that is enclosed above by y = y/z and below by y = 0 and y = z—2.
Two solutions:
(a) by definition:

4
Area=/(\/.;—x+2)dr
2

y

+ 2 y——“\\/;
Z—Areazo\/.l_cdx 4.2)

&\
1 y=x—2
A
L5 x

0 y=072 4

Split total area into area A + area B.
Find right-hand limit for B by solving /r =2 — 2 = x = 4.

2 4
total area = / Vv —0dz + / VI — (v —2)dz
0 2

4

2
_ 200 4 (Exw L Qx)
3 0 3 2 )
10
3
(b) the clever way:
y
A
4, 2)
2 T
y= Vi
1+ y=x—2 2
Area = 2
| 2 y
x
0 y=0 2 4
The area below the parabola is
1 2 4|t 16
Alz/ Vrdr = 2237 = —.
0 3 0 3

The area of the triangle is Ay =2-2/2 = 2 so that

16 10
totalarea:Al—AQ:E—Q:E.



Inverse functions and their derivatives

DEFINITION One-to-One Function

A function f(x) is one-to-one on a domain D if f(x;) # f(x,) whenever x; # x»
in D.

These functions take on any value in their range ezactly once.
examples:

Both functions are one-to-one on R, respectively on R .

The Horizontal Line Test for One-to-One Functions
A function y = f(x) is one-to-one if and only if its graph intersects each hori-
zontal line at most once.

examples:

Same y-value

/N "’
Same y-value
N/ / \
| I 0.5] " ™\
' L > X | N, X
-1 0 1 T 57\
6 6
y = 8inx

y = 2 is one-to-one on, e.g., RS but not R.
y = sinz is one-to-one on, e.g., [0,7/2] but not R.



DEFINITION Inverse Function

Suppose that f is a one-to-one function on a domain D with range R. The inverse
function ' is defined by

fYa) = b if f(b) = a.
The domain of f ! is R and the range of ' is D.

note:
o f~1reads f inverse
o f1(z)# (f(z))"t = 1/f(x)! (not an exponent)
o (f~lof)(z) =z for all z € D(f)
o (fof ) (x)=uxforall z € R(f)

Read off inverse from graph of f(x), as follows:
usual procedure x — y = f(z):

RANGE OF [

0 X
DOMAIN OF ff

for inverse y — z = f~(y):

=
L8

x=F»

DOMAIN OF [~
ol




Note that D(f) = R(f~!) and R(f) = D(f™'), which suggests to reflect x = f~!(y) along
y = 1

RANGEOF f !
)
=
.\
%
*
&
"
b
- b
I =
~
<

Fid (b, a)

- o |
, DOMAIN OF f

After reflection, x and y have changed places. Therefore, swap = and y. ..

y=f"x)

RANGE OF f !

DOMAIN OF f ™!

...and we have found y = f~(z) graphically.
method for finding inverses algebraically:

1. solve y = f(z) for x: z = f~(y)
2. interchange x and y: y = f~!(x)
example: Find the inverse of y = 22,2 > 0.

1. solve y = f(x) for z: \/§=Va?=|z| ==, as x> 0.

2. interchange z and y: y = /.



/6

Calculate derivatives of inverse functions.
Differentiate y = f~!(z), or z = f(y):

Therefore,

‘The derivatives are reciprocals of one another.

Be precise: x = f(y) means y = f~!(z) so that

Be more precise:

dy 1

— = Ty

f'(f=H )

THEOREM 1

or

The Derivative Rule for Inverses

If f has an interval / as domain and f'(x) exists and is never zero on /, then f ' is
differentiable at every point in its domain. The value of (f )" at a point b in the
domain of ' is the reciprocal of the value of f' at the pointa = f'(b):

=1y b) = 1
) (b))
i R
dx x=h a ﬂ

ax | x=f-'(p)




example: f(z) = 2% x > 0 continued.
f~Yz) = +/z and f'(z) = 2z so that

note: The theorem can be used pointwise to find a value of the inverse derivative without
calculating any formula for the inverse (see the book p.472 for an example). Otherwise,
simply differentiate the inverse.

Natural Logarithms

For a € Q\ {—1} we know that

xa o 1 a+1l
/1tdt——a+1(x 1)

(Fundamental Theorem of Calculus part 2).

1
What happens if a = —17 / gdt is well defined for x > 0:
1

DEFINITION  The Natural Logarithm Function

1
Inx=/7dt, x>0
1




»

1
1
—/?df
X

X
0 <x<1,thenlnx =/ %d:
1

gives the negative of this area.

X
Ifx > 1, then In x =f %a‘r
|

gives this area.

I\ x

|
Ifx= 1,then1nx:/},dr~—~0.
1

The range of Inz is R.

A special value: the number |e = 2.718281828459 .. .| (sometimes called Euler’s number),
satisfying

lne=1.

Differentiate In x (according to the fundamental theorem of calculus part 1):

d d [*1 1
—Inex=— [ —dt=-.
dx e de J, t x
If u(xz) > 0, by the chain rule
d
%lnu:au'.
If u(x) = ax with a > 0,
d 1 1
—har = —a=—
dx ax x

Since Inaz and Inx have the same derivative (!),
Inar =Inz+C .
For z =1 we get C'=1Inal —In1 = Ina and therefore
Inaz =lna+Inx.

We have shown rule 1 in the following table:



THEOREM 2  Properties of Logarithms

For any numbers ¢ > 0 and x > 0, the natural logarithm satisfies the following
rules:

1. Product Rule: Inax = Ina + Inx

2. Quotient Rule: In% = Ina — Inx

3. Reciprocal Rule: In% = —Ilnx Rule 2 witha = |

4. Power Rule: Inx" = rinx r rational

(For the proof of rule 4 see book p.480.)
examples: Apply the logarithm properties to function formulas by replacing a — f(z), x —

9(x).
1. In8 + Incosz = In(8 cos )

22 +3

2. In
2z —1

=In(z* +3) — In(2z — 1)

3. Incotz =1n = —Intanxz

tanx
1
4. Inv/z —3 =In(x — 3)¥/° = 5 In(z — 3)
For t > 0, the Fundamental Theorem of Calculus tells us that

1

For t < 0, (—t) is positive, and we find analogously

1
/md(—t) = In(—t) + C.

1
/—dt:1n|t|—|—0

Substituting t = f(x), dt = f'(x)dz leads to
f — I |f(x) +C

For t # 0, together this gives

(for all f(z) that maintain a constant sign on the range of integration).

example:
sin x
/ tanx dx = / dx
CoS T




Substitute t = cosz > 0, dt = —sinxdz on (—7/2,7/2):
1
/tanxdx:—/;dt:—ln|t\+0=—1n\cosx\+0

Analogously for cot z:

ftanudu= —In|cosu| + C = In |secu| + C

/cotua‘u =In|sinu|] + C= —In|cscx| + C

The exponential function

In x is strictly increasing, therefore invertible:

Definition 1 (Exponential function) For every z € R, expz =In""z.

Recall that 1 = Ine so that exp1 =e.
Apply the power rule:
Ine" =rlne=r

so that
e =expr,reQ.

But exp x is defined for any real x, which suggests to define real exponents for base e via
exp x:

Definition 2 For every x € R, e* = expx.



It is
In(e”) =a,aeR

and

=g, a>0.

With

x
(elna) — exlna =a*
we can define real powers of positive real numbers a:

Definition 3 (General exponential functions) For every x € R and a > 0, the ezxpo-

nential function with base a is

ax — exlna )

nlnx

note: By using 2" = e , it can be proved that

_xn — nxnfl

>0
dx 7x Y

for all real n. (see book p.492)
We have

THEOREM 3 Laws of Exponents for e*
For all numbers x, x|, and x;, the natural exponential e¢* obeys the following laws:

1. e¥:et =" ™™

= ]

2. e*= P
X1
e .
3. ="
e

4. (") = "2 = (e

Proof of 1.:

exp(z1) - exp(z2) = expln(exp(zy) - exp(z2))
(product rule for Inz) = exp(lnexp(z;)+ Inexp(xs))
= exp(z + 22)

(2. and 3. follow from 1., 4. is proved similarly to 1.)

As e = f~!(x) with f(x) =Inx and f'(z) = 1/z, we find (by using the derivative rule for
inverses)

d 1 X

—e' = =f(v)=¢"

TR RO R
implying

/exdx:em—l—(].



By the chain rule,

dx
so that
/ef(x)f/(x)dx =el® 4 O
or
/ edu=¢e"+C
by substituting u = f(z).
examples:
1.
d sin x sin : sin x
— ="M —sinz = ™% cosx
dx dx
2.
In2 In8 1
/ rdr = / e’ —du
0 0 3

In8

eu

Wl Wl

We defined e via Ine = 1 and stated e = 2.718281828459 . . ..

Theorem 3 (The number e as a limit)

e = lim(1 + z)"/*

rz—0

Proof:

In <9161LI(1](1 + x)l/““") =

(continuity of Inz ) = lim (In(1 + z)"/")

z—0

1
(power rule) = lim (— In(1+ x))
T

z—0

In1 =0 and I'Hopital) = 1l

(In an opital) lim ———
=1
= In(e)

Differentiate general exponential functions of base a > 0:

d d

T _ _ezrlna — ea:lnalna —ad*lna

%a dx



implying

/axda:: ¢ +C,a#1
Ina

example:

d d Lod
x — Trinx — rinx 1 — xT 1 1
L =g e _da:(x nz)=z"(1+Inx)

Definition 4 (log, ) The inverse of y = a* is
log, z , the logarithm of x with base a,

provided a > 0 and a # 1 (why?).

It is
log,(a") =2,z €R
and
r=a%" £>0.
Furthermore,
Inz=1In (alog”) =log,z -Ina.
- Inx
yielding log, xr = —
Ina

note: The algebra for log, x is precisely the same as that for Inz.

Read

Thomas’ Calculus:
Section 7.7 Inverse trigonometric functions,
and Section 7.8, Hyperbolic functions
You will need this information for coursework 10!

In the following two sections I explain some very bare essentials that can be found on these
pages.

Inverse trigonometric functions

note: sin, cos, sec, csc, tan, cot are not one-to-one unless the domain is restricted.

example:



y

h
x=siny
| y = sin"lx
2 Domain: -1=x=1
Range: —w/2 =y = 7/2
L L > X
-1 1
-
2

Once the domains are suitably restricted, we can define:

arcsinx = sin” ' x arcesc T = csc
arccos T = cos ' x arcsec T = sec ' x
arctanx = tan~' x arccot x = cot ' x
examples:
Domain: -1 =x=1 Domain: -1=x=1
Range fgsysg Range: O=y=x
y y
118 B -7
2 . ] 1
y=sm x y =cos 'x
| | T
> X =
-1 1 Z
1 _7T 1 -t
2 1 1
(a) (b)
...and so on.
caution: sin ™'z # (sinz) ™!

Unfortunately this is inconsistent, since sin*z = (sinz)? Best to avoid sin™'z and use
arcsin z etc. instead.

How to differentiate inverse trigonometric functions?

example: Differentiate y = arcsin z.

Start with implicit differentiation of siny = =z,

cosyzil—y =1.
x

Solve for (‘f—y:
X

dy 1 1

dr — cosy V1 —sin?y




L

for —m/2 <y <7/2 (cosx = 0 for x = £n/2). Therefore, for |z| < 1,

) 1
—arcsinx =

dx V1— 22

and, conversely,

= arcsinz + C' .

/ dx
V1 — a2
example: Evaluate
/ dx
Vidr — 22

Trick: complete the square!

4o —2° =4 — (v —2)?

Now integrate

= arcsin 5 +C

= arcsin <; — 1) +C

Hyperbolic functions

Every function f on [—a,a] can be decomposed into

_|._ i . —
foy - L@+ I | @) = f
even ftlrlqction odd fa:lction
For f(z) = e™
. e e et _ T
T YT
—_——
=coshz =sinhz

called hyperbolic sine and hyperbolic cosine.

Define tanh, coth, sech, and csch in analogy to trigonometric functions.

examples:



i’y=coshx

3_
2 I 2
T Y et Il P R RN

Compare the following with trigonometric functions:

TABLE 7.6 Identities for
hyperbolic functions

cosh?x — sinh’x = 1
sinh 2x = 2 sinh x cosh x
cosh 2x = cosh®x + sinh®x

cosh?x = cosh 22x + 1
sinh®x = —coshZZx —1

tanh’x = 1 — sech®x
coth?x = 1 + csch®x

How to differentiate hyperbolic functions?

example:
d et — e " T —x
—sinhz = ac c ¢ te = coshz
dx dx 2 2
d e* —x r _ -
—coshx = & te = ¢ =sinhz
dx dx 2 2

Inverse hyperbolic functions defined in analogy to trigonometric functions.



