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examples: finding formulas for composites

f(x) =& with D(f)=[0,00)

g(x) =xz+1 with D(g)=(—o0,00)
composite domain
(fog)@) = [flg(x)) = Vgla) = Vo +1 [~1,00)
(go f)(z) =g(f(x)) = flz) + 1=z +1 [0, 00)
(foN)@) = F(f(@) = Vflx) =/ Vo =2 [0,00)
(gog)(x) =glg(x)) =g(z) +1=2+2 —00,0)

flz) =+x with D(f)=10,00)

g(x) =2* with D(g) = (—00,0)

composite domain

(fog)(x) = || (=00, 00)
(gof)lx) =z [0,00)

Shifting a graph of a function:

Shift Formulas

Vertical Shifts

y=flx) + k Shifts the graph of fup kunits if & > 0
Shifts it dowsn | k| units if £ < 0

Horizontal Shifts

y=flx + h) Shifts the graph of fleft i units if h = 0
Shifts it right | | units if & < 0

examples:
¥
3 y=x42
y=x"+1
)
y=ux
y=a"=12

| unit

2 units

e




Add a positive Add a negative

constant o x. . constant to x.
o= :I]L -
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Scaling and reflecting a graph of a function:
For ¢ > 1,

y =cf(x) stretches the graph of f along the y-azis by a factor of ¢
Yy = %f(x) compresses the graph of f along the y-axis by a factor of ¢

-1

y = f(cx)  compresses the graph of f along the x-azis by a factor of ¢
y = f(x/c) stretches the graph of f along the x-axis by a factor of ¢
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y = —f(x) reflects the graph of f across the x-azis

y = f(—x) reflects the graph of f across the y-axis

Combining scalings and reflections: see next exercise sheet for examples!

Trigonometric functions

!
- e
Cirgle of rad™

The radian measure of the angle AC'B is the length 6 of arc AB on the unit circle.
s = r# is the length of arc on a circle of radius r when 6 is measured in radians.

conversion formula degrees < radians:

o] a
360° corresponds to 27 = ang’e %n radians - m_
angle in degrees 180
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Terminal ray

Positive Initial ray

‘\I measure

e angles are oriented

e positive angle: counter-clockwise

e negative angle: clockwise

.
.

Initial ray

> X

Terminal
ray

“-~/ Negative

measure

angles can be larger (counter-clockwise) smaller (clockwise) than 27:
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reminder: the six basic trigonometric functions

ot

oy
>

hypotenuse ¥ P(x, v)

r

¥\ opposite

’ﬂ,l a
* X

0 X

adjacent

sine: sinf = % cosecant: cscf = i
cosine: cosf = % secant: secl = %
tangent: tanf =% cotangent: cotf ==2
T )

note: These definitions hold not only for 0 < @ < 7/2 but also for § < 0 and 6 > 7/2.
recommended to memorize the following two triangles:

because exact values of trigonometric ratios in the surds form can be read from them

example:

1'.7T\/§

a more non-trivial example:
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From the above triangle and with r = 1, 2 = —1/2 and y = v/3/2 we can read off the values
of all trigonometric functions:

sin (g’ﬂ> - £

3 r 2
2 X

COS (gﬂ) = ;

2 2 1
tan <§7T) = % = _\/5 cot <§7T) = g = —%

note: For an angle of measure # and an angle of measure ¢ + 27 we have the very same
trigonometric function values (why?)
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sin(f + 2m) =sinf ; cos(f+2m) =cosf ; tan(f + 2m) =tand

and so on.

DEFINITION Periodic Function

A function f(x) is periodic if there is a positive number p such that

f(x + p) = flx) for every value of x. The smallest such value of p is the period
of f.

Graphs of trigonometric functions:
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4 y=tanx

¥ ¥
¥ = Cosx y=sinx / ‘ /
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0 f/ﬂ
Domain: = < x < = Domain: == < x < = Dumuin:xa&i;—r,t ’*T’-IT
Range: -1l=y=1 Range: —-l=y=1 inoer oo i
Period: 27 Period: 2w ges = ¥
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P = CSC X

Domain: x # ), 4, £2m, ...
Range: y=-landy = |
Period: 2w

(e}

y=colx

AA L
T

Domain: x # (, £, £2m, ...
Range: -x=<y<=
Period:

(f)

An important trigonometric identity: Since x = r cosf and y = rsin 6 by definition, for
a triangle with » = 1 we immediately have

Plcos &, sin )

|sin 8|

cos?f +sin?6 =1

|cos 8] 1

This is an example of an identity, i.e., an equation that remains true regardless of the
values of any variables that appear within it.

counterexample:

cosf =1

This is not an identity, because it is only true for some values of 6, not all.

Reading Assignment: Read Thomas’ Calculus

e short paragraph about ellipses, p.44/45

e Section 1.6, p.53-55 about trigonometric function symme-
tries and identities

You will need this for Coursework 2!




Rates of change and limits

example: growth of a fruit fly population measured experimentally

P

+
350
300
250

150
100
a0

Number of flies

045, 340)

Ap= 190

P23, 150)

10 20 30 40 50
Time (days)

Average rate of change from day 23 to day 457

For growth rate on a specific day, e.g., day 23, study the average rates of change over
increasingly short time intervals starting at day 23:

P
Si!l?pe l[:ilf PO = Ap /At 150
0 (flies /day) B
(45, 340) M = 8.6 E 250
45 — 23 g
330 — 150 2 0
— 10 £
(40, 330) 30 — 23 10.6 E 150
310 — 150 __ Lhe
(35,3100 53 ~ 133 5 _
(30, 265) H ~ 16.4 o 0”20 0 M 50

A40) Time (days)

Lines approach the red tangent at point P with slope

350 — 0
35— 14

~ 16.7 flies/day



Summary: average rate of change and limit

¥

¥ = flx)
Olxs, flxs))
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Secant :
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DEFINITION  Average Rate of Change over an Interval
The average rate of change of ¥ = f(x) with respect to x over the interval [x,, x,] is

Ay - fx2) — flx1) _ fley + 1) — f(x))

= = : h# 0.

Show animation!
To move from average rates of change to instantaneous rates of change we need to
consider limits!

Definition 1 (informal) Let f(x) be defined on an open interval about x( except possibly
at xo itself. If f(x) gets arbitrarily close to the number L (as close to L as we like) for
all x sufficiently close to xq, we say that f approaches the limit L as x approaches x,

and we write
lim f(z) =1L,

T—x0

which is read “the limit of f(x) as x approaches xy.”

This is an informal definition, because: What do “arbitrarily close” and “sufficiently close”
mean? This will be made mathematically precise in Convergence and Continuity, MTH5104;
see also Thomas’ Calculus, Section 2.3, if you're curious.

example: How does the function

22 —1
flo) ==
behave near xo = 17
Problem: f(x) is not defined for zy = 1.
But: we can simplify:
—1 1
f(x):(x Sz + ):x+1forx7é1

r—1
lirqf(x):1+1:2

This suggests that

Graphs of these two functions, see (a) and (c):



-1 )

1,3_ 1 =1 e |

‘.t- 1 (b) gix)= (c) hix) =x+ 1
1, 1

(a) fix)=

X =

We say that f(z) approaches the limit 2 as x approaches 1 and write
lim f(z) =2.

rz—1
note: The limit value does not depend on how the function is defined at zy. All the above 3
functions have limit 2 as x — 1! However, only for h we have equality of limit and function

value:

lim h(x) = h(1)

r—1

Limits at every point:

For any value of 2y we have lim f(z) = lim z = x.
T—x0 T—x0

example: lir% =3
r—




For any value of 2y we have lim f(z) = lim k = k.
T—xQ T—TQ

example: For £ =5 we have limuS = hH%5 = 5.

Limits can fail to exist! No limit at x = 0 — three different examples:

¥
o Q, x=0
Y11, x=0
1%

values that jump

values that grow too large

¥
|—rr\
.} > X
0
0. r=10
FEE .}
f:ln},x}ﬂ
g




values that oscillate too much

We have just “convinced ourselves” that for real constants k and ¢

limz =c¢

r—cC

and
limk =k

r—cC

The following theorem provides the basis to calculate limits of functions that are arith-
metic combinations of the above two functions (like polynomials, rational functions,
powers):

Theorem 1 (Limit laws) If L, M, c and k are real numbers and lim, .. f(x) = L and
lim, ..g(z) = M, then

1. Sum Rule: lim(f(z) +g(x)) =L+ M

The limit of the sum of two functions is the sum of their limats.

2. Difference Rule: lim(f(x) —g(x)) =L - M

r—cC

3. Product Rule: lim(f(x)-g(z))=L-M

Tr—cC

4. Constant Multiple Rule: lim(k - f(z)) =k - L

L
5. Quotient Rule: lim M =— M#0
z—eg(x) M

6. Power Rule: If s and r are integers with no common factor and s # 0, then
lim(f(x))"/* = L'/

provided that L™'* is a real number. (If s is even, we assume that L > 0.)
For a proof of this theorem see Thomas’ Calculus Section 2.3 and Appendix 2, or MTH5104.

examples:

o lim(z® —da +2) = (rules 1,2)

r—cC

= lim2® — lim4z + lim2 = (rules 3 or 6,4)

r—cC r—cC r—cC

=c —4c+2

o lim Va2 —3 = \/4(—2)2 — 3 = V13 (rules 6,2,3)

T——

So "sometimes” you can just substitute the value of x.



THEOREM 2 Limits of Polynomials Can Be Found by Substitution
If P(x) = a,x™ + ay,—1x""' + -+« + ap, then

lim P(x) = P(c) = ayc" + ay—1c" ' + -+ + ao.
X

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution
If the Limit of the Denominator Is Not Zero

If P(x) and Q(x) are polynomials and O(c) # 0, then
i P _ P
—e Olx)  Ole)

example: Evaluate
2 -2
T2

=1 2 — g

e substitution of x =17 No!
e but algebraic simplification is possible:

?4+r—-2 (r+2)(x—-1) x+2

1
22—z x(r —1) x 7
e therefore,
2 -2 2
lim 2 e :hmx+ =3
=1 2 — g r—1 X

example: Evaluate

e substitution of x = 07

e trick: algebraic simplification

Va2 +100 — 10 Va2 +100 — 10 22 + 100 + 10
x? x? Va2 4+ 100 + 10
(22 +100) — 100

22(v/2% + 100 + 10)
1

Va? 4100 + 10

¥ Va2 +100 — 10 ’ 1 1
111 = l1im _ —
20 22 e—0 /22 4+ 100+ 10 20

e therefore




