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Theorem 1 (First Derivative Theorem for Local Extrema) If f has a local maxi-
mum or minimum value at an interior point c of its domain, and if f ′ is defined at c, then
f ′(c) = 0.

basic idea of the proof:

note: the converse is false! (counterexample?)

Where can a function f possibly have an extreme value according to this theorem?

answer:

1. at interior points where f ′ = 0

2. at interior points where f ′ is not defined

3. at endpoints of the domain of f .

combine 1 and 2:

Why the above assumptions? Because then we have the extreme value theorem, which en-
sures the existence of such values!
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examples: (1) Find the absolute extrema of f(x) = x2 on [−1, 1].

• f is differentiable on [−1, 1] with f ′(x) = 2x

• critical point: f ′(x) = 0 ⇒ x = 0

• endpoints: x = −1 and x = 1

• f(0) = 0, f(−1) = 1, f(1) = 1

Therefore f has an absolute maximum value of 1 twice at x = −1 and an absolute minimum
value of 0 once at x = 0.

(2) Find the absolute extrema of f(x) = x2/3 on [−2, 3].

• f is differentiable with f ′(x) = 2

3
x−1/3 except at x = 0

• critical point: f ′(x) = 0 or f ′(x) undefined ⇒ x = 0

• endpoints: x = −2 and x = 3

• f(−2) = 3
√

4, f(0) = 0, f(3) = 3
√

9

Therefore f has an absolute maximum value of 3
√

9 at x = 3 and an absolute minimum value
of 0 at x = 0.

Rolle’s theorem

motivation:



4

Theorem 2 Let f(x) be continuous on [a, b] and differentiable on (a, b). If f(a) = f(b)
then there exists a c ∈ (a, b) with f ′(c) = 0.

basic idea of the proof:
Apply extreme value theorem and first derivative theorem for extrema to interior points and
consider endpoints separately; for details see the textbook Section 4.2.

note: It is essential that all of the hypotheses in the theorem are fulfilled!

examples:

example: Apply Rolle’s theorem to f(x) = x3

3
− 3x on [−3, 3].

• The polynomial f is continuous on [−3, 3] and differentiable on (−3, 3).

• f(−3) = f(3) = 0

• By Rolle’s theorem there exists (at least!) one c ∈ [−3, 3] with f ′(c) = 0.

From f ′(x) = x2 − 3 = 0 we find that indeed x = ±
√

3.

The Mean Value Theorem

motivation: “slanted version of Rolle’s theorem”
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Theorem 3 (Mean Value Theorem) Let f(x) be continuous on [a, b] and differentiable
on (a, b). Then there exists a c ∈ (a, b) with

f ′(c) =
f(b) − f(a)

b − a
.

basic idea of the proof:

Define g(x) and h(x) and apply Rolle’s theorem.

example: Consider f(x) = x2 on [0, 2].

• f(x) is continuous and differentiable on [0, 2].

• Therefore there is a c ∈ (0, 2) with f ′(c) =
f(2) − f(0)

2 − 0
= 2.

• Since f ′(x) = 2x we find that c = 1.
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Know f ′(x) ⇒ know f(x)? special case:

Corollary 1 (Functions with zero derivatives are constant) If f ′(x) = 0 on (a, b)
then f(x) = C for all x ∈ (a, b).

basic idea of the proof:
Apply the Mean Value Theorem to all x1, x2 ∈ (a, b)!

Know f ′(x) = g′(x) ⇒ know relation between f and g?

Corollary 2 (Functions with the same derivative differ by a constant) If f ′(x) =
g′(x) for all x ∈ (a, b), then f(x) = g(x) + C.

Proof: Consider h(x) = f(x) − g(x). As h′(x) = f ′(x) − g′(x) = 0 for all x ∈ (a, b),
h(x) = C by the previous corollary and so f(x) = g(x) + C. q.e.d.

example:

Increasing and decreasing functions

motivation:
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• make increasing/decreasing mathematically precise

• clarify relation to positive/negative derivative

example: f(x) = x2 decreases on (−∞, 0] and increases on [0,∞). It is monotonic on
(−∞, 0] and [0,∞) but not monotonic on (−∞,∞).

Corollary 3 (First derivative test for monotonic functions) Suppose that f is con-
tinuous on [a, b] and differentiable on (a, b).
If f ′(x) > 0 at each point x ∈ (a, b), then f is increasing on [a, b].
If f ′(x) < 0 at each point x ∈ (a, b), then f is decreasing on [a, b].

sketch of the proof:
The Mean Value theorem states that f(x2) − f(x1) = f ′(c)(x2 − x1) for any x1, x2 ∈ [a, b]
with x1 < x2. Hence, the sign of f ′(c) determines whether f(x2) < f(x1) or the other way
around, which in turn determines the type of monotonicity.

example: Find the critical points of f(x) = x3−12x−5 and identify the intervals on which
f is increasing and decreasing.

f ′(x) = 3x2 − 12 = 3(x2 − 4) = 3(x + 2)(x − 2) ⇒ x1 = −2, x2 = 2

These critical points subdivide the natural domain into (−∞,−2), (−2, 2), (2,∞).
rule: If a < b are two nearby critical points for f , then f ′ must be positive on (a, b) or
negative there. (proof relies on continuity of f ′). This implies that for finding the sign
of f ′ it suffices to compute f ′(x) at one x ∈ (a, b)!
Here: f ′(−3) = 15 , f ′(0) = −12 , f ′(3) = 15.

intervals −∞ < x < −2 −2 < x < 2 2 < x < ∞
sign of f’ + - +

behaviour of f increasing decreasing increasing
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First derivatives and local extrema

example:

• Whenever f has a minimum, f ′ < 0 to the left and f ′ > 0 to the right.

• Whenever f has a maximum, f ′ > 0 to the left and f ′ < 0 to the right.

⇒ At local extrema, the sign of f ′(x) changes!

example: Find the critical points of f(x) = x4/3 − 4x1/3. Identify the intervals on which f

is increasing and decreasing. Find the function’s extrema.

f ′(x) =
4

3
x1/3 −

4

3
x−2/3 =

4

3

x − 1

x2/3
⇒ x1 = 1 , x2 = 0

intervals x < 0 0 < x < 1 1 < x

sign of f’ - - +
behaviour of f decreasing decreasing increasing

Apply the first derivative test to identify local extrema:

• f ′ does not change sign at x = 0 ⇒ no extremum

• f ′ changes from − to + at x = 1 ⇒ local minimum
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Since limx→±∞ = ∞, the minimum at x = 1 with f(1) = −3 is also an absolute minimum.
Note that f ′(0) = −∞!

Concavity and curve sketching

example:

intervals x < 0 0 < x

turning of curve turns to the right turns to the left
tangent slopes decreasing increasing

The turning or bending behaviour defines the concavity of the curve.
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In the literature you often find that ‘concave up’ is denoted as convex, and ‘concave down’
is simply called concave.

If f ′′ exists, the last corollary of the mean value theorem implies that f ′ increases if f ′′ > 0
on I and decreases if f ′′ < 0:

examples: (1) y = x3 ⇒ y′′ = 6x: For (−∞, 0) it is y′′ < 0 and graph concave down.
For (0,∞) it is y′′ < 0 and graph concave up.

(2) y = x2 ⇒ y′′ = 2 > 0: graph is concave up everywhere.
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y = x3 changes concavity at the point (0, 0); specify:

At a point of inflection it is y′′ > 0 on one, y′′ < 0 on the other side, and either y′′ = 0 or
undefined at such point.

If y′′ exists at an inflection point it is y′′ = 0 and y′ has a local maximum or minimum.

examples: (1) y = x4 ⇒ y′′ = 12x2: y′′(0) = 0 but y′′ does not change sign – no inflection
point at x = 0.

(2) y = x1/3 ⇒ y′′ =
(

1

3
x−

2

3

)′

= −2

9
x−

5

3 : y′′ does change sign – inflection point at x = 0

but y′′(0) does not exist.


