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Mathematical Tripos 2004, Part IB : Electromagnetism, Lent. 2004
Lecture notes by A.J.Macfarlane, DAMTP

Corrections or comments by email to A.J.Macfarlane@damtp.cam.ac.uk

1 Introduction

1.1 Electric Charge

The existence of electric charge was well-known already to the ancient Greeks, from the rubbing
of amber with fur.

Experiments show that there are charges of two kinds, positive and negative. All stable
charged matter owes its charge to a preponderance of electrons, if negative, and of protons, if
positive. In fact, each electron and each proton carry a charge ∓e, where

e = 1.6 × 10−19 C, (C = Coulomb), (1)

a magnitude so small that total charge can be regarded as a continuous variable. Thus we can
refer to the charge density ρ(r) as the charge per unit volume at a point r of a spatial distribution
of charge.

Experiment shows also that, when we consider stationary particles P1 and P2 situated at r1

and r2 with charges q1 and q2, then P1 experiences a force

F12 =
1

4πǫ0

q1 q2

r12
2

r12

r12

=
1

4πǫ0

q1 q2

r12
2
r̂12, (2)

due to P2. This expresses the inverse-square or Coulomb law. Here

r12 = −r21 = r1 − r2, r12 = |r1 − r2|, r̂12 = r12/r12, (3)

with r̂12 a unit vector pointing from P2 to P1.
If q1 q2 is positive (same sign charges) then F12 is an repulsive force; if negative (opposite

sign charges), then it is attractive.

The factor
1

4πǫ0

is a dimensional quantity arising because of our use of SI or Système

Internationale units (=MKS, metre, kilogram, second units).
Next we consider the force on charge q1 at r1 due to a set of charges qj at rj . This is given

by

F1 =
q1

4πǫ0

∑

j 6=1

qjr1j

r1j
3

. (4)

Hence, for the force on a charge q at r due to charge of density ρ(r′) continuously distributed
over a spatial volume V , we have

F(r) =
q

4πǫ0

∫

V

(r − r′)ρ(r′)dτ ′

|r − r′|3
. (5)

Now we define the electric field E(r) of such a distribution of charge to be the force it would
exert on a unit charge if one were to be placed at r, i.e.

E(r) =
1

4πǫ0

∫

V

(r − r′)ρ(r′)dτ ′

|r − r′|3
. (6)
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Similarly for a system of point charge qj at rj , and to charge of density σ(r′) distributed
over a surface S, we have

E(r) =
1

4πǫ0

∑

j

qj(r − rj)

|r − rj |3
(7)

E(r) =
1

4πǫ0

∫

S

(r − r′)σ(r′)

|r − r′|3
dS′. (8)

Ex. q at the origin O gives rise to the electric field E(r)

E =
1

4πǫ0

q

r2
r̂, r̂ =

r

r
, r = |r|, |r̂| = 1. (9)

and q′, if placed at r, would experience a force (due to this field),

F(r) = q′E(r) =
1

4πǫ0

q q′

r2
r̂. (10)

1.2 Electric current

The ancient Greeks were well-aware too of magnetic material like lodestone, and of its effects.
However a modern view is that the magnetic field B(r) and related forces are due to charges in
motion, i.e. to electric currents. So we look next at the idea of electric current.

There are very many types of electric current flow. Here we confine ourselves to getting an
intuitive picture of current flow in a copper wire.

First we recall that an atom is an electrically neutral system with a central nuclei containing
Z protons with Z electrons moving around it ‘in orbits’ governed by the laws of quantum
mechanics.

We use a battery to apply an electric field to a length of copper wire (or similarly to some
suitable piece of crystalline material capable of conducting an electric current). Then some of
the electrons of the copper atoms of the wire are detached from the atoms, leaving them as pos-
itively charged ions. These ions are held in position by the mechanical forces that describe the
constitution of the material, and the detached electrons are moved like a gas, by the applied elec-
tric field, through the essentially fixed ionic background. In other words the detached electrons
(called conduction electrons) constitute an electric current flowing in the wire (material).

Suppose we have a distribution of charge carriers, here electrons of charge q, N per unit
volume, whose average motion is a drift velocity v.

This distribution has charge density ρ = Nq, and constitutes electric current flow of current
density J = Nqv = ρv. To see that (or how) J describes the rate of flow of electric charge,
let δS be a small plane element of area, and let C be a cylinder of current flow of cross-section
δS with generators parallel to v of magnitude |v|. Then C has volume v.δS, contains charge
Nqv.δS = J.δS, and all of this charge flows across δS in unit time. Thus, writing δS = δSn,
we see that in the current flow of current density J, an amount of charge J.n crosses unit area
perpendicular to n in unit time.

The total charge per unit time passing through a surface S is called the electric current I
through S

I =

∫

S

J · ndS =

∫

S

J · dS, dS = ndS. (11)
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We comment here on the generic term flux: The flux f of a vector field v through a surface
S is defined by

f =

∫

S

v · dS. (12)

Here S can either be closed bounding a spatial volume V , so that f is the flux of v out of
S = ∂V , as in the Gauss theorem context of sec. 1.5 below, or else open and bounded by a
curve C = ∂S, as in the definition just given, (11), of current I as the flux of current density
through S, or through C. Physically what we have seen is that I measures the rate of flow of
charge through S.

1.3 Magnetism

Magnetic fields B(r) arise from bar magnets, or from electric currents in wires, coils, etc. If
a particle of charge q has position vector r and velocity v = ṙ, and moves in the presence of
electric and magnetic fields E(r) and B(r), it is an experimental fact that it experiences a force
(the Lorentz force)

F = Fe + Fm = q(E + v∧B), (13)

where E = E(r) and B = B(r).

Consider the effect of the field B of the bar magnet on the wire. The current in the wire
involves particles of charge q moving along the wire with velocity v. Each one feels a (magnetic)
force qv∧B which, for positive qv, tends to push them downwards. One can see such a wire
move downwards in experiment.

In a related experiment, one employs a fixed current carrying circuit connected to a battery
instead of the bar magnet. In this case the second circuit experiences a force of attraction
towards the first one due to the magnetic field of the first circuit. See Sec. 3.7.

One can also give the (magnetic) force per unit volume on a medium carrying N charges q
per unit volume each moving with velocity v

f = Nqv∧B = J∧B. (14)

1.4 Maxwell’s Equations

It was the great achievement of Maxwell to unify the separate subjects electricity and magnetism
into a single consistent formalism involving a set of equations (Maxwell’s equations) capable of
describing all classical electromagnetic phenomena. For charges and currents in a non-polarisable
and non-magnetisable medium, such as the vacuum, these are

∇∧E +
∂B

∂t
= 0 (15)

∇ · B = 0 (16)

∇ · E =
1

ǫ0

ρ (17)

∇∧B = µ0(J + ǫ0

∂E

∂t
) (18)

3
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where ρ and J are the charge and current densities.
These equations involve two constants ǫ0 and µ0 that are not themselves of much physical

significance (but see (46) below). The last term of (18) features the displacement current pos-
tulated by Maxwell in order to achieve a formalism that consistently unified previous theories
of electricity and magnetism.

Certain more general media can be described by means of a suitable generalisation of the
set (15–18) of Maxwell’s equations, but this lies beyond the present course syllabus.

First we observe the consistency of Maxwell’s equations. Since ∇ · (∇∧F) = 0 for all vector
fields F, (15-16) imply

∂

∂t
(∇ ·B) = ∇ · (−∇∧E) = 0. (19)

So ∇ · B = 0 is preserved in time.
Similarly ∇ · (...) of (18) implies

0 = ∇ · J + ǫ0

∂

∂t
(∇ · E)

0 = ∇ · J +
∂ρ

∂t
. (20)

Here (17) has been used. Eq. (20) expresses the conservation of charge. Integrating (20) over a
fixed volume V containing total charge Q

Q =

∫

V

ρdτ, (21)

we derive
dQ

dt
=

∫

V

∂ρ

∂t
dτ = −

∫

V

∇ · Jdτ = −

∫

∂V

J · dS, (22)

which states that the rate of decrease of the charge contained in V is equal to the flux of J out
of V (through the surface S = ∂V ). It is noted that the presence of the displacement term in
(18) is essential in this demonstration of consistency.

1.5 Integral forms of Maxwell’s equations

Maxwell’s equations involve divs and curls. We can therefore convert them into useful integral
forms by integrating over fixed volumes using the divergence theorem, or over fixed surfaces
using Stokes’s theorem.

ρ

ǫ0

= ∇ ·E ⇒
1

ǫ0

∫

V

ρdτ =

∫

V

∇ · Edτ (23)

Hence
1

ǫ0

Q =

∫

S=∂V

E · dS. (24)

The right-hand side is the flux of E out of V . The statement (24) is Gauss’s Law. It is of
practical use.
Ex. Consider a point charge q at rest at O, and let V be the sphere of radius r centred at O.
By symmetry the electric field must be of the form

E(r) = E(r)er = E(r)n, (25)

so that
∫

∂V

E · dS =

∫

∂V

E · ndS = E(r)

∫

∂V

dS, (26)

and hence

1

ǫ0

q = E(r) 4πr2

E =
q

4πǫ0

1

r2
er. (27)
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Similarly (16) implies that
∫

∂V

B · dS = 0, (28)

for any closed surface S = ∂V . This can be interpreted as the statement that there are no
magnetic ‘charges’ or magnetic monopoles.

Next (17) yields

∫

S

∇∧B · dS = µ0

∫

S

J · dS + µ0ǫ0

∫

S

∂E

∂t
· dS. (29)

Hence, in the case of steady current (no time dependence), Stokes’s theorem implies

∫

C

B · dr = µ0

∫

S

J · dS

= µ0 ( flux of J through open S bounded by C)

= µ0I, (30)

where I =
∫

S
J ·dS is the total current through S (or C). This is Ampère’s Law. It too is useful

in practice.
Ex. Consider an infinite straight wire lying along the z-axis and carrying a current I in the
positive direction.

By symmetry, expect B of the form B = B(s)eφ using cylindrical polars (s, φ, z). Then
apply Ampère for C any circle centred on the z-axis and lying in a horizontal plane. On C we
have

r = ses(φ) so that, at constant s, dr = sdes = s
∂es

∂φ
dφ = seφdφ. (31)

Then Ampère’s law implies

B(s)s

∫

2π

0

dφ = µ0I (32)

and hence

B(s) =
µ0I

2πs
. (33)

Finally (15) implies

∫

C

E · dr =

∫

S

∇∧E · dS = −

∫

S

∂B

∂t
· dS = −

d

dt

∫

S

B · dS, (34)

by applying Stokes’s theorem to a fixed curve C = ∂S bounding a fixed open surface S. If we
define the electromotive force (or electromotance) acting in C by

E =

∫

C

E · dr, (35)

and the flux of B through (the open surface) S by

Φ =

∫

S

B · dS, (36)

5
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then we get Faraday’s Law of induction

E = −
dΦ

dt
. (37)

This will be studied later.

1.6 Electromagnetic waves

Here we consider Maxwell’s equations in the absence of charges and of currents, e.g. in the
vacuum.

∇∧E +
∂B

∂t
= 0 (38)

∇ · B = 0 (39)

∇ · E = 0 (40)

∇∧B = ǫ0µ0

∂E

∂t
. (41)

Take ∇∧ (...) of (38) and use

∇∧ (∇∧E) = ∇(∇ · E) −∇2E, (42)

where the first term is zero by (40), and ∇2 = ∇ · ∇. Then we have

∇2E = ∇∧
∂B

∂t
=

∂

∂t
(∇∧B) = ǫ0µ0

∂2E

∂t2
. (43)

Thus each (Cartesian) component of E satisfies a wave equation

(∇2 −
1

c2

∂2

∂t2
)E = 0, (44)

where the wave speed c is given by

c2 =
1

ǫ0µ0

. (45)

Check that (39) and (41) can be used similarly to show that each component of B satisfies
the same wave equation. In other words, each of E(r) and B(r) are propagated as waves of
speed c.

The values of the quantities ǫ00 and µ0 appropriate to SI units are fixed by experiment, and
these values indicate that

c = 3 × 108m/s = the speed of light. (46)

Maxwell’s equations with the crucial displacement current term, necessary for consistency,
can describe electromagnetic wave phenomena across its entire frequency spectrum: see the
Table. For waves of frequency ν, measured in hertz, and wavelength λ, measured in metres,
c = λν. Also, in quantum theory, the energy of a quantum of given frequency ν is E = hν,
where h is Planck’s constant. (One hertz equals one cycle per second).

Frequency spectrum

radiation ν λ radiation ν λ

γ 1019 10−11 infra-red 1014 10−6

X-rays 1018 10−10 µ-wave 1013 10−5

ultra-violet 1016 10−8 mm 1011 10−3

visible light 1015 10−7 radio 106 102

6
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1.7 Discontinuity formulas

Here we collect, for easy reference but without discussion at this stage a class of formulas that
logically belong together but whose occurrences are scattered throughout several sections of the
course material.

Let S be a surface with unit normal n which separates regions V± of space, with n pointing
from S into V+.

a). Let S carry charge density σ per unit area. Let E± denote the electric fields just inside
the V± sides of S. Then

n · E|+− =
1

ǫ0

σ (47)

n∧E|+− = 0. (48)

Eq. (47) is proved on the basis of Gauss’s theorem in Sec. 2.2. Note eqs. (47) and (48)
respectively involve the components of E normal and tangential (n · n∧E = 0)to the surface S.

b). Let S carry current density s per unit length (charge crossing unit length in S in unit
time). Let B± denote the magnetic fields just inside the V± sides of S.

n · B|+− = 0 (49)

n∧B|+− = µ0s. (50)

Eq. (49) is proved in the same way as used for (47). Eq. (50) is a consequence of Stokes’s
theorem, as is (48). A special case of (50) occurs in Sec. 3.3

The correspondence between Maxwell’s equations and the discontinuity formulas is clear:

drop
∂

∂t
terms, and replace ∇(...) by n(...)|+−. Thus, from (20), we expect that n · J|+− = 0 at a

surface of discontinuity, one that may carry surface density of charge.

Force per unit area on S

In case (a), consider only the special case when E± only have normal components n·E± = E±.
Then the force per unit area on a surface S (carrying surface charge σ) has magnitude

1

2
σ(E+ + E−). (51)

In case (b), consider only the special case in which B± only have tangential components B±.
Then the force per unit area on a surface S (carrying surface current s) is normal to S, and has
magnitude

1

2
s(B+ + B−). (52)

We do not prove the results (51) and (52); the most convenient method of proof lies outside the
scope of this course.

2 Electrostatics

2.1 Electrostatic potential

Electrostatics is the study of time independent electromagnetic phenomena in the absence of
currents and magnetic fields. Then Maxwell’s equations are

∇∧E = 0 (53)

∇ · E =
1

ǫ0

ρ. (54)

7
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Eq. (53) can be satisfied by defining the (electrostatic) potential φ by means of

E = −∇φ, (55)

so that (54) yields Poisson’s equation

∇
2φ = −

1

ǫ0

ρ. (56)

In this way the study of electrostatics is reduced to the study of a single equation – Poisson’s
equation. In regions of space where there is no electric charge ρ = 0, this reduces to Laplace’s
equation

∇
2φ = 0. (57)

φ is defined by (55) only to within an additive constant. Usually one choses this constant
in such a way that φ(r) −→ 0 as r = |r| −→ ∞. For the point charge q at O, the electric field
given by (9) reads

E(r) =
q

4πǫ0r2
er = −

∂φ

∂r
er, er =

r

r
, (58)

and an integration (with constant zero) gives

φ(r) =
q

4πǫ0r
. (59)

Since Poisson’s equation is a linear equation for φ, the ‘superposition principle’ applies and
tells us that any linear combination (superposition) of solutions is again a solution. A first
example of this is

The electric dipole

Consider a system of two point charges ±q, −q at O and +q at d. The superposition principle
implies that

4πǫ0φ(r) = q(−
1

r
+

1

|r − d|
). (60)

For all such examples the easiest method of expansion involves the vector statement of Taylor’s
theorem:

f(r + h) = f(r) + h · ∇f(r) +
1

2
(h · ∇)2f(r) + . . . . (61)

Here
1

|r − d|
=

1

r
− d · ∇

1

r
+

1

2
(d · ∇)2

1

r
+ . . . . (62)

So for d = |d| small we have

4πǫ0φ = −qd · ∇
1

r
. (63)

The electric dipole arises by taking the limits q → ∞, d → 0 in such a way that qd remains
constant, at a finite value qd = p. Then p = qd defines the dipole moment of the electrical
dipole, and its potential is given by

4πǫ0φ = −p · ∇
1

r
=

p · r

r3
=

p · er

r2
. (64)

Taking d = dk = (0, 0, 1) in the z-direction, then, working initially in Cartesians so that

p · ∇ = p
∂

∂z
, we find that (64) gives us

4πǫ0φ = −p
∂

∂z

1

r
= −p(−

1

r2

z

r
) =

pz

r3
=

p cos θ

r2
. (65)

8
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In the last step, we used spherical polars with z = r cos θ.

The electric quadrupole: not lectured

We can easily go further to the linear quadrupole with charges −q at ±d and 2q at the
origin, so that the system has zero total charge and also zero dipole moment. (It looks like a
pair of dipoles pointing in oppposite directions.)

4πǫ0

q
φ =

2

r
−

1

|r + d|
−

1

|r − d|

=
2

r
− [

1

r
+ d · ∇

1

r
+

1

2
(d · ∇)2

1

r
] − [

1

r
− d · ∇

1

r
+

1

2
(d · ∇)2

1

r
]

= −(d · ∇)2
1

r
. (66)

Note that this approach gets the cancellation of unwanted terms to happen ahead of their
evaluation. Hence

4πǫ0φ = −q(d · ∇)2
1

r
= −qd2 ∂2

∂z2

1

r
= −qd2 ∂

∂z
(−

z

r3
) = qd2(

1

r3
−

3z2

r5
). (67)

In spherical polars the quadrupole potential is

4πǫ0φ = qd2 1 − 3 cos2 θ

r3
. (68)

We note that the point charge, electric dipole and quadrupole potentials go to zero as r goes to
infinity respectively like 1

r
, 1

r2 , 1

r3 .

The general charge distribution D

Suppose D has electric charge density ρ non-zero only throughout some finite subset V̂ ⊂
V =all space. To find the potential due to D, we view it as linear superposition of contributions
due to ‘elementary charges’ ρ(r′) dτ ′ throughout V̂ . Then the superposition principle gives

φ(r) =
1

4πǫ0

∫

V

ρ(r′)dτ ′

|r − r′|
. (69)

Since

∇
1

|r − a|
= −

r − a

|r− a|3
, r 6= a (70)

we get

−∇φ(r) =
1

4πǫ0

∫

V

(−∇
1

|r − r′|
)ρ(r′)dτ ′ =

1

4πǫ0

∫

V

(r − r′)ρ(r′)dτ ′

|r − r′|3
= E(r), (71)

consistently with (6) of chapter 1, at least for r 6∈ V̂ . We do not have time to provide the proof,
by standard methods in vector calculus, that (69) satisfies Poisson’s equation for all r ∈ V .

Large distance behaviour of (69)

Taking an origin near to or within V̂ , we want to find how the potential due to D behaves
at large distances r. We will follow the same procedure as above, using Taylor’s theorem (61).
We find

φ(r) =
1

4πǫ0

∫

V

(

1

r
− r′ · ∇

1

r
+

1

2
(r′ · ∇)2

1

r
. . .

)

ρ(r′)dτ ′. (72)

The leading term of 4πǫ0φ (going like 1

r
) is the total charge term, namely

Q

r
, Q =

∫

V

ρ(r′)dτ ′, (73)

9
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unless Q = 0. In the latter case the leading term (going like 1

r2 ) is the dipole term

−

(
∫

V

r′ρ(r′)dτ ′

)

· ∇
1

r
= −P · ∇

1

r
, (74)

where the dipole moment of the distribution is

P =

∫

V

r′ρ(r′)dτ ′, (75)

unless of course P = 0, in which case the leading term is a quadrupole type term which goes
like 1

r3 . . . .

Uniqueness

Suppose we are given a charge distribution ρ(r) throughout a fixed spatial volume V , then
Poisson’s equation in V has a unique solution provided that, on S = ∂V , either

(i) (Dirichlet boundary conditions) φ(r) is specified for all r ∈ S,

or

(ii) (Neumann boundary conditions)
∂φ

∂n
= n · ∇φ(r) = −n · E(r) is specified for all r ∈ S.

We will see soon that the latter option corresponds to specifying the surface density of charge
on S.

For the case of D above, with a choice of origin near V̂ , it follows that (69) is the unique
solution of Poisson’s equation which satisfies the (Dirichlet) boundary condition that φ → 0 as
r → ∞.

Field lines and equipotentials

We mention a way of gaining some insight into the nature of the electric field surrounding a
system of charges.

One draws the field lines of E for the system. A field line here is a line at each of whose
points E is tangent to the line.

Also one draws on the same diagram the equipotentials of the system. These are surfaces
φ =constant. As E = −∇φ, and ∇φ is everywhere normal to such surfaces, it follows that the
field lines cut the equipotentials at right angles.

2.2 Gauss’s theorem and the calculation of electric fields

In Sec. 1.5 we proved Gauss’s theorem

1

ǫ0

Q =

∫

S

E · dS, (76)

where

Q =

∫

V

ρdτ, (77)

10
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is the total charge contained in the spatial volume V , ∂V = S. We now apply it to the calculation
of the electric fields of simple systems of charge.

a) The point charge q at the origin has been treated in Sec 1.1.

b) Line charge lying along the z-axis with uniform (line) density of charge η (Coulombs) per
unit length. Let S be the closed surface of a right circular cylinder of unit length coaxial with
the line charge. By symmetry, it is clear that E is radial, so E · n = 0 on the ends of S. In fact
E(r) = E(s)es where s and es are the radial coordinate of cylindrical polars and its associated
unit vector. Thus Gauss gives

E 2πs =
1

ǫ0

η, E(s) =
η

2πǫ0

1

s
es. (78)

This corresponds to a potential given by

2πǫ0φ = −η log
s

s0

. (79)

In this example, φ(s) does not go to zero as s → ∞, so we were forced to demand that φ = 0
for some fixed but arbitrary value s0 of s.

To check that (79) is correct, use

−∇φ = −es
∂φ

∂s
(80)

c) Plane sheet P occupying the plane z = 0, carrying uniform charge density σ per unit area.
Here we use the ‘Gaussian pillbox’: a cylinder of cross-sectional area A, with axis k = (0, 0, 1),

with plane ends at z = h and z = −h. By symmetry E is perpendicular to P . Above P we have
E = Ek and below E = −Ek for some E = E(h). This time E · dS is zero on the curved sides
of the pill-box, and Gauss gives

EA − (−E)A =
σ A

ǫ0

, E =
1

2ǫ0

σ, independent of h. (81)

d) Parallel plane sheets in the planes z = 0 and z = a, carrying uniform distributions of
charge respectively of charge with surface densities ±σ (Coulombs) per unit area. Using the
result of c) twice and the principle of superposition, we find that

E =
σ

ǫ0

k, k = (0, 0, 1), (82)

in the spatial region between the plates and zero outside.
Writing E = −∂φ

∂z
k, we get φ = φ0 −

σ
ǫ0

z, where φ0 is the potential of the z = 0 sheet. If the
z = a sheet has potential φa, then the potential difference between the sheets is φ0 − φa = σ

ǫ0
a.

11
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e) Spherical shell, centre at O, radius r′, uniform charge density σ per unit area, and thus
total charge Q = 4πr′2σ. By symmetry, as for a point charge at O, we have E = E(r)er.

To apply Gauss’s theorem, take spheres of radius r, concentric with the shell. Let these have
surfaces S1 and S2, in the cases (i) r > r′ and (ii) r < r′

In case (i):

∫

S1

E · dS =

∫

S1

E(r)er · erdS =
1

ǫ0

Q

4πr2E(r) =
1

ǫ0

Q, E(r) =
σ

ǫ0

r′2

r2
. (83)

For case (ii), we have E(r) = 0, since there is no charge in the volume V2.
It is to be noted that the result (78) is the same (for r > r′) as applies to a point charge Q

situated at the origin.
Check that E = E · er, the normal component of E, has discontinuity 1

ǫ0
σ at r = r′.

f) Sphere of radius R carrying uniform charge of density ρ (Coulombs) per unit volume, and
thus total charge Q = 4π

3
R3ρ.

For r > R by superposition of shells and the result of e), we learn that the potential is the
same as it would be if we had a point charge Q at the origin.

E(r) = E1(r)er, E1(r) =
Q

4πǫ0

1

r2
. (84)

For r < R, applying Gauss to a sphere S2 centre the origin of radius r, only the charge inside
S2 is relevant, and we have

E(r) = E2(r)er, E2(r) 4πr2 =
1

ǫ0

ρ
4π

3
r3, (85)

so that inside the charge distribution

E2(r) =
Qr

4πǫ0R3
. (86)

We have obtained (86) by direct application of Gauss, but we could otherwise have found it
from e) by a suitable application of the superposition principle.

Note that E(r), the normal (and here only) component of E, is continuous at r = R.

We can use E = −∇φ = −er
∂φ

∂r
to determine the potentials φ1 outside, and φ2 inside, the

charge distribution.

−
∂φ1

∂r
=

Q

4πǫ0

1

r2
⇒ φ1 =

Q

4πǫ0

1

r
+ A

−
∂φ2

∂r
=

Qr

4πǫ0R3
⇒ φ2 = −

Qr2

8πǫ0R3
+ B. (87)

Here A and B are constants of integration. Demanding that φ → 0 as r → ∞, we look at φ1

and require A = 0. To find B, we use the fact that φ is continuous at r = R. This leads to

φ2 =
Q

8πǫ0R3
(3R2 − r2). (88)

g) The discontinuity law at a surface carrying surface charge.
Suppose a surface S with normal n carrying charge of uniform charge density σ per unit

area, separates regions 1 and 2 of empty space, with n pointing into 2. Let E1 and E2 be the
electric fields in regions 1 and 2.

12
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Use Gauss with a Gaussian pillbox of very small height, and cross sectional area A, with
the end with normal n just inside 2 and the other end with normal −n, just inside 1. In fact
we take the height so small that the curved sides of the box contribute negligibly to the surface
integral of the theorem. Then

[n · E2 + (−n) · E1]A =
σA

ǫ0

, n ·E|+− =
1

ǫ0

σ, (89)

as stated in Sec. 1.7.
See that examples c), d), e), and f) conform to this, there being no surface charge present

in f).
Solutions of Laplace’s equations

In spherical polars (r, θ, φ), the general solution of Laplace’s equations with spherical sym-
metry (with no dependence on θ and φ) is

φ = a +
b

r
. (90)

Next we have solutions, like the dipole potential, ∝ cos θ,

φ = −Er cos θ +
c

r2
cos θ = φ1 + φ2. (91)

Here the first term gives an electric field E = −∇φ1 = −∂φ1

∂z
k = Ek of constant magnitude in

the z-direction.
In cylindrical polars (s, φ, z), the general solution of Laplace’s equations with cylindrical

symmetry is
φ = a + b ln s. (92)

2.3 Perfect conductors

In a perfect conductor any movable charges present are free to move within it under an applied
electric field without resistance. In electrostatics, we deal with situations in which all such
movable charges have reached positions of equilibrium. In particular there is no current flow,
the atoms of the material keep their conduction electrons and are neutral.

Consider then a perfect conductor C with surface S, with perfectly non-conducting empty
space (the vacuum) outside, to which some non-zero total charge has been supplied.

We shall see in Sec. 3.1 that inside C we must have E = 0, and hence ρ = 0. Thus it follows
that the charge supplied must reside on the surface S of C. Further E = En on S, else charges
would be able to move along S. Thus S is an equipotential of constant φ, since E = −∇φ is
normal to it. Also, because E = 0 inside S, φ is constant throughout the interior of C, with a
value equal to the surface equipotential value. Finally the charge σ per unit area on S follows
from g) of Sec. 2.2. This gives

1

ǫ0

σ = n · E|+− = n · E = E (93)

This uses the fact that E = 0 inside C, (i.e. on the minus side of the surface S of C).

The Force on a charged conductor

We do not have time to give a proof, but note the force per unit area exerted on the surface
of a perfect conductor carrying charge per unit area σ is given by

F =
1

2ǫ0

σ2. (94)

This is a special case of the result (51) of Sec. 1.7.

13
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2.4 Electrostatic energy

The potential energy (PE) of a point charge q at r in an electric field of potential φ(r) is the
work that must be done on q to bring it from infinity (where φ = 0) to r

PE = qφ(r) = −

∫ r

∞

F · dr, F = qE. (95)

Consider a system of point charges qi, i = 1, 2, . . . , n, bringing them from infinity to their final
positions in order, doing work

on q1; W1 = 0

on q2; W2 =
q2

4πǫ0

q1

r12

on q3; W3 =
q3

4πǫ0

(
q1

r13

+
q2

r23

)

on qi; Wi =
qi

4πǫ0

∑

j<i

qj

rji

W =
n

∑

i=1

Wi =
1

2

n
∑

i=1

∑

j 6=i

1

4πǫ0

qi qj

rij
. (96)

Here rij = ri − rj , rij = |rij |, and
∑n

i=1

∑

j<i = 1

2

∑n
i=1

∑

j 6=i. Thus W by construction gives
the electrostatic energy of the system.

But the potential at qi due to all the other charges is

φi =
1

4πǫ0

∑

j 6=i

qj

rij
, (97)

so that

W =
1

2

n
∑

i=1

qiφi. (98)

The corresponding result for a continuous distribution of charge of charge density ρ(r) in
volume V then is

W =
1

2

∫

V

ρ(r)φ(r)dτ

=
1

2

1

4πǫ0

∫

V

∫

V

ρ(r)ρ(r′)

|r − r′|
dτ dτ ′. (99)

If there are conductors Ci with charges Qi at potentials φi, then the contribution which they
make to W is given by

1

2

∑

i

∫

Si

σiφidSi =
1

2

∑

i

φi

∫

Si

σidSi =
1

2

∑

i

φiQi. (100)

(Recall that the potential is constant on a conductor).

Field energy in electrostatics

Given a charge distribution ρ(r′) distributed over a finite volume V̂ and a set of conductors
all in some finite region of space in which an origin is taken. Let V be all space bounded by a
sphere S at infinity, but excluding the interiors of the conductors.

Then

W =
1

2

∫

V

ρφdτ +
1

2

∑

i

Qiφi. (101)

14
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Use

ρφ = ǫ0φ∇ · E

= ǫ0[∇ · (φE) −E · ∇φ]

= ǫ0∇ · (φE) + ǫ0E
2. (102)

Then W is given by

1

2
ǫ0[

∫

V

E2dτ +

∫

S

φE · dS +
∑

i

∫

Ci

φE · dSi] +
1

2

∑

i

Qiφi. (103)

As φ = 0 on S (at infinity) the second term of (103) is zero. In the third term of (103), the
divergence theorem dictates that dSi = −ndSi points into Ci, and so, in this term, we have

−ǫ0

∫

Ci

φn · EdSi = −ǫ0φi

∫

Ci

n · EdSi = −φi

∫

Ci

σidSi = −φiQi. (104)

It follows that the third and the fourth terms of (103) cancel. And so, for the energy of the
electrostatic field, we have the important result

W =
1

2
ǫ0

∫

V

E2dτ. (105)

We note this involves an integral over all of V , including the regions unoccupied by charge,
whereas the first term of (101) is really an integral over the region V̂ ⊂ V occupied by charge.

2.5 Capacitors and capacitance

A pair of conductors carrying charges ±Q constitute a capacitor (or a condenser). Since their
potentials are proportional to Q, the same applies to their potential difference V = φ1 − φ2.

Therefore we define the capacitance C of the capacitor by

V =
1

C
Q. (106)

It turns out always to be a constant that depends on the configuration of the two conductors.

a) Parallel-plate capacitor.

The field lines are mainly straight lines perepndicular to the plates. We assume the distance
a between the plates is small on a scale set by the area A of the plates. Thus we may neglect ‘
edge effects’, so called because the electric field lines near to the edges of the plates bulge out
from between the plates.

¿From d) of Sec. 2.2, we know that E = Ek, E =
σ

ǫ0

between the plates, with E = 0

elsewhere. Here k = (0, 0, 1). Hence

−
dφ

dz
= E ⇒ φ = −Ez + c. (107)
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If φ = φ1 at z = 0, then c = φ1, and then φ = φ2 at z = a gives

φ2 = −Ea + φ1, and V = φ1 − φ2 = aE =
aσ

ǫ0

=
aQ

ǫ0A
. (108)

So

C =
Aǫ0

a
. (109)

The energy of the capacitor is given now by (98), so that

W =
1

2

∑

i

qiφi =
1

2
QV =

1

2

Q2

C
. (110)

But the energy can also be calculated from the field energy expression (105), which gives

W =
ǫ0

2

∫

E2dτ =
Aǫ0

2

∫ a

0

(
σ

ǫ0

)2dz =
σ2Aa

2ǫ0

=
1

2

Q2

C
. (111)

b) Concentric spheres S1 and S2 of radii a and b > a, carrying charges Q and −Q. Take
φ = 0 at r = b and φ = V at r = a. ¿From previous studies we know that for r ∈ {a ≤ r ≤ b}
(outside S1 and inside S2) we have

4πǫ0E = −4πǫ0

∂φ

∂r
=

Q

r2
, (112)

and

4πǫ0φ =
Q

r
−

Q

b
. (113)

Hence

4πǫ0V = Q(
1

a
−

1

b
) (114)

and

C =
4πǫ0a b

(b − a)
. (115)
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Mathematical Tripos 2004, Part IB : Electromagnetism, Lent 2004
Lecture notes by A.J.Macfarlane, DAMTP

Corrections or comments by email to A.J.Macfarlane@damtp.cam.ac.uk

3 Steady electric currents and magnetism

3.1 Steady current flow

Here we study steady current flow in conducting material. This is governed by Maxwell’s

equations without
∂

∂t
terms, so that we have

∇∧B = µ0J, ∇∧E = 0, (1)

together with the experimental law, valid for simple conductors, but not, for example, for non-
isotropic materials such as crystalline material,

J = σE, (2)

where σ is the conductivity of the material.

(Both conductivity and surface charge are normally denoted by the same symbol σ. We
seldom have contexts in which both arise.)

Note that (1) implies

∇ · J = 0. (3)

This agrees the continuity equation, eq. (20) of chapter one, as
∂ρ

∂t
= 0 applies here. Eq. (2)

also implies

∇ ·E = 0, (4)

and hence also ρ = 0 within the material. This makes sense in contexts such as current flowing
in copper wires in which electrons flow through a background of positively charge ions, so that
it is reasonable to suppose that ρ = 0 for the total charge density of the material, electrons plus
ions.

We have a remark here promised in Sec. 2.3 which talks about perfect conductors for which
the conductivity σ goes to infinity. In order for finite currents (|J| finite) to flow in such material,
it is necessary that |E| goes to zero, so that also ρ goes to zero.

In this section, we are concerned only with current flow. In later sections of this chapter, we
study the magnetic fields that arise from the (time-independent) flow of electric currents.

Consider steady current flow in regions of conducting material, outside of batteries.

This is governed by the equations

∇ · E = 0, ∇∧E = 0, (5)

together with the experimental law (2).

If we set E = −∇φ then the flow is governed by the single equation, Laplace’s equation,
plus (2), so that we can solve problems of steady current flow by finding φ,E,J in turn.

We might ask: can we obtain an understanding of the elementary form

V = IR (6)

of Ohm’s law, relating the potential difference across the ends of a conductor to the current that
flows within it?
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We do this here for a simple example; there are two others in Problem Set 2.

Uniform current enters the plate of uniform thickness δ shown in the diagram. In cylindrical
polars, (with polar angle called θ since φ is reserved here for the potential), we have the solution

φ = d − cθ, c, d constants, (7)

of Laplace’s equation, so that the potential difference (PD) between AB and CD is V = cα.
Hence

E = −
1

s

∂φ

∂θ
eθ =

c

s
eθ, (8)

and the lines of E and of J are arcs of circles centred on O, as shown. Also

J = σE =
σc

s
eθ =

σV

αs
eθ (9)

so that the total current entering at AB (which of course equals the current leaving at CD) is

I =

∫

AB
J · dS =

σV δ

α

∫ s2

s1

1

s
ds =

σV δ

α
ln

s2

s1

, (10)

where we used dS = eθdsδ , and (9). This is indeed of the form (6) of Ohm’s law, with

R =
α

σδ ln(s2/s1)
. (11)

So resistance is inversely proportional to conductivity σ, and, like capacitance, depends on the
geometry of the current flow set-up.

Generation of heat by steady current flow

Consider the tube of flow shown, i.e. the cylinder whose sides are lines of E and J and whose
ends are equipotentials. Current of density J enters at the end A where the potential is φA and
leaves at B where the potential is φB < φA. The potential difference is

V = φA − φB = −δr · ∇φ = δr E. (12)

In unit time charge JδS enters the tube at A in unit time and leaves at B. The work done on
this charge moving it through the potential difference V in unit time is

(JδS)V = (JδS)(Eδr) = JE(δS δr) = (J · E)δτ. (13)

This work done corresponds to the conversion of electrical energy into heat, i.e. to the loss of
electrical energy. The energy loss per unit time in volume τ , with surface S is

W =

∫

τ
J · Edτ = −

∫

τ
J · ∇φdτ. (14)

18
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We use
J · ∇φ = ∇ · (φJ) − φ(∇ · J), (15)

where the second term is zero owing to (3), and the first term allows us to apply the divergence
theorem to (14). We obtain

W = −

∫

S
φn · JdS, (16)

where n is the unit normal on S pointing out of τ .
Consider a conductor with current entering it and leaving it at ends S1 and S2, which are

equipotentials of potentials φ1 and φ2. Then, remembering that the n of (16) for S1 is the
negative of n1 in the diagram, we have from (16)

W = (φ1 − φ2)I, I =

∫

S1

n1 · JdS =

∫

S2

n2 · JdS

= V I, (17)

where V is the potential difference between the ends. Using the elementary form (6) of Ohm’s
law, we have shown that the energy generation per unit time in a conductor of resistance R
through which flows a current I is

W = RI2. (18)

This is a formula familiar from elementary studies for the energy dissipated in unit time as heat.

3.2 Magnetostatics

This deals with steady currents and the associated (time independent) magnetic fields. It is
governed by the equations

∇∧B = µ0 J, (⇒ ∇ · J = 0) (19)

∇ · B = 0. (20)

Eq. (20) is automatically satisfied when the vector potential A is introduced via

B = ∇∧A, (21)

since
∇ · (∇∧A) = ∂iǫijk∂jAk = ∇∧∇ ·A = 0. (22)

For given B however (21) does not determine A uniquely, because we can transform the
vector potential according to

A′ = A + ∇χ, (23)

where χ is an arbitrary scalar field. Since

∇∧A′ = ∇∧A + ∇∧∇χ = ∇∧A = B, (24)

the transformed vector potential serves our needs just as well as does A.
In fact we can make use of (23) to impose a simplifying condition on the vector potentials

we use in practice. Suppose we have found some A which yields the required B via (21), and is
such that ∇ · A = ψ, where ψ is a scalar field, calculable, as is obvious, from A. We shall pass
by means of (23) to a vector potential A′ such that

∇ · A′ = 0. (25)

This can always be done, since (25) implies

0 = ∇ · A + ∇
2χ

= ψ + ∇
2χ, (26)
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which is an equation of Poisson type for which a (particular integral) solution for χ in terms of
ψ can always be found.

In what follows, we therefore assume that we can deal with vector potentials A which obey

∇ · A = 0. (27)

[ Some language: Eq. (23) is called a gauge transformation, the condition (27) is called a
gauge condition, and the physical theory is said to be gauge-invariant, because it depends only
on B, and not on the gauge condition that has been used]

Return now to (19). Since

∇∧ (∇∧A) = ∇(∇ ·A) − ∇
2A, (28)

(19) reduces, with the aid crucially of our gauge condition (27), to

∇
2A = −µ0 J. (29)

In Cartesian coordinates this reads as

∇
2Ak = −µ0Jk (k = 1, 2, 3), (30)

which, for each k, is of Poisson type, so that as in electrostatics, we can write down the solution

Ak(r) =
µ0

4π

∫

V

Jk(r
′)

|r − r′|
dτ ′

A(r) =
µ0

4π

∫

V

J(r′)

|r − r′|
dτ ′. (31)

Since it is not obvious that the expression (31) for A satisfies (27), we ought to prove that
it does. When this is done, it follows that

B(r) = ∇∧A =
µ0

4π

∫

V

J(r′)∧ (r − r′)

|r − r′|3
dτ ′, (32)

satisfies (19). In calculating B, note that ∇∧ acts only on the r variable, found only in the
denominator factor of expression (31) for A, so that we may use eq. (64) of Sec. 2.1 to finish
the verification.

Consider a current of density J flowing in an element δr of a very thin wire of cross-sectional
area A. Then JδV = J (Aδr) = (JA) δr = Iδr. Neglecting the thickness of the wire, we can
write, for the vector-potential and the magnetic field due to a wire which carries a current I and
takes the form of a simple curve C, the expressions

A(r) =
µ0I

4π

∫

C

dr′

|r − r′|
(33)

B(r) = −
µ0I

4π

∫

C

(r − r′)∧dr′

|r − r′|3
. (34)

The results (32) and (34) for B are each often referred to the Biot-Savart law.

Proof that (31) satisfies (27).

∇ · A =
µ0

4π

∫

V
∇ ·

(

J(r′)

|r − r′|

)

dτ ′ (∇ acts on r and not on r′)

20



C
op

yr
ig

ht
 ©

 2
01

3 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

=
µ0

4π

∫

V
J(r′) · ∇

1

|r − r′|
dτ ′

= −
µ0

4π

∫

V
J(r′) · ∇′

1

|r − r′|
dτ ′

= −
µ0

4π

∫

V

[

∇
′ ·

(

1

|r − r′|
J(r′)

)

−
1

|r − r′|
∇

′ · J(r′)

]

dτ ′

= −
µ0

4π

∫

S

1

|r − r′|
n′ · J(r′)dS′. (35)

Here V is all space, but if we suppose that a physical current distribution occupies a finite
volume V̂ ⊂ V near the origin, then J(r′) = 0 on S and the proof is complete.

Note the use of a now well-known identity for ∇ · (φF) in the third line, ∇
′ ·J(r′) = 0 in the

fourth line, and finally the ubiquitous divergence theorem.

[ Care with ∇
2F for a vector field F may be needed. There is no problem in Cartesians,

and hence probably not in the material of this course:

(∇2F)k = (∂j∂j)Fk (36)

where ∇2 = ∂j∂j is the usual expression used in Laplace’s equation. In other coordinate systems,
where the unit basis vectors are themselves coordinate dependent, (∇2F)α, the component of
the vector ∇

2F along the unit vector eα, is no longer given by (∇2)Fα. The correct result
however follows from use of ∇

2F = −∇∧ (∇∧F)+∇(∇ ·F) where each of the two terms on the
right is calculable by two well-defined steps in any system of orthogonal curvilinear co-ordinates.
]

3.3 Magnetic fields of simple current distributions

To calculate these one may use Ampère’s law, the Biot-Savart law or perhaps first calculate A
from (31) or (33).

a) Infinite straight wire carrying current I

Take the z-axis along the wire, take O in the xy-plane throught the point P, and calculate
B at P, r = ~OP using Biot-Savart. Using cylindrical polars, (s, φ, z), we have

r = ses, r′ = z′k, dr′ = dz′k, |r − r′| = (s2 + z′2)1/2. (37)

Now −(r − r′)∧dr′ = s dz′eφ so that we have proved that B is everywhere in the direction of
eφ. Hence, from (34)

B =
µ0I

4π

∫

∞

−∞

s dz′

(s2 + z′2)3/2
eφ
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=
µ0I

4πs

∫ π/2

−π/2

cosα dα eφ, (z′ = s tan α)

=
µ0I

2πs
eφ. (38)

We got the same answer in Sec. 1.4, arguing there that B = B(s)eφ by ‘symmetry consid-
erations’.

b) Long solenoid

This is a continuous wire carrying current I wound round a very long right circular cylinder,
so long that end effects can be ignored. Assume there are N turns of wire per unit length, with
N large, wound in a spiral of very small pitch, so that we can regard the cylindrical surface as
carrying a surface current. Use cylindrical polars (r, φ, z), with z-axis at the axis of the cylinder.
Then s = NIeφ gives the current density, i.e. the current per unit length, measuring the charge
crossing unit length in unit time. Note that we called the radial coordinate of cylindrical
polars r here because the symbol s denotes the magnitude of the surface current.

Since |B| is clearly independent of both z and φ, we take B of the form

B = Bz(r)k, k = (0, 0, 1). (39)

This satisfies ∇.B = 0. Also ∇∧B = 0, which holds where there is no (volume) density of
current, implies

∂Bz

∂r
= 0, so that Bz = constant. (40)

(The cylindrical polar coordinate detail of each of these statements should be checked.)

Outside the cylinder this constant is zero, because |B| = 0 for infinite r. To find |B| inside
the cylinder use the rectangular contour C shown in the diagram on P21. Only the vertical line
inside the solenoid contributes to

∮

dr · B, so that Ampère leads to

Bz z = µ0NIz, Bz = µ0NI, B = µ0NIk. (41)

The answer obtained here illustrates the general discontinuity law given as eq. (50) of Sec.
1.7, and proved in Sec. 3.8

n∧B|+
−

= µ0 s, (42)

at a surface of discontinuity carrying a surface current density s per unit length. We have
n∧B|+ = 0, and

n∧B|
−

= (−)er∧ (µ0 NIk) = µ0 NIeφ = µ0s. (43)

c) Long cylindrical conductor

Consider current, flowing in a long right circular cylinder and distributed uniformly over its
circular cross-section, of area A = πa2, so that

J = Jk, πa2J = I, k = (0, 0, 1). (44)

Assume that magnetic fields can be calculated within the conducting material by the same
formulas as apply in the vacuum or free-space. This is a good approximation for good conductors,
which do have similar magnetic properties to free-space.

Use cylindrical polars (s, φ, z) with z-axis along the axis of the conductor. By symmetry
B = B(s)eφ, and we apply Ampère to horizontal circles centred on the z-axis for (i) s > a and
s < a.
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outside 2πsB = µ0I, B =
µ0I

2πs
(45)

inside 2πsB = µ0πs2J, B =
µ0Is

2πa2
=

µ0Is

2
. (46)

Note that outside the conductor the magnetic field is the same as for a very thin wire, as in
example a).

Note also that here there is no surface current, and hence we expect

n∧B|+
−

= 0. (47)

Here n∧B = es∧B(s)eφ = B(s)k and continuity of the tangential component of B at s = a
follows (45) and (46).

3.4 The large distance expansion of the vector potential

Consider the formula (31) for the vector potential in the situation in which the distribution of
current density is confined to a subset V̂ ⊂ V =allspace. Chose the origin near to it. Then a
long calculation based on Taylor’s theorem yields the following leading large r approximation
to A(r):

A(r) =
µ0

4π

1

r3
m∧r, (48)

where the magnetic dipole moment of the current distribution is defined by

m =
1

2

∫

V
r∧J(r)dτ. (49)

We consider in detail only the following case.

3.5 The current loop

Here we look at the vector potential A (33) of a current loop, i.e. a wire of negligible cross-
section shaped in the form of a closed contour C, carrying a current I. For simplicity, let C
define a plane loop of area S = Sn of unit normal n.

Chose an origin near the loop and seek the vector potential of its magnetic field, at distances
large on a scale set by the physical dimensions of the loop. (Or, consider A(r) due to a small
loop.)

Let S be a surface such that ∂S = C. Let c be an arbitrary constant vector, and work on
c ·A

c ·A =
µ0I

4π

∮

C

1

|r − r′|
c · dr′

=
µ0I

4π

∫

S
n′ · ∇′

∧ (
1

|r − r′|
c) dS′ (Stokes)

=
µ0I

4π

[
∫

S
dS′

∧∇
′

1

|r − r′|

]

· c. (50)

Hence

A(r) =
µ0I

4π

∫

S
dS′

∧∇
′

1

|r − r′|
=

µ0I

4π

∫

S
dS′

∧

(

r − r′

|r − r′|3

)

. (51)

Here, in order to get the leading large r approximation, to A(r), we simply drop all dependence
on r′ from the integrand of (51). So we have

A(r) =
µ0

4π

1

r3

[

I

∫

S
dS′

]

∧r =
µ0

4π

1

r3
m∧r, (52)
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where we have defined the magnetic dipole moment of the current loop by

m = I

∫

S
dS = ISn. (53)

We have reached a result which agrees exactly with (48). To see this recall the usual con-
version

∫

V (. . .)J(r) dτ →
∫

C(. . .)Idr. Then (49) gives

m =
1

2
I

∫

C
r∧dr = ISn, (54)

upon use of result of example 6 of the vector calculus revision sheet.
We have obtained a result crucial to the understanding of magnetism at all levels: a small

current loop gives, via (54), a physical realisation of a magnetic moment.

3.6 Dipole view of m

We now show why, in the previous section, we referred to m as a magnetic dipole moment.
At points where there is no charge density J = 0, the magnetic field B obeys

∇∧B = 0. (55)

At such points, we can introduce a magnetic scalar potential Ω via

B = −∇Ω. (56)

As ∇ ·B = 0, we have, as in electrostatics,

∇2Ω = 0, (57)

Laplace’s equation, of which we know various solutions. The one of relevance here is the analogue
of the one for the potential of the electric dipole of moment p given as (58) of Sec. 2.1, namely

Ω = −
µ0

4π
m · ∇

1

r
. (58)

¿From this, we can calculate B using (56), and caste the result into the form B = ∇∧A, where
A is given by (52).

[ Given the vector potential (52), we calculate the magnetic field B. First evaluate

∇∧ (
m∧r

r3
) = −∇∧ (m∧∇

1

r
) = −∇∧ (m∧v), (59)

with a temporary abbreviation v = ∇
1

r . Second

[∇∧ (m∧v)]k = ǫkij∂iǫjpqmpvq = (δkpδiq − δkqδip)∂impvq

= ∂imkvi − ∂imivk = mk∇ · v − m · ∇vk

= [m ∇
2 1

r − (m · ∇)∇1

r ]k. (60)

Since we are dealing with non-zero (actually large) r, we can certainly use ∇
2 1

r = 0, so that

B(r) =
µ0

4π
(m · ∇)∇

1

r
=

µ0

4π
∇(m · ∇)

1

r
= −∇

[

−
µ0

4π
(m · ∇)

1

r

]

= −∇Ω, (61)

where Ω is the scalar potential (56). ]

We have found a certain analogy between the magnetic dipole moment m that determines
the leading large r behaviour of the vector potential A(r) of a current distribution localised near
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the origin of space, and the electric dipole. Since the ‘dipole term’ gives the leading contribution
to A(r), this underlines the fact that magnetism has no analogue of the point charge: as far as
is known at present magnetic monopoles do not exist. But the small current loop provides a
physical realisation of a magnetic dipole.

[ A brief informal aside

If one considers atoms which possess spin about some axis, one can see roughly that the
motion of their electrons approximate to current loops with moments parallel to this axis. If
the spin axes of all the atoms, in some material made up of such atoms, can be made to line up
parallel, then the material acquires a macroscopic magnetic moment. This offers a little insight
into the origin of permanent or (ferro-)magnetism. ]

3.7 Forces and couples

¿From (17) of Sec. 1.3, we find that the force, felt by an element of volume δV of medium in
which the current density is J(r), because of a given magnetic field B(r) is

δF(r) = [J(r)δV ] ∧B(r) or

= Iδr ∧B(r). (62)

for an element δr of thin conducting wire carrying current I.

For a loop C1, carrying current I1, in a given field B, the total force and couple felt are

F =

∮

C1

I1dr1 ∧B(r1) (63)

G =

∮

C1

r1∧ [I1dr1 ∧B(r1)] . (64)

It can be shown (see problem set 2) that, for C1 a current loop of moment m = ISn in a uniform
magnetic field,

F = 0, G = m∧B. (65)

If B2(r) is the field due to a current loop C2 carrying current I2

B2(r) =
µ0

4π

∮

C2

I2dr2∧ (r − r2)

|r − r2|3
, (66)

then the force F12, exerted on loop C1 by (the magnetic field due to the current in) the loop
C2, is

F12 =

∮

C1

I1dr1 ∧B2(r1) =
µ0

4π
I1I2

∮

C1

∮

C2

dr1∧ (dr2∧
r1 − r2

|r1 − r2|3
). (67)

It is not obvious, but true, that (67) is compatible with Newton’s third law. Proof, which
requires the application of Stokes’s theorem, is asked for in Problem set 2.

Example: parallel wires

Suppose C1,2 are infinite wires carrying currents I1,2, the former along the x-axis, the latter
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parallel to it and through (0, 0, a). Use Cartesian coordinates.

Consider the element I1dr1 = I1 dxi at the origin. The force exerted on it by C2 is

dF1 = I1 dxi∧B2(0), B2(0) =
µ0I2

2πa
j

=
µ0

2πa
I1I2kdx. (68)

This uses the result (38) derived in example a) of Sec. 3.3. It follows that the force per unit
length felt by C1 due to C2 is

F =
µ0

2πa
I1I2k. (69)

This is a force of attraction for I1, I2 of the same sign.

3.8 Proof of (42)

Let S be a surface with unit normal n which separates regions V± of space, with n pointing
from S into V+. Let B± be the magnetic fields in V±, and let current s per unit length flow in
S.

Consider an area A of S sufficiently small to be considered plane. Apply Ampére’s law

∫

C
B.dr = µ0I (70)

to the plane needle shaped contour C shown, in the limit δ → 0 for finite (small) l. l should
be small enough for variation of B± and s across it, but non-zero. Also the plane of the needle
C contains n, but its orientation, i.e. the direction of the normal b, |b| = 1 to the plane,
is arbitrary. The direction t, |t| = 1 of the needle is then chosen so that b, t,n form an
orthonormal right-handed triad. We get

(−B+ + B−).tl = µ0s.bl

(−B+ + B−).n∧b = µ0s.b

[(−B+ + B−)∧n − µ0s] .b = 0. (71)

Since b was taken to be in an arbitrary direction in S it follows that

n∧B|+
−

= µ0s. (72)
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Mathematical Tripos 2004, Part IB : Electromagnetism, Lent 2004
Lecture notes by A.J.Macfarlane, DAMTP

Corrections or comments by email to A.J.Macfarlane@damtp.cam.ac.uk

4 Electromagnetic induction

Recall the paragraph from Sec. 1.5, repeated here: The Maxwell equation

∇∧E +
∂B

∂t
= 0 (1)

implies
∫

C

E · dr =

∫

S

∇∧E · dS = −

∫

S

∂B

∂t
· dS = −

d

dt

∫

S

B · dS, (2)

by applying Stokes’s theorem to a fixed curve C = ∂S bounding a fixed open surface S. If we
define the electromotive force (or electromotance) acting in C by

E =

∫

C

E · dr, (3)

and the flux of B through (the open) surface S by

Φ =

∫

S

B · dS, (4)

then we get Faraday’s Law of induction

E = −
dΦ

dt
. (5)

This will be studied now.

In chapter two we studied electric fields E such that

∇∧E = 0,

∫

C

E · dr = 0, (6)

called conservative, since, in virtue of ∇∧E = 0, there exists the electrostatic potential φ such
that E = −∇φ. In chapter two it was assumed implicitly that there were no magnetic fields in
the discussion, but it could equally have been assumed that we were dealing with non-conducting
material (e.g. the vacuum or free space) and time-independent magnetic fields, since the latter
would then be entirely uncoupled from the electrostatics.

Here we study time-dependent magnetic fields and the the non-conservative electric fields
that accompany them. The latter may give rise to non-zero electromotive forces (or electro-
motances, or EMFs for short), and hence cause current flow.

We first make this study in the (pre-Maxwellian) approximation to the full Maxwell theory,
in which

∇∧E +
∂B

∂t
= 0, ∇∧B = µ0J. (7)

In other words, we neglect the displacement current, even though it was seen in Sec. 1.4 to be an
essential ingredient of a consistent theory. It can be shown however that this is justified in the
practically significant context in which there are alternating currents of low enough frequency
flowing in media of high enough conductivity.

We look first at simple situations wherein it can be seen how time-dependent magnetic fields
can produce non-zero EMFs and cause current flow.
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4.1 Simple examples

If we talk about a bar magnet, we mean a piece of material in which the atomic spins, essentially
small current loops, are all lined up, to produce a macroscopic magnetic moment, as in the left
hand diagram.

A bar magnet moved relative to a fixed circuit, with a galvanometer, causes a current to flow
in the circuit, as motion of the galvanometer needle indicates. There is current flow iff there bar
magnet moves.

Suppose the bar magnet in this context is replaced by a second circuit, with a battery, and
a current flowing, and with a movable part. Iff there is motion of the latter relative to the first
circuit, then will the galvanometer record a current flow. (The magnetic field of the current in
the first circuit does the business just as well as did the bar magnet.)

The permanent magnet set-up in the diagram produces magnetic fields in the curved slots in
which the loop of a circuit can rotate. If the loop is made to rotate steadily, then an alternating
current flows in the circuit. This is the principle of the (AC) generator.

The same set-up can be used to illustrate the principle of the electric motor. Across each
slot there is a north and a south pole. Suppose the coil is lying with one side in each slot. When
a current is passed through the coil, it flows in opposite directions on the two sides, so these feel
equal and opposite forces. In other words a couple is being applied to the coil. If the shaft of
the coil is free to rotate, the system can be coupled to pulleys or gears and do work.

4.2 Faraday’s law of induction

Let C be either
(a) a fixed closed geometrical curve, or

(b) a physical, possibly moving circuit.
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Let S be a surface bounded by C = ∂S.
Define the flux, of a possibly time-dependent magnetic field B, through S by

Φ =

∫

S

B · dS. (8)

Then Faraday’s experimental law, valid in both the contexts (a) and (b), with an appropriate
definition in each case of the EMF E in C, is

E = −
dΦ

dt
. (9)

In case (a)

E =

∫

C

E · dr =

∫

S

∇∧E · dS (10)

and
dΦ

dt
=

d

dt

∫

S

B · dS =

∫

S

∂B

∂t
· dS. (11)

Consistency of (9 –11) is now assured by means of the Maxwell equation (1), assumed true in
general.

For case (b), consider the case of a physical circuit moving with velocity v, possibly dependent
on position and time, but v ≪ c, in a time-dependent magnetic field B.

The force on a particle of charge q moving with velocity v in the magnetic field B, and
therefore also in its accompanying electric field E, is given by eq. (16) of Sec. 1.3:

F = q(E + v∧B). (12)

Hence we define the electromotance or EMF in C as

E =
1

q

∮

C

F · dr =

∮

C

(E + v∧B) · dr. (13)

We must show that, in context (b), (9) and (13) are compatible with the Maxwell equation
(1).

To achieve this, we set out from an expression for
dΦ

dt

dΦ

dt
= lim

δt→0

[

1

δt

(
∫

S′

B(r′, t + δt) · dS′ −

∫

S

B(r, t) · dS

)]

. (14)

Then we apply the divergence theorem at time (t + δt) to the spatial volume V bounded by S,
S′ and the curved surface Σ swept out by the circuit C as it moved from position S at time t to
position S′ at (t + δt).

0 =

∫

V

∇ ·Bdτ

=

∫

S′

B(r′, t + δt) · dS′ −

∫

S

B(r, t + δt) · dS +

∮

C

B(r, t + δt) · (dr∧vδt). (15)
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Here, as the right-hand diagram purports to justify, we have used

dS ≈ dr∧vδt, (16)

on Σ. Since the third term of (15) is proportional to δt and hence already small, we may neglect
δt in the arguments of B and of v in it, having already neglected the variation of B and v with
position across Σ.

The second integral in (15) has the Taylor expansion

∫

S

B(r, t) · dS + δt

∫

S

∂B(r, t)

∂t
· dS. (17)

These remarks allow us to write (15) as

0 =

∫

S′

B(r′, t + δt) · dS −

∫

S

B(r, t) · dS − δt

∫

S

∂B(r, t)

∂t
· dS + δt

∮

C

dr · v∧B(r, t). (18)

Dividing by δt, we see the first two terms in (18) allow us to bring in
dΦ

dt
using (14). So we get

0 =
dΦ

dt
−

∫

S

∂B(r, t)

∂t
· dS +

∮

C

dr · v∧B(r, t). (19)

The first term here is related by (9) to E , which is defined in the present context by (13). Hence

0 =

∮

C

E · dr +

∫

S

∂B(r, t)

∂t
· dS, (20)

the v-dependent terms having cancelled, so that consistency is assured by the Maxwell equation
(1), just as in case (a).

The significance of the minus sign in the definition (5) of the EMF reflects Lenz’s law, which
states that any EMF induced in a circuit by a change of flux through it tends to oppose any
EMF (e.g. due to a battery) that already exists in the circuit.

4.3 The Faraday experiment

In the set-up shown the crossbar LM can slide with negligible friction parallel to ON . The
uniform time independent magnetic field B = (0, 0, B) points upwards from the plane of the
page.

We shall neglect the resistance of the wire QMN(E0)OLP The circuit C = OLMN(E0) thus
has resistance

R, (21)
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i.e. the resistance R of LM . Also, for large B and R, we neglect magnetic fields arising from
any current flowing in the system. The initial conditions are

x = x0, ẋ = 0, I = I0 =
E0

R
at t = 0. (22)

The Biot-Savart law tells us that the force δF acting on the element δr = δyj = δy(0, 1, 0)
of LM is given by

δF = Iδr∧B = Iδy Bj∧k = Iδy Bi. (23)

So the total force on LM is

F = Ia Bi. (24)

By Newton’s second law, we have

mẍ = IaB. (25)

We cannot assume that I is independent of t, so that we are not yet ready to try to solve (25).

When LM is at x, the flux of B through ∂S = C is

Φ =

∫

S

B · dS = constant + B(ax), (26)

so that the EMF induced in C in the circuit is

E = −
dΦ

dt
= −Baẋ. (27)

It follows now that the total EMF in the circuit at time t is

E0 + E = E0 − Baẋ, (28)

and that

E0 − Baẋ = IR. (29)

Eqs. (25) and (29) enable the time dependence of I and ẋ to be calculated. In view of our
neglect of various effects, we have a reasonably simple differential equation for x(t)

mẍR = aB(E0 − Baẋ), (30)

indeed soluble quite nicely for small t. This solution exhibits what is expected in general, that
the induced EMF opposes the battery EMF, and the current in C is reduced. These are two
aspects of Lenz’s law.

Lenz’s law is a special case of more general belief: le Châtelier’s principle. This can be stated
as follows: a physical system in a steady state reacts by opposing any change imposed on it from
outside.

We neglected the magnetic field due to the current induced in C, which opposes the battery
produced I0. But (using the result (38) from Sec. 3.3 a), we see that the field due to the induced
current in LM e.g. points downwards on the plane of the diagram, and opposes B. This too
exemplifies a Lenz view: flux change of one sign produces currents which create flux of the the
opposite sign.

4.4 Coil rotating in a fixed magnetic field

Let C be a closed rectangular curve PQRS of area A. Very thin conducting wire is wrapped N

times around the curve C with free ends connected to some external circuit.
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Suppose C can rotate rigidly about a fixed axis j = (0, 1, 0) with angular velocity ω in the
presence of a uniform time-independent magnetic field B = (0, 0, B).

When the normal to the coil makes an angle θ = ωt to B as shown, so that n = cos θk+sin θi,
then the flux of B through the coil is

∫

B · dS = NB · nA = NB cos θA. (31)

Hence the EMF induced in the circuit is

E = −
dΦ

dt
= NBAω sin ωt. (32)

If the coil has resistance R, then the current induced in the coil is

I =
NBAω

R
sin ωt. (33)

Using (64) of Sec. 3.7, we know that the couple exerted on the circuit by the magnetic field
is

G = N

∮

C

r∧ (Idr∧B). (34)

It can be shown, with the aid of Stoke’s theorem, that this can be caste into the form

G = m ∧B, (35)

where the magnetic moment of the plane N -loop coil is given, using (54) of Sec. 3.5, by
m = NIAn. Proof of (35) will be attached to the end of chapter 5. Evaluating (35) we find
that G = −IANB sin θj, which, in the spirit of Lenz’s law, tends to counter the torque that
applies the angular velocity to the coil.

4.5 Inductance and magnetic energy

We will illustrate these concepts by reference to the long solenoid of Sec. 3.3. First we recall
the context and some of the results obtained there.

The solenoid has N turns of wire per unit length and length l very large so that end effects
can be neglected. It carries current I. It is cylindrical with axis k = (0, 0, 1), and cross-sectional
area A. The magnetic field due to the current flow is

B = µ0NIk (36)

inside the solenoid and zero outside. The flux of B through one turn of the solenoid is

µ0NIA (37)

and through all Nl turns is
Φ = µ0N

2lIA. (38)
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This is proportional to I, and we define the (self)-inductance L of the coil via Φ = LI giving

L = µ0N
2lA = µ0N

2V, (39)

where V = Al is the volume of the solenoid.

Suppose now that the long solenoid, which remains stationary in this discussion, is attached
to a battery of EMF E0, so that the total EMF in the circuit is

E0 + E induced = E0 −
dΦ

dt
= E0 − Lİ, (40)

and Ohm’s law reads
E0 = IR + Lİ. (41)

Now (cf. eq. (17) of Sec. 3.1), the work done by the battery in time δt is

δW = E0Iδt = RI2δt + LIİδt (42)

The first term corresponds to Ohmic heat generation. As it is not of immediate interest, we
suppose the circuit is of negligible resistance and neglect it. Hence

δW = LIİδt = δ(
1

2
LI2). (43)

Assuming the magnetic energy W is zero at t = 0 when I = 0 also, we have

W =
1

2
LI2 =

1

2
IΦ. (44)

Next we develop the expression (44)

W =
1

2
IΦ =

1

2
I

∫

S

B.dS =
1

2
I

∫

S

∇∧A.dS =
1

2
I

∮

C

A.dr. (45)

Hence we can pass in now familiar fashion to the magnetic energy of a continuous distribution
of current density J confined to a finite region region of space near to which we take our origin.

W =
1

2

∫

V

J.Adτ, V = all space. (46)

This leads to an important alternative expression for the magnetic energy.

W =
1

2µ0

∫

V

A.∇∧Bdτ =
1

2µ0

∫

V

[−∇.(A∧B) + B.(∇∧A)] dτ. (47)

We may use the divergence theorem on the first term and see that it vanishes provided that (as
can be checked) its integrand goes to zero fast enough as r goes to infinity. Now from (47) we
get the important result

W =
1

2µ0

∫

V

B2dτ. (48)

It can easily be seen, using (39) for L and (36) for B = |B|, that the two expressions (44)
and (48) for the magnetic energy W give the same result in the case of the long solenoid

1

2
LI2 =

1

2
(µ0N

2V )I2 =
1

2µ0

B2V =
1

2µ0

∫

V

B2dτ. (49)
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Mathematical Tripos 2004, Part IB : Electromagnetism, Lent 2004
Lecture notes by A.J.Macfarlane, DAMTP

Corrections or comments by email to A.J.Macfarlane@damtp.cam.ac.uk

5 Maxwell’s equations

5.1 A historical paradox

In magnetostatics, the equation
∇∧B = µ0J, (1)

implies ∇ · J = 0. As ρ = 0 in magnetostatics, this is compatible with the continuity equation

∇ · J +
∂ρ

∂t
= 0. However naive application of the integral form of (1)

∮

C

B · dr = µ0

∫

S

J · dS, (2)

to the following situation produced a contradiction, one that Maxwell resolved by generalising
(1). The ‘capacitor’ paradox arises by applying (2) to the two surfaces S1 and S2 that are

bounded by the same curve C. There is a unique answer for the left-side of (2), but the right-
side gives different answers µ0I for S1 and 0 for S2.

Maxwell proposed that (1) be changed by addition to a term that made it compatible with

∇ · J +
∂ρ

∂t
= 0. This gives rise (in free space or the vacuum) to

∇∧B = µ0(J + ǫ0

∂E

∂t
), (3)

as was shown in Sec. 1.4 to be sufficient to achieve consistency.

How does the use of (3) provide resolution of the paradox? There is an electric field only
between the plates. So for S1, lying outside the plates, we have

∮

C

B · dr = µ0

∫

S1

J · dS = µ0I. (4)

Between the plates, where J = 0, we shall assume that E is uniform so that E =
σ

ǫ0

k. Hence

1

µ0

∮

C

B · dr =

∫

S2

J · dS + ǫ0

∫

S2

∂E

∂t
· dS

= 0 + ǫ0

d

dt

∫

S2

E · dS

=
d

dt
(σA) =

dQ

dt
= I, (5)

as required for consistency. Here σ is the charge density and A is the plate area. The assumption
that E is uniform is a crude one. It can be avoided by doing a somewhat harder calculation
along lines similar to those followed above.
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5.2 Energy and energy transport

Recall the field energy formulas

Wel =
ǫ0

2

∫

V

E2dτ, Wmag =
1

2µ0

∫

V

B2dτ, (6)

and the expression for the rate of Ohmic heat loss i.e. the rate of dissipation of electromagnetic
energy as heat

∫

J · Edτ. (7)

The Maxwell equation (3) implies

1

µ0

E · ∇∧B = E · J + ǫ0E ·
∂E

∂t
. (8)

Now

E · ∇∧B = −∇ · (E∧B) + B · ∇∧E = −∇ · (E∧B) −B ·
∂B

∂t
. (9)

Hence

−ǫ0E ·
∂E

∂t
−

1

µ0

B ·
∂B

∂t
= J · E +

1

µ0

∇ · E∧B

−
d

dt

[

ǫ0

2

∫

V

E2dτ +
1

2µ0

∫

V

B2dτ

]

=

∫

V

J · Edτ +
1

µ0

∫

S

n · E∧BdS. (10)

For the last term the divergence theorem has been applied to a fixed volume V of space bounded
by a surface S. The left side here is the rate of decrease of the total field energy W = Wel+Wmag.
The first term on the right side of (10) represents the rate of loss of energy as Ohmic heat, while
the second term there is the rate of energy transport out of V through the surface S.

For the latter, define the Poynting vector S

S =
1

µ0

E∧B. (11)

The flux of S through a closed surface S, with outward unit normal n, is
∫

S

S · ndS. (12)

This is the flux of electromagnetic energy being transported through S out of V .
Eq. (10) thus gives a generally applicable account of energy changes in a conducting medium.

5.3 Decay of charge density in a medium of high conductivity σ

In Sec. 1.4, we derived the continuity equation

∇ · J +
∂ρ

∂t
= 0 (13)

from Maxwell’s equations. In a conducting medium of conductivity σ we have J = σE and
hence

∇ · J = σ∇ · E =
σ

ǫ0

ρ.

Now (13) implies
σ

ǫ0

ρ +
∂ρ

∂t
= 0, and hence ρ(t) = ρ(0) exp(−

t

τ
), (14)

where τ = ǫ0
σ

is the relaxation time of the medium. For copper or silver τ ≈ 10−18sec., so
that any charge density present – for whatever reason – in the medium at the initial time t = 0
quickly goes to zero. It may be expected to flow to the surface of the medium. For a perfect
conductor, for which σ is infinite, we have ρ(t) = 0 at all times, as has been discussed above.
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5.4 Plane wave solutions of Maxwell’s equations

We here deal with the vacuum or free-space, i.e. ρ = 0, J = 0. We begin as simply as possible
by seeking a solution describing a wave propagating in the z-direction with fields that do not
depend on x or y.

Looking at ∇ · E = 0, we find that Ez is constant. Looking for linearly polarised solutions
of wave type, we put Ez = 0, and assume we can, for all t, chose axes so that

E = (E, 0, 0). (15)

Sec. 1.6 proves that the components of E each satisfy a wave equation. Hence

∂2E

∂z2
=

1

c2

∂2E

∂t2
. (16)

The solution of such a wave equation can be written as

E(z, t) = f(z − ct) + g(z + ct). (17)

The f and g terms here describe waves moving respectively in the positive and negative z-
directions with speed c. In particular, we can consider a monochromatic wave, one with a fixed
angular frequency ω, in which

E = E0 exp iω(
z

c
− t) = E0 exp i(kz − ωt) (18)

where we have defined the wave-number k by

k =
ω

c
=

2π

λ
, . (19)

Here νλ =
ω

2π
λ = c relates the wavelength λ and frequency of the wave in a standard way to

other wave variables. Finally, note that the use of complex exponentials is very convenient, but
the physical fields must always be identified by taking real parts.

What about the magnetic fields? Looking at ∇ · B = 0, we find that Bz is constant, and
take it to be zero. It is natural to assume that B is of the form

B = B0 exp i(kz − ωt). (20)

Then in ∇∧E the only no-zero entry is
∂Ex

∂z
so that we have B0 = (0, B0, 0), and hence, from

∇∧E +
∂B

∂t
= 0 (21)

we get

ikE0 − iωB0 = 0, B0 =
E0

c
. (22)

So our wave solution of Maxwell’s equations is

E = (E0, 0, 0) exp i(kz − ωt), B =
1

c
(0, E0, 0) exp i(kz − ωt). (23)

It should be checked that (23) satisfies also (the zero current density version of) the Maxwell
equation (3), although our use of the fact that each component of E satisfies a wave equation
guarantees it. Thus the simplifying assumptions we have made have led us to the valid and
simple wave solution (23) of Maxwell’s equations. We could similarly have adopted a choice of
axes such that that E = (0, E, 0), and reached, as above, the solution

E = (0, E0, 0) exp i(kz − ωt), B = (−
1

c
E0, 0, 0) exp i(kz − ωt). (24)
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The solutions (23) and (24) are linearly independent, and the general monochromatic wave of
frequency ω is obtained as a linear superposition of them, has fields E and B that are transverse
to the direction of propagation of the wave. Also E · B = 0.

The solutions (23) and (24) are said to be linearly polarised, with polarisation vectors

i = (1, 0, 0) and j = (0, 1, 0), giving the directions, for all t, of their electric fields.
To discuss the transport of energy by the wave (23) obtained above, we require the real parts

E = (E0, 0, 0) cos(kz − ωt), B = (0,
1

c
E0, 0) cos(kz − ωt), (25)

so that, using (11), we get

S =
1

µ0

E0
2

c
cos2(kz − ωt) (0, 0, 1). (26)

Thus the rate of energy transport across unit area normal to the direction of propagation of the
wave (say at z = 0) is

|S| =
1

µ0

E0
2

c
cos2 ωt. (27)

Averaging over one period, T =
2π

ω
, of the wave motion, we get for the average rate of energy

transport across unit area

〈|S|〉 =

∫ T

0
|S|(t)dt
∫ T

0
dt

=
1

2µ0

E0
2

c
=

1

2
ǫ0cE

2
0 , (28)

since ǫ0µ0 = c−2. The energy density w of the wave (25) can be calculated using (105) of
Chapter 2 for wel and (48) of Chapter 4 for wmag. Thus

w = wel + wmag =
1

2
(ǫ0 +

1

µ0c2
)E2

0 cos2(kz − ωt) = ǫ0E
2
0 cos2(kz − ωt). (29)

For the time average of this we have

〈w〉 =
1

2
ǫ0E

2
0 , (30)

and hence
〈|S|〉 = c〈w〉. (31)

For the simple plane wave (25), it follows that the energy density travels at the speed of light
across unit area normal to the wave.

Of course, similar results holds for the wave (24).

If we consider a linearly polarised wave with fields

E(r) = E0 exp i(k · r − ωt), B(r) = B0 exp i(k · r − ωt), (32)

where k the wave-vector, with |k| = k, gives the direction of propagation of the wave, (i.e. here
k 6= ez and the wave number k 6= 1). Then ∇ ·E = 0 implies E0 · k = 0, and likewise ∇ ·B = 0
implies B0 · k = 0, so that both these fields are transverse to the direction of propagation. Also
(21) implies

ik∧E0 − iωB0 = 0, (33)

which gives B0 in terms of E0. Further the remaining Maxwell equation ∇∧B =
1

c2

∂E

∂t
implies

ik∧B0 = −i
ω

c2
E0, (34)
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compatibly with (33) iff

k2 =
ω2

c2
, giving k =

ω

c
. (35)

We have merely reproduced our wave in an arbitrary Cartesian basis.

[ Circularly polarised waves

Take a solution that is (23) minus i-times-(24), with E0 real. This has physical fields

E = Re(E0,−iE0, 0) exp i(kz − ωt), B = Re
1

c
(iE0, E0, 0) exp i(kz − ωt) or (36)

E = E0(cos(kz − ωt), sin(kz − ωt), 0) , B =
E0

c
(− sin(kz − ωt), cos(kz − ωt), 0) or (37)

E = E0es(kz − ωt) , B =
E0

c
eφ(kz − ωt, (38)

where es(φ) and eφ(φ) are the unit vectors of cylindrical polar coordinates (s, φ, z) with the
z-axis in the direction of propagation of the wave. The wave (38) is said to be (positively)
circularly polarised. A wave of negative circular polarisation linearly independent of this can be
constructed, using (23) plus i-times-(24) with E0 real, but we do not need the details contained
in this parenthesis ].

5.5 Boundary conditions

It seems there is going to be time to cover this in lectures. Sec. 1.7 should perhaps be reviewed
at this point.

Suppose a surface S carries either a charge density σ per unit area, or a surface current s
per unit length. Let the unit normal n to S point from the negative (−) to the positive (+) side
of S.

We proved in Sec. 2.2, the discontinuity formula

n.E|+
−

=
1

ǫ0

σ, (39)

and in Sec. 3.8, that

n∧B|+
−

= µ0s. (40)

It should be clear that the proofs can be applied to deriving

n.B|+
−

= 0, (41)

and

n∧E|+
−

= 0. (42)

As an aid to remembering these results, we noted in Sec. 1.7, their exact correspondence with
Maxwell’s equations themselves.

Note that n.v and n∧v give the normal and tangential components of any vector v. It is
obvious that the tangential component satisfies n.(n∧v) = 0.

Consider then a perfect conductor C with surface S and normal n pointing into the conducting
medium, in which E = 0 and B = 0. Then the boundary conditions just inside the free space
(negative) side of S demand the vanishing of the normal component of B and of the tangential
component of E. This follows (41,42). Eqs. (39,40) are usually subsequently used to calculate

σ and s for S.
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5.6 Reflection at the surface of a perfect conductor

We consider a monochromatic wave (23) propagating in the z-direction from the half-space
z < 0, towards perfectly conducting material in z > 0, whose surface is the plane z = 0. In fact
the solution of Maxwell’s equations plus the boundary conditions (BC) on z = 0 will comprise
not only an incident wave but also (at least) a suitably matched reflected wave. The fields of
the former will have argument (kz − ωt), where kc = ω, while those of the latter (moving in
the negative z-direction) are (−kz − ωt). All fields in the problem have the same t-dependence
∝ e−iωt.

We know that the fields E and B are zero inside perfectly conducting media, it therefore
follows the BC are: tangential E and normal B are zero at z = 0. For the wave (23) this just
means that Ex = 0 at z = 0. Thus for the electric fields of the incident and reflected parts of
our total wave solution of Maxwell’s equations, we take

Einc = (E0, 0, 0) exp i(kz − ωt), Eref = (−E0, 0, 0) exp i(−kz − ωt), (43)

since their superposition
E = Einc + Eref , (44)

by construction, gives Ex = 0 at z = 0. The corresponding magnetic fields are B = Binc +Bref

with

Binc =
1

c
(0, E0, 0) exp i(kz − ωt), Bref =

1

c
(0, E0, 0) exp i(−kz − ωt). (45)

We see from this that B does have a non-zero tangential component at z = 0, namely

B = 2
1

c
(0, E0, 0) e−iωt. (46)

But this just tells us that a surface current s necessarily accompanies the fields E and B in a
consistent solution of Maxwell’s equations and boundary conditions.

Recalling the formula (42) of chapter three for s

n∧B|+
−

= µ0s, (47)

we obtain

µ0s = − n∧B|
−

=
2E0

c
e−iωt (1, 0, 0). (48)

5.7 The historical paradox revisited

We return to the topic of Sec. 5.1, to provide a treatment which does not make the (crude)
assumption that the the electric field E beteween the plates is uniform. Assume the plates are
circular of radius a, and neglect edge effects. Use cylindrical polars (s, φ, z).

We shall treat the case in which

E = Ez(s)k exp(−iωt), B = Bφ(s)eφ exp(−iωt). (49)

The Maxwell equation ∇∧E +
∂B

∂t
= 0 has only got a non-trivial eφ component, which gives

−
∂Ez

∂s
+ (−iω)Bφ = 0. (50)

The Maxwell equation

∇∧B = µ0J + µ0ǫ0

∂E

∂t
, (51)

between the plates, where J = 0, has only got a non-trivial z component

1

s

∂

∂s
(sBφ) = −i

ω

c2
Ez using ǫ0µ0 = c−2. (52)
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Substituting for Bφ from (50) into (52), we find

1

s

∂

∂s
(s

∂Ez

∂s
) +

ω2

c2
Ez = 0. (53)

We set k =
ω

c
, and recognize (53) as the equation satisfied by the Bessel function J0(ks). Hence,

we write

Ez = αJ0(ks), Bφ = i
1

ω

∂Ez

∂s
= i

α

ω

∂J0(ks)

∂s
, (54)

where α is a constant.
The surface charge density on the the lower plate is

σ = ǫ0k ·E|+
−

= ǫ0αJ0(ks) exp(−iωt), 0 ≤ s ≤ a. (55)

We now show that the integral form of (51) can be applied consistently to
∮

C
B·dr whether or

not the surface S, ∂C = S, chosen passes between the plates or not. Let C be the circumference of
the lower plate, S2 the lower plate itself, and S1 a surface bounded by C but lying entirely outside
the region between the plates and so pierced by the current I. As before, for S1

∮

C
B ·dr = µ0I.

For S2, on the other hand, we have

µ0I = µ0

dQ

dt
= µ0

d

dt

∫

S2

σdS

= 2πµ0

d

dt

∫ a

0

sσds

= 2πµ0(−iω) exp(−iωt)

∫ a

0

sǫ0αJ0(ks)ds

= −2πi
1

ω

ω2

c2
exp(−iωt)

∫ a

0

sαJ0(ks)ds

= 2πi
α

ω
exp(−iωt)

∫ a

0

(−k2sJ0(ks))ds

= 2πi
α

ω
exp(−iωt)

∫ a

0

∂

∂s
(s

∂J0(ks)

∂s
)ds

= 2πi
α

ω
exp(−iωt)a

∂J0(ks)

∂s







s=a
= 2πaBφ(a) exp(−iωt) =

∮

C

B · dr, (56)

as required. The third line here uses (55), the fourth ǫ0µ0 = c−2, the fifth k = ω/c, the sixth
Bessel’s equation, the seventh (54) for Bφ.
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5.8 Addition to Sec. 5.6

¿From (43) and (44), we see that the physical field is the real part of E, i.e. for E0 real

(Ephys)x = 2E0 sin kz sin ωt, (57)

and similarly
(Bphys)x = (2/c)E0 cos kz cosωt. (58)

Since the magnitude |S| of the Poynting vector is proportional to sinωt cosωt, its mean value
over one period of the wave motion is zero (which makes good sense?). (48) implies that the
physical surface current s is given by

µ0s = (2/c) cosωt. (59)

We may now use (52) of Sec. 1.7, to calculate the force f per unit area exerted on the surface
z = 0 of the conducting medium. It is

f =
1

2
sy(Bphys)y =

1

2µ0

4

c2
E0

2 cos2 ωt. (60)

Hence the mean force per unit area is

〈f〉 = ǫ0E0
2, (61)

using the result 〈cos2 ωt〉 = 1

2
. Since the force is normal to the surface, (61) gives the mean

pressure (radiation pressure) at the surface.

5.9 Proof of the result G = m∧B

Refer to Sec. 3.7, Force and couples, and supply the proof that the couple exerted by a
uniform magnetic field B on a plane current loop, of area A, unit normal n, carrying current I,
is given by (65) there, i.e.

G = m∧B, m = IAn. (62)

This was also quoted as (35) of Sec. 4.4, and used there. Letting c be an arbitrary constant
vector, we have

c · G = c ·

∮

C

r∧ (Idr∧B) = I

∮

C

c · (r · B dr − r · dr B)

= I

∮

C

[c · (r · Bdr) − (c · B)(r · dr)] . (63)

We now apply Stokes’s theorem to each of the terms of (63). For the second term we have

∮

C

r · dr =

∫

S

n · (∇∧r)dS = 0. (64)

For the first term, moving a scalar product in an allowed way, we have

I

∮

C

(r ·B c) · dr = I

∫

S

n · ∇∧ (r · B c) dS = I

∫

S

n · B∧c dS = I(

∫

S

dS)∧B · c. (65)

Here we have used the elementary result ∇(r · B) = B, for constant B. We may finally detach
c from (65), and get the required result

G = I(

∫

S

dS)∧B = (IAn)∧B = m∧B. (66)
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5.10 List of corrections already inserted into webpage version of the Lecture

Notes for IB: Electromagnetism

These have been made without changing the page beginnings and endings of the pages circulated
during lectures. They include...

P3: 3 lines below (13) ... which, for qv positive ...
P4: (NB) line below (22) ...flux of J out of...
P9: last line ... (69) satisfies Poisson’s equation for ...
P11: (NB) c) third line now begins: with ends at z = h and z = −h...

next line ... for some E = E(h) ...

end of (81) E =
1

2ǫ0

σ, indept of h.

P12: f) ... σ at end of first sentence changed to ρ.

P13: line below (91) ... = −
∂φ1

∂z
k = ...

P13: Original wording in early paragraphs of Sec. 2.3 seriously inadequate. Look at replaced
text
P18: (7) ...φ = d − cθ, c, d constants ...
P19: (26) 0 = ψ + ∇χ...
P20: jk has been replaced by Jk in (30) and (31).
P23: (49) should read m = 1

2

∫

V
r∧J(r)dτ .

P26: J has been replaced by j in (68). Here j = (0, 1, 0).
P31: same correction as on P26 twice near (23).
P32: wording of later sentences of Sec. 4.4 improved.

P35: (NB) LHS of (10) corrected to read −
d

dt

[

ǫ0

2

∫

V

E2dτ +
1

2µ0

∫

V

B2dτ

]

P36: wording before (15) and (24) has been improved.

P37: line below (27) ... period, T =
2π

ω
... , and

(30) ... 〈w〉 = 1

2
ǫ0E0

2.

(34) Correct RHS is −i
ω

c2
E0

P39: RHS (48) ...
2E0

c
e−iωt(1, 0, 0)

(NB) Error, not in original, editted carelessly into existing web-page text.

P23: At end of (46) ...
µ0

2
Js is correct, i.e. J is correct here; I is wrong.

Example Sheet 2.
Q6: no π in denominator of expression for B.
Q7: (i): ... force F per unit volume, (ii) ... −∇p+F = 0 ... , and (iii) p(s) = 1

4
µ0J

2(s2−a2).
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