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Derivatives of trigonometric functions

(1) Differentiate f(z) = sinx:
e Start with the definition of f'(x):

1N sin(x + h) — sinx
fi(w) = lim -
e Use sin(z + h) = sinz cos h + cos z sin h:
/(@) = lim sin z(cos h — 2) + cos zsin h

e Collect terms and apply limit laws:

h—1 inh
f'(x) = sin lim % +cosz lim Sl%
h—1 inh
e Use ,llir% % =0 and }lLirr(l) SR _ 1 to conclude f'(z) = cos .
(2) A very similar derivation gives g, COST =~ sin x.
x
(3) We still need itanx _d (sinz
dx dx \ cosx
(quotient rule) — 4 (sinz) cos x — sin w-L(cos z)
cos? x

cos x cos x — sin x(— sin x)

cos? x
cos? x + sin’ z 1

cos? x cos? x

Summary: Derivatives of trigonometric functions

d .
—sinx = cosx
dx
—cosx = —singx
dx
1 2
—tanx = 5 = sectw
dx cos? x
d d 1
—secr = — =secxtanx
dx dx \ cosx
d scosz 9
—cotr = — - = —cscx
dx dx \sinz
d 1

d
—cCcscxr = = —cscxcota
dz dz (sinx)



Derivative of composites

example: relating derivatives

y = 22 is the same as y = %u and v = 3x. By differentiating

2
dy 3 dy 1 du

de 27 du 2 dx ’
we find that

I _dydn
dr  dudz’

Coincidence or general formula: Do rates of change multiply?

The chain rule:

Composite f= g

Rate of change at
xis fTglx)) - g'tx).

g

Rate of change ,«*’"'x Rate of change
atxis glx). ——s——  alglx)is flgl). —elie

X i = gix) v = flu) = flglx))

THEOREM 3 The Chain Rule

If f{u) is differentiable at the point ¥ = g(x) and g(x) is differentiable at x, then
the composite function (f  g)(x)} = f(g(x)) is differentiable at x, and

(f o g)(x) = f(glx)) g'(x).
In Leibniz’s notation, if y = f(u) and ¥ = g(x), then

dy _ dy du

dx  du dx’
where dy/du is evaluated at u = g(x).

examples:

(1) Differentiate x(t) = cos(t + 1).
Here: Choose x = cosu and u =t + 1 and differentiate,

d d
éz—sinu and d—qzzl.
Then
dx

a:(—sinu)-lz—sin(tjtl).

dism(ac2 +z) = cos(z® + z) (22 + 1)
T



Parametric equations

example:

Position of particle
at time ¢ TR (f(1), ()

Describe a point moving in the xy-plane as a function of a parameter ¢ (“time”) by two
functions

This may be the graph of a function, but it need not be.

DEFINITION  Parametric Curve
If x and y are given as functions

x=f(@t), »y=g
over an interval of f-values, then the set of points (x, y) = (f(¢), g(1)) defined by
these equations is a parametric curve. The equations are parametric equations
for the curve.

The variable ¢ is a parameter for the curve. If ¢t € [a,b], which is called a parameter
interval, then (f(a),g(a)) is the initial point, and (f(b),g(b)) is the terminal point.
Equations and interval constitute a parametrisation of the curve.

examples:

(1) Given is the parametrisation x = Vt, y=t,t>0. What is the path defined by these
equations?

Solve for y = f(z): y =t, 2° =t = y = 2°. Note that the domain of f is only [0, c0)!



01 Starts at
r=0

(2) Find a parametrisation for the line segment from (-2, 1) to (3,5).

e Start at (—2,1) for t = 0 by making the ansatz (“educated guess”)

r=-24at, y=1+0bt.
e Implement the terminal point at (3,5) for ¢ = 1:

3=-2+4a, 5=1+0b.
e We conclude that a =5, b= 4.

e Therefore, the solution based on our ansatz is:

|1=—2+45t, y=1+4t,0<t<1

Y

which indeed defines a straight line (why?).

A parametrised curve z = f(t), y = g(¢) is differentiable at ¢ if f and g are differentiable
at t. At a point where y is a differentiable function of z, say y = y(x), it is y = y(x(t)) and
by the chain rule

dy _dyds
dt  drdt’
Solving for dy/dz yields the

Parametric Formula for dy /dx

If all three derivatives exist and dx/dt # 0,
dv dy/dt
dx ~ dx/dt’




example: Describe the motion of a particle whose position P(z,y) at time ¢ is given by

‘x:acost, y = bsint , 0§t§27r‘

and compute the slope at P.

e Find the equation in (x,y) by eliminating ¢:

Using cost = z/a, sint = y/b and cos?t + sin®t = 1 we obtain

2 2
T Y
2 tp T
which is the equation of an ellipse.
e With ‘fi—f = —asint and % = bcost the parametric formula yields

dy dy/dt  bcost
dv  dr/dt  —asint’

d v?
Eliminating ¢ again we obtain w_ T
dx a?y

Implicit differentiation

problem: We want to compute 3’ but do not have an explicit relation y = f(z) available.
Rather, we have an implicit relation

F(l’,y) =0

between x and y.

example:
Flr,y)=2"+y*—1=0.

solutions:
1. Use parametrisation, for example, x = cost, y = sint for the unit circle.
2. If no obvious parametrisation of F(z,y) = 0 is possible: use implicit differentiation.

example: Given y? = x, compute /.

New method by differentiating implicitly:

e Differentiating both sides of the equation gives 2yy’ = 1.

e Solving for ¢y we get |y’ = 3% |

Compare with differentiating explicitly:

e For y? = x we have the two explicit solutions |y| = \/x = y12 = £+/z with derivatives

yi,z = iﬁ .




e Compare with solution above: substituting y = y12 = £/« therein reproduces the
explicit result.

Implicit Differentiation

1. Differentiate both sides of the equation with respect to x, treating y as a differ-
entiable function of x.

2. Collect the terms with dy/dx on one side of the equation.
3. Solve for dy/dx.

2 2
example: Find dy/dz for the ellipse, x_2 + 2—2 =1.
a

2¢ 2yy
batp =f

2y 2x
YR T e

, vz . . T .
3.y = ——25, as obtained via parametrisation in the previous lecture.
a

application: Motivate the power rule for rational powers by differentiating y = x4 using
implicit differentiation:

e write y? = af

o differentiate: qu’ly’ = ppr

e solve for y' as a function of x:
,_part _paty py pwxe
q

yzqu—l quicz qu



THEOREM 4 Power Rule for Rational Powers
If p/q is a rational number, then x”/7 is differentiable at every interior point of the
domain of x?/?~! and

d

d_xﬂﬂ‘f‘i‘ = %x!ﬂf‘i‘}_l ]
X

note: Above we have silently assumed that ¢y’ exists! Therefore we have ‘motivated’ but
not (yet) proved this theorem!

Linearisation

X y = fix)

Slope = [ (a)

(a, fla))

“Close to” the point (a, f(a)), the tangent L(z) = f(a) + f'(a)(x — a) (point-slope form) is
a “good” approximation for y = f(z).

DEFINITIONS Linearization, Standard Linear Approximation
If f is differentiable at x = a, then the approximating function

L(x) = f(a) + f'(a)(x — a)
is the linearization of f at a. The approximation
f(x) = L(x)

of f by L is the standard linear approximation of f at a. The point x = a is the
center of the approximation.

example: Compute the linearisation for f(z) =+v1+x at x =a =0.

We have f(0) =1 and with f'(z) = $(1 + )72 we get f(0) = 1 so

1
L(x):1+§x.



0.1 0 0.1 0.2
Approximation True value | True value — approximation |
ViZ=1+ % = 1.10 1095445 <1072
V105= 1+ %}i = 1.025 1.024695 <1073
V1005 ~ 1 + % = 1.00250  1.002497 <107

Why are linearisations useful? Simplify problems, solve equations analytically, ... many

applications!

Make phrases like “close to a point (a, f(a)) the linearisation is a good approximation”

mathematically precise in terms of differentials:

L(z) = f(a)+ f(a)(z —a)
L(x) = f(a) = [f(a)(z—a)
dy dx

Choose x = a + dz, a = x:



DEFINITION Differential
Let v = f(x) be a differentiable function. The differential dx is an independent

variable. The differential dy is
dy = f'(x) dx.

Reading Assignment: read
Thomas’ Calculus, p.225-228 about Differentials

Extreme values of functions

DEFINITIONS Absolute Maximum, Absolute Minimum
Let f be a function with domain D. Then f has an absolute maximum value on
D at a point ¢ if

flx) = f(e) for all x in D

and an absolute minimum value on D at ¢ if
fx) = f(e) forall xin D.

These values are also called absolute extrema, or global extrema.

example: P
b
el
y=a?
D =10,2]
X 1 L
:
(a) ()
¥ y
5 el
¥ =x° y=x
D =0,2] D=0,2)
1 ¥ L X
| 2 | 2

(©) . (d)



‘ H Domain ‘ abs. max. ‘ abs. min. ‘

(a) || (—o0, 00) none 0,at 0
®) [ 0,2 Lat2 | 0,at0
(c) (0,2] 4, at 2 none
(d) (0,2) none none

The existence of a global maximum and minimum is ensured by

THEOREM 1

The Extreme Value Theorem

If £ is continuous on a closed interval [a, &), then f attains both an absolute max-
imum value M and an absolute minimum value m in [a, b]. That is, there are
numbers x| and x; in [a, £] with f(x|) = m, f(x;) = M,andm = f(x) = M for

every other x in [a, b] (Figure 4.3).

examples:

xl/l
b

|
| |m|
I

(xq, 1)
Maximum and minimum
at interior points

Maximum at inlerior point,
minimum at endpoint

(Classify maxima and minima:

Local maximum
No greater value of
[ nearby.

X

| ¥ =f00

Y

: IR
a 4]

Maximum and minimum
at endpoints

X

I
I
|
I
I
1]
I
I
I
I
I
1
b

Minimurmn at interior point,
maximum at endpoint

Absclute maximum
No greater value of fanywhere.
Also a local maximum.

Local minimum
No smaller value
I of f nearby.

Absolute minimum

|
[
[
No smaller value of | Local minimum |
f anywhere. Alsoa | I No smaller value of 1
- | I, | I
local minimum. | 1 f nearby. | I
1 1 | 1 > x
a ¢ e d b



DEFINITIONS Local Maximum, Local Minimum
A function f has a local maximum value at an interior point ¢ of its domain if

fx) = fle) for all x in some open interval containing c.
A function f has a local minimum value at an interior point ¢ of its domain if

f(x) = fle) for all x in some open interval containing c.

...and the extension of this definition to endpoints via half-open intervals at endpoints.

note: Absolute extrema are automatically local extrema!



