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Derivatives of trigonometric functions

(1) Differentiate f(x) = sin x:

• Start with the definition of f ′(x):

f ′(x) = lim
h→0

sin(x + h) − sin x

h

• Use sin(x + h) = sin x cos h + cos x sin h:

f ′(x) = lim
h→0

sin x(cos h − 1) + cos x sin h

h

• Collect terms and apply limit laws:

f ′(x) = sin x lim
h→0

cos h − 1

h
+ cos x lim

h→0

sin h

h

• Use lim
h→0

cos h − 1

h
= 0 and lim

h→0

sin h

h
= 1 to conclude f ′(x) = cos x.

(2) A very similar derivation gives
d

dx
cos x = − sin x.

(3) We still need d

dx
tanx =

d

dx

(
sin x

cos x

)

(quotient rule) =
d
dx

(sin x) cos x − sin x d
dx

(cos x)

cos2 x

=
cos x cos x − sin x(− sin x)

cos2 x

=
cos2 x + sin2 x

cos2 x
=

1

cos2 x

Summary: Derivatives of trigonometric functions

d

dx
sin x = cos x

d

dx
cos x = − sin x

d

dx
tan x =

1

cos2 x
= sec2 x

d

dx
sec x =

d

dx

(
1

cos x

)

= sec x tan x

d

dx
cot x =

d

dx

(cos x

sin x

)

= − csc2 x

d

dx
csc x =

d

dx

(
1

sin x

)

= − csc x cot x
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Derivative of composites

example: relating derivatives

y = 3

2
x is the same as y = 1

2
u and u = 3x. By differentiating

dy

dx
=

3

2
,

dy

du
=

1

2
,

du

dx
= 3 ,

we find that
dy

dx
=

dy

du

du

dx
.

Coincidence or general formula: Do rates of change multiply?

The chain rule:

examples:

(1) Differentiate x(t) = cos(t + 1).
Here: Choose x = cos u and u = t + 1 and differentiate,

dx

du
= − sin u and

du

dt
= 1 .

Then
dx

dt
= (− sin u) · 1 = − sin(t + 1) .

(2)
d

dx
sin(x2 + x) = cos(x2 + x)(2x + 1)
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Parametric equations

example:

Describe a point moving in the xy-plane as a function of a parameter t (“time”) by two
functions

x = f(t) , y = g(t) .

This may be the graph of a function, but it need not be.

The variable t is a parameter for the curve. If t ∈ [a, b], which is called a parameter

interval, then (f(a), g(a)) is the initial point, and (f(b), g(b)) is the terminal point.
Equations and interval constitute a parametrisation of the curve.

examples:

(1) Given is the parametrisation x =
√

t , y = t , t ≥ 0. What is the path defined by these
equations?

Solve for y = f(x): y = t , x2 = t ⇒ y = x2. Note that the domain of f is only [0,∞)!
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(2) Find a parametrisation for the line segment from (−2, 1) to (3, 5).

• Start at (−2, 1) for t = 0 by making the ansatz (“educated guess”)

x = −2 + at , y = 1 + bt .

• Implement the terminal point at (3, 5) for t = 1:

3 = −2 + a , 5 = 1 + b .

• We conclude that a = 5 , b = 4.

• Therefore, the solution based on our ansatz is:

x = −2 + 5t , y = 1 + 4t , 0 ≤ t ≤ 1 ,

which indeed defines a straight line (why?).

A parametrised curve x = f(t), y = g(t) is differentiable at t if f and g are differentiable
at t. At a point where y is a differentiable function of x, say y = y(x), it is y = y(x(t)) and
by the chain rule

dy

dt
=

dy

dx

dx

dt
.

Solving for dy/dx yields the
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example: Describe the motion of a particle whose position P (x, y) at time t is given by

x = a cos t , y = b sin t , 0 ≤ t ≤ 2π

and compute the slope at P .

• Find the equation in (x, y) by eliminating t:

Using cos t = x/a, sin t = y/b and cos2 t + sin2 t = 1 we obtain

x2

a2
+

y2

b2
= 1 ,

which is the equation of an ellipse.

• With dx
dt

= −a sin t and dy
dt

= b cos t the parametric formula yields

dy

dx
=

dy/dt

dx/dt
=

b cos t

−a sin t
.

Eliminating t again we obtain
dy

dx
= − b2

a2

x

y
.

Implicit differentiation

problem: We want to compute y′ but do not have an explicit relation y = f(x) available.
Rather, we have an implicit relation

F (x, y) = 0

between x and y.

example:

F (x, y) = x2 + y2 − 1 = 0 .

solutions:

1. Use parametrisation, for example, x = cos t, y = sin t for the unit circle.

2. If no obvious parametrisation of F (x, y) = 0 is possible: use implicit differentiation.

example: Given y2 = x, compute y′.

New method by differentiating implicitly:

• Differentiating both sides of the equation gives 2yy′ = 1.

• Solving for y′ we get y′ = 1

2y
.

Compare with differentiating explicitly:

• For y2 = x we have the two explicit solutions |y| =
√

x ⇒ y1,2 = ±√
x with derivatives

y′
1,2 = ± 1

2
√

x
.
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• Compare with solution above: substituting y = y1,2 = ±√
x therein reproduces the

explicit result.

example: Find dy/dx for the ellipse,
x2

a2
+

y2

b2
= 1.

1.
2x

a2
+

2yy′

b2
= 0

2.
2yy′

b2
= −2x

a2

3. y′ = − b2

a2

x

y
, as obtained via parametrisation in the previous lecture.

application: Motivate the power rule for rational powers by differentiating y = x
p

q using
implicit differentiation:

• write yq = xp

• differentiate: qyq−1y′ = pxp−1

• solve for y′ as a function of x:

y′ =
p

q

xp−1

yq−1
=

p

q

xp

yq

y

x
=

p

q

y

x
=

p

q

x
p

q

x
=

p

q
x

p

q
−1
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note: Above we have silently assumed that y′ exists! Therefore we have ‘motivated’ but
not (yet) proved this theorem!

Linearisation

“Close to” the point (a, f(a)), the tangent L(x) = f(a) + f ′(a)(x− a) (point-slope form) is
a “good” approximation for y = f(x).

example: Compute the linearisation for f(x) =
√

1 + x at x = a = 0.

We have f(0) = 1 and with f ′(x) = 1

2
(1 + x)−1/2 we get f ′(0) = 1

2
, so

L(x) = 1 +
1

2
x .
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How accurate is this approximation? Magnify region around x = 0:

Why are linearisations useful? Simplify problems, solve equations analytically, . . .many
applications!

Make phrases like “close to a point (a, f(a)) the linearisation is a good approximation”
mathematically precise in terms of differentials:

L(x) = f(a) + f ′(a)(x − a)

L(x) − f(a)
︸ ︷︷ ︸

dy

= f ′(a) (x − a)
︸ ︷︷ ︸

dx

Choose x = a + dx, a = x:
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Reading Assignment: read

Thomas’ Calculus, p.225-228 about Differentials

Extreme values of functions

These values are also called absolute extrema, or global extrema.

example:
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Domain abs. max. abs. min.

(a) (−∞,∞) none 0, at 0
(b) [0, 2] 4, at 2 0, at 0
(c) (0, 2] 4, at 2 none
(d) (0, 2) none none

The existence of a global maximum and minimum is ensured by

examples:

Classify maxima and minima:
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. . . and the extension of this definition to endpoints via half-open intervals at endpoints.

note: Absolute extrema are automatically local extrema!


