Part III General Relativity

Lecture Notes

Abstract

These notes represent the material covered in the Part I11 lecture General Relativity. A
large part of the mathematical background (mostly up to chapter 9) is based on the more
extended lecture notes by Harvey Reall [5] as well as Hawking & Ellis’s “The Large Scale
Structure of Space-Time” [3] and John Stewart’s “Advanced general relativity” [4]. Later
sections on the “341” formalism of the Einstein equations and the Lagrangian formulation
of general relativity have been inspired to quite some extent by Eric Gourgoulhon’s “3+1
Formalism and Bases of Numerical Relativity” [2] and Eric Poisson’s lecture notes on
“Advanced general relativity” [6]. Readers will find all these references valuable sources
to explore topics discussed in this lecture in more detail. Primary purpose of the present
set of notes is to provide a verbatim description of the material covered in the Part III
course on General Relativity. Indeed, they bear a high degree of resemblance to the
material as presented on the black board in the lecture theatre.

For further reading on the topic of Einstein’s theory of general relativity, there exists
a wealth of books more or less directly deidcated to the theory. An incomplete list of
books is given as follows.

e J. B. Hartle, “Gravity, An Introduction to Einstein’s General Relativity” .
e B. Schutz, “A first course in general relativity” .
e R. M. Wald, “General Relativity” .

e S. M. Carroll: “Spacetime and Geometry: An Introduction to General Relativity” ;
cf. also [1].

e L. Ryder, “Introduction to General Relativity” .
e C. W. Misner, K. S. Thorne & J. A. Wheeler, “Gravitation” .

e S. Weinberg, “Gravitation and Cosmology: Principles and Applications of the Gen-
eral Theory of Relativity” .

Example sheets for this course will be available on the webpage
http://www.damtp.cam.ac.uk/user/examples/indexP3.html

Make sure you do not confuse these example sheets with those of the Part II course of
the same name on http://www.damtp.cam.ac.uk/user/examples.

Note that this course does not cover (in any depth) the topics of Black Holes and Cos-
mology which are the subject of other Part I11 Courses.

Cambridge, May 2014

Ulrich Sperhake
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1 THE EQUIVALENCE PRINCIPLE 4

1 The equivalence principle
Special Relativity: e Physical experiments are the same in any inertial frame
e inertial frames: non-accelerating observers

related by Lorentz trafos

Newtonian gravity: | VZ¢ = 47Gp (%)

p(t, 7)
Z — 7]

= (D) = / dy

Lorentz trafos mix time and space coordinates = Eq. (*) not invariant

also: finite propagation of signals = Newton’s gravity not compatible with SR

Newtonian gravity: good approximation if v < ¢

biti ticle: ¢ GM = v _GM r
orbiting particle: ¢ = ——— — = — : '
&P r r r2 g o |
G M M :
then: v < ¢ & - — <1
2 or
GM .
Solar system: — — < 107°
2 or
1.1 Statement of the equivalence principle
Newtonian theory
Inertial mass: F = mra
Gravitational mass: F = —mgVe = magg; §:= —6¢
= With suitable scaling: m; = mg
Experiment: = 0(1071?) “Eotvos”  for all kinds of objects

ma
Weak equivalence principle (WEP), version 1: m; = mg

Newtonian motion: m;d=m;¥=mgg = T=4¢



1 THE EQUIVALENCE PRINCIPLE

= WEP, version 2: The trajectory of a freely falling test body
depends only on its initial position and velocity

and is independent of its composition.

Comment: “Test body” = body with negligible gravitational self interaction

and size < lengthscale on which ¢ varies.

accelerated frames

Let O be inertial frame with coords. (¢,Z) in grav. field g.

Let @' be a frame accelerated relative to O with a.

Coords.: (t, @’ =& — @y(t)) where Zo(t) = position of origin of O’ in O coords.:

= Eq. of motionin @' : ¥ =g—d

— different grav. field ¢ =g —a

special cases: 1) =0 = § =—a
“uniform acceleration indistinguishable from grav. field”

2)§#0, d=g = O is a freely falling frame: § =0

Non-uniform grav. fields

—

ZTo a

“local inertial frame” = coord. frame (¢, x,y, z) defined by freely falling observer in

the same way as in Minkowski space
“local” means “small compared with lengthscale of variations in §

E.g.: tidal forces:

Lab frame “too large” AN /

N/

Lab frame

= particles accelerated in freely —

r— e

falling frame due to tidal forces.




1 THE EQUIVALENCE PRINCIPLE

The WEP was found in Newtonian physics
Einstein promoted it to be more general:
Einstein EP (EEP): (i) The WEP is valid.

(i) In a local inertial frame the results of all non-gravitational
experiments are indistinguishable from those of the same

experiment performed in an inertial frame in Minkowski spacetime.

Schiff’s conjecture: The WEP implies the EEP.
argument: e WEP = (ii) holds for test particles.
e Matter is composed of quarks, electrons etc.

e These are bound by electromagnetic, nuclear forces
— binding energy makes up part of the

bodies mass and appears to also obey (ii)

1.2 Bending of light Lab
Consider freely falling lab in uniform grav. field i
Earth
Inside Lab Earth frame
light moves on straight line curved path
_ d=ct
| Light
______ - $ gté2
R\
Earth
d 1 d?
t=-— h=—-9g—
c - 27 ¢?
d=1km = h=~5-10""m
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1.3 Gravitational redshift
Consider: g = (0,0, —g) , Alice at z=h, Bobat z =10
Alice sends light to Bob.

Alice

EP = equivalent to frame accelerated with (0, 0, +¢) in Bob

-
«l

Minkowski spacetime

Assumption: v of Bob, Alice < ¢
2

= ignore v_2 and higher-order SR terms
c

!

1 1 !
= ZA(t):h+§gt2, ZB(t):§Qt2> va=vg=gtLc.

e Alice emits first signal at ¢,

1
= 21(t) = 24(t1) —c(t —t;1) = h+ 5gﬁ —c(t —t1)

1 1
e This reaches Bob at T}, i.e. h+ igtf —c(Ty —ty) = §QT12

e Alice emits second signal at t, =1t + A1y
This reaches Bob at Ty, =T; + A7g.

1 1
= h—l— §g(t1 —FA’TA)z —C(Tl —I—ATB —tl —ATA) = §g(T1 —I—ATB)z

= c(ATs — ATp) + %g ATy (2t + ATa) = %g Atp (2T + Atp)

e Assumption: A7ty <t;, Arg <71, e.g. period in light waves
= ¢(A1y — A1) + gATAt = g AT Ty
= A1 (¢T1 + ¢) = ATa (gt1 + )

-1
:>ATB:<1+g—ﬂ) (1+g—t1)ATA%|:1—M:|ATA ‘
C C

Xy

(%)

subtract (ss)

t
we used gt <1
c

c
h 1 t
o (xx) = ——(Tl—tl)=§Q(T1+t1)(T1—t1)%O ’Weusedg—<<1
c & ;\,_/h c
<1 ~
c

h
= Ty —t; = — to leading order.
c



1 THE EQUIVALENCE PRINCIPLE

h !
° = ATB%<1—%)ATA<ATA

c2

= Signal appears blue shifted to Bob: c¢Arg = Ag &~ <1 — %) Aa

Confirmed in Pound-Rebka experiment (1960): light falling in tower.
Light climbing out of a gravity well is red shifted.

In general: | ATtp &~ <1 + %7—2@&) ATy also holds for weak, non-uniform fields
c

1.4 Curved spacetime

WEP = test bodies move the same way in a grav. field independent of their

composition, i.e. their grav. “charge” m. This is not true for other forces!

Einstein: gravity must be a feature of spacetime, i.e. its geometry.

Consider redshift but now in a non-Minkowskian metric

2 2
Adr* = [1 + 7@25(:)3,;/, Z)] Adt* — [1 — 7¢(x,2y, Z)} (de* + dy* + d2?) ; % <1
¢ ¢ c

e Alice: ¥4, Bob: Zp, at fixed positions!

o Alice emits signals at t4, t4 + At
Bob receives the first at tg. When does he see the second?

e The spacetime is static: ¢ does not depend on ¢
= The two signals travel on identical trajectories, just shifted in time
= Bob receives the second signal at tp + At.

e But what proper times do Alice’s and Bob’s clocks measure?

2¢A 2¢B

2 2 2 2

ATA::(1+_7;_) At, Aﬁﬂgz <1+_i;_> Ai

;»ATAz<1+¢—§) At, :>ATB%<1—|—¢—§) At,
C C

-1
= Atp ~ <1+¢—QB) <1+¢—‘24> ATA%<1—|—M> ATy
C c

2



2 MANIFOLDS AND TENSORS 9

2 Manifolds and tensors
In GR we define spacetime as a manifold: trickier than for Minkowski!
Minkowski: e inertial frames — preferred global coordinates
e we can add position vectors = spacetime has structure of vector space

Curved spacetimes: inertial coordinates are local; how about vectors?

2.1 Differentiable manifolds

We know how to do calculous in R™

Goal: develop analog in curved spaces

Def.: n-dim. differentiable manifold := a set M with subsets O, such that
(1) U0, =M
(2) Vo Jal-to-1and onto map

G0 Oy — U, CR" open

(3) O, NOs#D, then ¢god.’:[0a(OaNOp) — [ps(OnNOp)
\CUQCR” \CUgCRn

is a smooth map (oo differentiable)
The ¢, are called “charts”

{¢o} is an “atlas”

b5 0 !

¢a(oa n Oﬁ) ¢)ﬁ(oa N Oﬂ)



2 MANIFOLDS AND TENSORS

Comments: e For p € O, we often write ¢,(p) = (xi(p), 72 (p), zi(p)) =zt (p)

= “coordinates” of p ; the « is often dropped.

e A C* manifold is defined likewise. We’ll assume O

Examples: 1) R" is a manifold with an atlas of one chart
¢ (... 2" = (2t 2"
2) S' = unit circle = {(cos 6, sin¢) € R?| § € R}
3 no atlas with one chart
0 € [0,27) does not work: not open!
We need 2 charts:

(i) Let P =(1,0) and ¢ : ST — {P} — (0,27), o¢1(p) =0,
y
p p
(e o e
L\

(i) Let @ = (—1,0) and 65 : $' — {Q} = (=7,7), a(p) = b

X

{¢1, ¢o} form an atlas
Note: On the upper semi circle (y > 0): 0y = ¢ 0 ¢, (6;) = 6,

On the lower semi circle (y < 0): 6y = ¢y 0 ¢ (01) = 0, — 27

Comment: M may admit many atlases
Def.: 2 atlases are compatible :< their union is also an atlas

complete atlas := union of all atlases compatible with a given atlas
"™\ contains oo atlases
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2.2 Smooth functions

Def.: f : M — R issmooth & Vchartsg: F=fo¢ !:UCR" =R issmooth

Sometimes we call f a scalar field

Examples: 1) Consider the S! sphere above: f:S' - R, (z,y)+— x
fo¢r (1) =cost, fody'(f) =cosfy both smooth
Let ¢ be some chart = fo¢™' = (fog;")o(po0™"), i=1,2

S\ J/

~
smooth smooth

(manifold!)

2) Consider manifold M, chart p : O C M - U CR", pe O~ (:Bl(p), - ,z"(p))
Let ¢, be the other charts in the atlas
Let f:O—=R, p~— 2'(p)

= f is smooth: z'o¢_! is the first component of ¢ o ¢ which is smooth

3) We can define f through F":
{¢o} atlas = F,:U, — R defines f = F, o0,
provided F, is independent of o on overlaps
Consider St above: Fy : (0,27) — R, 60, ~ sin(mf;), m integer
Fy: (—m,m) =R, 60y sin(mbs)

= [} 0¢y = Fy 0 ¢y on overlap: 6, 0y differ by multiples of 27

Note: We sometimes do not distinguish between f and F: “f(x) = F(x)”
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2.3 Curves and vectors

Consider surface S in R?, tangent plane at p
= the plane has structure of a 2-dim. vector space;

a tangent vector to a curve in S at p is in the plane

Goal: formalize this for a manifold

Def.: A smooth curve in a manifold M := function A : I — M, where I C R open,

such that ¢, oA : I — R" is smooth for all charts ¢,

Directional derivative: let f: M — R, X:I — M both be smooth

= foA:I — R smooth

d d
=~ [(fo ) ®)] = — [f(A®)]

Def.: Let C*™ be the space of all smooth functions from M to R.
Let A be a smooth curve with A\(0) =p € M

= The “tangent vector” to A is the linear map

X, MBS R, X0 = { G001}

Note: (i) Linearity = X,(f+9) = X,(f)+X,(9); X,(af)=aX,(f) for o = const

(i) X,(f9) = Xp(f)g(p) + f(p) X,(9) “Leibniz rule”
(iii) Let ¢ = (2*) be a chart defined in a neighbourhood of p € M, and F' = fo ¢!

= foA=(foso(pod)=Fogol,

[ OF dat(A(t)) da* 0, d B d
0= () () =G g = g Fe00) = 5

oxH xH
~ =~ ~—~
S01 N
components basis vector

Compare with directional derivative in R™: X - (Vf )p
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The set of tangent vectors at p € M forms an n-dim. vector space: “Tangent Space” 7T,(M)

Proof: (1) “Addition, scalar mult. — vector”
Let A, k be curves through p such that A(0) = x(0) = p,
X,, Y, be their tangent vectors,
a, B €R, ¢=(x") be a chart in neighbourhood of p.
Define aX,+ Y, :C*(M,R) =R, f— aX,(f)+0Y,(f)

Consider curve v(t) = ¢~ {a[op(A(t)) — o(p)] + B[o(r(t)) — o(p)] + o(p)}
= v0)=p

Let Z, be the tangent vector of v

= 70 = (g3e) L 000 #0) + 567 60) — )] |

=(3). v L)

= aX,(f) + BY,(f) = (X, + BY,)(f)

(2) “n dims.?”

t=0

Define for p=1, ..., n:

N(t) =07 [ (), - 2N (), 2 (p) +t, 2T (p), ..., 2"(p)]

0
Let | — be the tangent vector to A,
oz )

0 oF
- (@)pm—@
0
Let o* € R such that o <8—) =0 € T,(M)
p

rH
ot <0_]2) =0
O #(p)
oF _

w\ . .V v [
Let F(at)=2a2" = 8x“_6” = a”"=0.

(%)

#(p)

Do this for all »=1,..., n = lin. independence.
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(3) “Do we span T, (M)?"
X,(f) = <M)t20 (i) (f) foramy f!

dt oxt »

: : S d
= Any X, can be written as a linear combination of (W)
x

Note: o ( 0 ) :C°(M,R) — R is not the same as the partial derivative

n
&Ep

0
e The basis <W) is chart dependent: “coordinate basis”
i
p

Def.: Let {e,}, p=1,...,n be a basis of 7,(M)

= X, =XJe,; X} arethe “components” of X,

p p
Example: (*%) for coord. basis: X/ = {W} =: ddit
t=0

Note: When Einstein summation applies: always one index up, one down !

0
<W) is a “down” index. Expressions like XY, are wrong !
x
p

Coordinate transformations

Let ¢ = (), ¢ = (z') be two charts in a nbhd. of p € M

(%)

—

oxt

14
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= (gm) ) = ggUeo™

_ (i) _<%) <i)
Ot ), N0t/ ) \OT%/,

Components: Ve T,(M)

s ve (D) () (L) v ()
Ozt P Ozt ?(p) 0z p oz p

= |V*= <ai) VH

oxh

V# = components of V' in basis { (i) }
Oxt

V* = components of V in basis {(g) }
T
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2.4 Covectors

Def.: Let )V be a vector space over R.

“Dual space” V* := vector space of linear maps from ) to R

Lemma: V n-dimensional = V* n-dim.
if {e,}, p=1,...,n isa basis of V
= {f*}, a=1,...,n, defined by f%(e,) =0%,, is the “dual basis” of V*

Comments: ¢ V, V* are isomorphic ; e.g. e, — f" defines an isomorphism
e The isomorphism is basis dependent
e There is a natural isomorphism between V and (V*)*
Theorem: If V is finite dim.

= A natural, basis independent isomorphism is given by

V= (V) X 0(X) with (2(X))(w) =w(X) Vaey:

Def.: “Cotangent space” 7T, (M) := dual space of T,(M)
Its elements are “covectors” or “l-forms”
If {e,} isa basis of T,(M) and f* the dual basis in 7(M)
= n=nf"€T(M); n,arethe “components” of n
Comments: o n(e,) =n,f"(e,) =1,

e XeT,(M) = n(X)=n(X"e,)=X"ne,) = X",

Def.: Let f: M — R be a smooth function
“gradient of f” at p:= (df), € T (M) with
(df)p(X) := X(f) VX €T,(M)

16
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Examples (1) Let (z') be a coord. chart in nbhd. of p € M and [ := x#(p) for some p

= (dz#) €T, (M) with (dz) ((aiy) ) = gzz

= {(dx“)p} is the dual basis of { <%)p}

(2) Components of (df)p:

], =@, (()) - (o) 0= (55,

Coordinate transformation

— o~

p

If ¢= ("), ¢= (%) aretwo charts in nbhd. of p € M

Oxt L
p

ox”

Dz

?

so for we T/ (M) w=w,dr" =w,d7" with &, = ( ) w, ‘“covariant vector’
é(p)

2.5 Abstract index notation

We have used p, v, ... for components of vectors or 1-forms in a basis
Some expressions are basis dependent, some are not!
E.g: n(X)=n,X" independent

XH =" dependent

Index notation: If a statement is true in any basis, replace pv, ... with a, b, ...

Eg: n(X)=mn,X"
Convention: a, b, ... do not denote components, but place holders for component indices
X is a vector, n, a l-form,...; “X*# X"

The rules for index positions are the same as for pu, v, .... E.g. n,w, is wrong
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2.6 Tensors
Tensors in physics: e.g. moment of inertia
In GR many things are tensors

T
S

Def.: A tensor of type (r,s) or (
T:T7(M)x...xT/(M)xT(M)x...x T(M) =R

(. J/

) is a multilinear map

~ ~"
r factors s factors

A machine: input: r 1-forms, s vectors; output: a real number
Examples: (1) 1-form = (0, 1) tensor : T,(M) — R
(2) Recall: (7,7(M))" is naturally isomorphic to 7,(M)
= vector = (1,0) tensor : (M) =R, n=n(X) VneT (M)
(3) Define the (1,1) tensor & : 7, (M) x T,(M) — R through
6(n, X) :=n(X) VneT; (M), XeT,(M)

Def.: Let {e,} be a basis of 7,(M) and {f} the dual basis of 7(M)
The “components of a (7, s) tensor” T are
Tkt =T (2 e, e, .., €)
In abstract index notation: T2 . 4.

Comment: Tensors of type (r,s) in p € M can be added or multiplied by constants.

They form a vector space of dimension n’**

Examples: (1) 9§ above: 6", = §(f",e,) = f"(e,) = ",
(2) Let 9, weTM), X ecT,(M), Ta(21)tensor, {e,}, {f'} bases
= T(n, w, X)=T(nf" wf X%,)
= 0w, XT(f", £, ey) = 1w, X*TH,

Index notation: 7,w,X T,
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Change of basis

Let {e,}, {e,} be bases of T,(M) and {f*}, {f'} the dual bases of T, (M)
Transformation matrices: ' = A* ", e, = B",e,
We have: 6", = f"(e,) = A" f(B%,e,) = A", ,B°,f"(e,) = A" ,B’,

= o°,

= B!, = (A_l)”,, are inverses !

v
Jav’ ok

One straightforwardly shows: vector: X" = A*, X"

oxH ox”
E.g. coord. basis: A", = * B ‘

are obviously inverses

I-form: 77, = (A™Y)" m,
(2,1) tensor: T, = A A5 (A7Y)Y TP,

(r,s) tensor: obvious...

Def.: “Contraction of (r,s) tensor” := Summation over 1 upper and 1 lower index
— (r—1,s—1) tensor
Example: Let T be a (3,2) tensor
= (2,1) tensor S(w,n, X) =T(f" w,n, e, X)
This is basis independent:
T wmne,X)=T (A“,,f”, w,n, (A_l)puep, X) =T w,ne, X)
Components: S*, =T,
Abstract index notation: S, = Td®

Note: In general 79, +4 T4, = index position important !
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Def.: Let S bea (p,q) tensor, T a (r,s) tensor
“outer product” S®T isa (p+r,q+ s) tensor with
(S®T)(w1, e W My, My, X, o, X Y, YY)
=Swy, oo, wp, Xay oo, X)) Ty, o0ymy, Y, o0, YY)
One straightforwardly shows:

...apbi...b
(1) (S ® T)a1 ap01 Tcl...qul---ds — Sal...apqmcq Tblmbrdl...ds

(2) In a coord. basis, a (2,1) tensor can be written as

0 0
— Ty p
T=1", (8x“)p® <8x”)p® (dz*)

likewise (r, s) tensor

Comment: We always first put in 1-forms into a tensor, then vectors.
This is not necessary. We can define
T:7T xT,xT =R, (n,X,w)—T(nX,w)
and this is isomorphic to
T:7, xT xT,—=R, (nw,X)—T(nw X).
So we do not distinguish between them.

But be careful with index positions: In general T%.m,wy, = T mpwy # T Mawy
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Def.: Let T be a (0,2) tensor.

1
“Symmetrization”: Sy, := §(Tab + Tha) = Tap)

1
“Anti-symmetrization”: Ay, := §(T ab — Tha) =2 Tiay)

Can be applied to a subset of indices: T, = %(T abe ;4 Tbac ;)
Over n > 2indices: e sum over all permutations
e apply sign of permutation for anti-symm.

e divide by n!

1
E.g: T%pea) = 30 (T%ca + T%e + T%a — T%eb — T%ba — T%ac)

(Tabcd + Tdbca)

1
For non-adjacent indices:  Tl4jpcq) 1= 3

2.7 Tensor Fields
So far: tensors at point p € M ; Now: fields

Def.: vector field := amap X : M — T,(M), p— X,
Let f: M — R be smooth
= X(f) isa function X(f): M =R, p— X,(f)

X issmooth :& X (f) smooth for all smooth f

Example: Let ¢ = (2") be achart and 9, := 0 be the vector field defined by p — 0
Oxt )
OF .
=0,f) M—=R, p— pm where F'= fo¢
)
o OF ‘
Note: Everything is smooth: ¢(p), F(z"), pm = 09,(f): M —= R is smooth.

¢ may only cover a subset of M and the map only part of M — ¢, on patches O,
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0 ) .
Comment: — is basis of 7,
Ozt »
0
= Expand vector field: X = X" | — | = X*0,

oz

9, smooth = (X smooth < X* smooth functions)

Def.: Covector field w:= map : M — T (M), pr w,
Note: a vector field X and covector field w define a function
wX): M—=>R, p—wy(X,)
w smooth :& w(X) is smooth for all smooth X
Example: df: M — T (M), p— (df),
f, X smooth = df(X) = X(f) is a smooth function

= df is smooth, “gradient”
Set f=uaz" = dz" is asmooth covector field
Def.: (r,s) Tensor field := map T : M — (r,s) tensor at p € M
Smooth vector, covector fields ny, ..., n,, X1, ..., X define a function
T(ny, o X1, X i MR, p o Ty (1) (1) (X0 s (X))
T smooth :& this function is smooth V smooth ny, ..., n,, X4, ..., X

Note: One can show: T smooth < its components in coord. basis are smooth

From now on: assume all our tensors are smooth



2 MANIFOLDS AND TENSORS 23

2.8 The commutator

Let X, Y be vector fields, f, g functions

= Y(f) isafunction = X(Y(f)) is a function

But: X (Y (fg))=X(fY(9)+9Y(f))
=fX(Y(9)+X(NY(9)+X(9) Y(f) +9X(Y(/))
#fX(Y(9)+9X(Y(f)) “no Leibniz"!

= Themap fr X(Y(f)) does not define a vector field. But: ...

Def.: Commutator of 2 vectorfields X, Y

(X, Y](f) = X(Y(f)) - Y(X(f)) satisfies Leibniz!
[X,Y] is indeed a vectorfield

Proof: coord. chart (z*)

= XY X(Ygf) Y(X gf)

B 8F
N 8x“ 8x” 8x” 8x“

8Y” oF oy OX* OF
8x” ox” oxv Oxk

LOYH XM\ OF
—(X o axu)@

X, Y] =

f arbitrary = [X,Y]=[X,Y]" ( 0 )
O

oxH
0 L 0 0
Example: Let X:@, Y ==z wjuﬁ
oY+
= [X,Y]u:W:5ﬂ2
= [X,Y]= 0
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One can show: [X,Y] = —[Y, X]
X,Y +Z] = [X,Y]+[X + Z]
(X, fY]=f[X.Y]+X(/)Y
[X,[Y,Z]|+[Y.,[Z,X]|+[Z,[X,Y]] =0 “Jacobi identity”

o 0

Ozi’ OV

Note: { } =0 (coord. basis = commutators vanish)

Conversely, one can show:
If Xq,..., X, m<dim(M) are vector fields which are
lin. indep. Vp € M and whose commutators all vanish

= In a nbhd. of p one can find coords. (z*)

such that Xi:i., i1=1,....,m
ox’

2.9 Integral curves

Def.: Let X bea VF and p e M.
“integral curve of X through p”

:= curve through p whose tangent at every point ¢ is X,

Let A be an integral curve of X , A(0) =p, (z*) be a coord. chart

= w = x# (2 (A®)) . @ (M0)) = 2t (%)

ODE theory guarantees existence, uniqueness of solution

= J unique integral curve of X through p € M
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0 9,
Example: Chart ¢ = (2/), let X = gy + xlﬁ, z#(p) = (0, ..., 0)

dxt dx?
) = Lo,
() dt a "
t? :
=...= z'=t, x2:§, 2'=0 for i=3,...,n

3 The metric tensor

3.1 Metrics

We want to measure things — need metric!
E.g.: R3, scalar product: maps 2 vectors to R

= metric should be (0,2) tensor

Def.: A metric at p € M :=(0,2) tensor that is:
(i) symmetric: g(X,Y)=¢g(Y,X) VX, Y eT,(M) < gu= 0
(ii) non-degenerate: g(X,Y)=0 VY eT,(M) & X=0
Notation: g(X,Y)=(X,Y)=X'Y

Comment: a metric defines an isomorphism between vectors and 1-forms:
X—gX,)=X, ie. X:T,(M)=R, Y —»X(Y):=9X,Y)

with the metric inverse (see below), we can raise and lower indices of tensors
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Signature
g symmetric = components of g at p € M are a symmetric matrix
= d basis where g, is diagonal
g non-degenerate = all diagonal elements are # 0
= we can rescale the basis such that the diagonal elements = +1
“orthonormal basis” < basis non-unique!

“Sylvester’s law” = the number of +1 and —1 entries is independent of basis

Def.: “signature” := sum +1, —1 over all diagonal elements

Riemannian metrics: signature = 4+ + ...+ or +n = # of dims.

Lorentzian metrics: — 4+ +...4+ or n — 2. Some people use + — —...—

Note: Equivalence principle
= in a local inertial frame, the laws of SR hold
= dJchart: metric g¢,, =7, = diag(—1,1,1,1) “Lorentz invariant”
Only possible locally! At ¢ # p, g # 1w in general
Def.: “A Riemannian (Lorentzian) manifold”
= (M,g) where M is a diff. manifold and g a Riemannian (Lorentzian) metric

“spacetime” := Lorentzian manifold

Notation: in coord. basis: g = g, do* @ dz”

often used: ds* = g, dz"dz”

26
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Comment: Let \:(a,b) C R — M be asmooth curve on a Riemannian manifold,

X be the tangent vector of A

b
Then the length of A is: / \/9(X, X)\pdt

dt
re-parametrize: t = t(u) with e 0, ue(ed), tlc)=a, tld) =b
u

dt
= the curve k(u):= A(t(u)) has tangent vector Y = d_X
u

= the length of x is the same as that of .

Examples
(1) Euclidean metric in R™ with coords. z!, ..., 2™
g=dz' @dz' + .. +dz" ®@dz" .
A coord. chart of (R",g) where g, = diag(l, ..., 1) is called “Cartesian”

(2) Minkowski metric in R* with coords. x°, 2!, 22, x3:

n = —(dz?)® + (dz')? + (d2?)* + (d2*)?, (d2°)*=d2’®da?,...
A coord. chart which covers R* such that 7, = diag(—1, 1, 1, 1) is
called “inertial frame”. (R* n) =: Minkowski spacetime

(3) Let (#,¢) be spherical coords. on S? = ds? = df? + sin? § d¢?
This is positive definite on 6 € (0,7) but not on all 5?
= We need second chart, e.g. ¢, ¢ with

x=—sinfd cos¢d’, y=-coshl, z=sinf sing’

Def.: g non-degenerate = g invertible

“inverse metric” = g~! := symmetric (2,0) tensor ¢%° with ¢%g,. = 6%

Example: On S? on the chart (6,¢) we have ¢" = diag(1, 1/sin®6)
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Comment: g~ maps 1-forms to vectors: (g~ (n, . ))(w) =g '(n,w)
The metric mappings between vectors and 1-forms are inverses of each other:
9 (g(X,.)..)=X, g(g7'(m, .)..)=m
— natural isomorphism
Example: Let T be a (3,2) tensor: 7% = g,;g%gIT ¢,
— we use the same letter 7" irrespective of the up or down position of indices

— the order of indices is preserved!

3.2 Lorentzian signature
Note: indices typically chosen to run from 0 ... 3
At any p € M of a Lorentzian manifold:
we can choose orthonormal basis (ONB): g(e,,e,) = n,, = diag(—1, 1, 1, 1)
This basis is not unique:
e, = (A_l)yuev
= g =g(e,,8,) = (A_l)pu (A_l)ol/g(epv €)= (A_l)pu(A_l)UV Tpo = N
= A* A N = 1, “Lorentz trafos of SR!
= ONBs are related by Lorentz trafos

= locally at p we recover SR

Def.: Let (M,g) be a Lorentzian manifold, X € T,(M), X #0

X is timelike & g(X,X)<0 -

null

null & g(X,X)=0 / spacelike
spacelike < g(X,X) >0

In an ONB, g¢,, = 1., locally

= locally we have the light cone structure of SR
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One can show: If X, Y € T,(M), X, Y #0 with g(X,Y)=0. Then
X timelike = Y spacelike
X null = Y spacelike or null

X spacelike = Y spacelike, timelike or null

Principle of proof: Apply spatial rotation such that X has simple space components.

E.g. timelike X — X* = (X° X' 0, 0)

Def.: On a Riemannian manifold:

“norm” of X € T,(M): |X|:=/g(X,X)
9(X.Y)
“angle” between X, Y € T,(M): 6 :=arccos <7
" | X[Y]

Same for spacelike vectors in Lorentzian manifold.

Def.: A curve is timelike (null, spacelike)

& its tangent vector is timelike (null, spacelike) everywhere

Comments: e curves often change their character between timelike, null, spacelike

e the length of a spacelike curve A is

t1
to

e for timelike curves we define the proper time along the curve as

t1
T = —g(X, X dt
|y ex X,

da
In a coord. chart: X* = e so we often write:

dr? = —gudatdx”, T = /dT
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Def.: “4-velocity” of a timelike curve A

:= tangent vector of the curve parametrized by the proper time

dzt
u = —

dr

A7)
Note: along this curve:

dxH d:L'V

G —— i dr dr —/ /= guurturdr e
= 1= /—guu'u”

= gput'u” = —1

3.3 Curves of extremal proper time

Let p, g € M Dbe connected by a timelike curve A
A small deformation of A is still timelike

Which curve connecting p, ¢ extremizes the proper time along it?

Let w be a parameter such that Mu=0)=p, Mu=1)=¢q. Let ' :=—.

=7\ = /0 G(z(u),i(u))du with G = \/—g,w (z(u)) @ (u) & (u)
and  z(u) == z(A(u))

This is an Euler-Lagrange problem

oG oG
= the extremal curve satisfies — =
Qi 8x“
oG 1 1 »
We have: 95— aC 2g,,7" = agu,,:c
15,6 1 . 0
% = _ﬁ 8ugypx g y where 8“ = @

dxt dxv

Now change to the proper time as a parameter: 7 = _g“”d—d— U
u du
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d 2

du
dr
= @—G
d d
= @_GE

v 1 v P

= ... = FEuler-Lagrange Eq.: di <9uvciii) 0 dz¥ dz
T T

LB dardet 1 dat da
I g3 & g ar 2 g ar T

| .
. symm. 1n p, v

= OpY(uv)
N d*z” 4o dz¥ dxP
dr? P dr dr

with |I'], =

2

. o «
Comments: o I} =17,

e [, are not tensor components

(*) is called the “geodesic equation”

d2 e
In Minkowski: T}, =0 = dz

=0

30k gy

o |

1
g (09 + OvGpp — 0uup) “Christoffel symbols”

31

The individual terms of (x) are not vector components, but the sum is

= The egs. of motion of a free particle extremize proper time

Postulate: Massive particles in GR follow curves of extremal proper time,

i.e. follow (%)

Comments: e massless particles follow a similar equation

e In Minkowski: curves of extremal proper time maximize proper time

between 2 points.

In GR: This holds locally; the max. may not be a global one.
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One can show the following:

(1) (x) are the Euler-Lagrange eqs. of L = —g,, (z(7))

— easy way to calculate I'})

dat da’
dr dr

oL
(2) L has no explicit 7 dependence: 5 = 0
T
: oL . e dx* dx”
with EL eqs.: = ...= L — g it = gt = Gy

is conserved along curves of extremal proper time: e

At
It better be! 4-velocity u" = di ,
-

T

guutu” = —1

Example: Schwarzschild metric in Schwarzschild coords.:

2M

ds® = —fdt* + f7'dr® +1°d0? + r?sin® 0 de?,  f=1-"—,
-

= L= fi*— f7%% —r20* — r?sin%6 §°
d ... 2t

EL for ¢(7): d_7(2ft):0 = F_l—f
df /dr
= Fltfr:Ff“t: 2f )

cf. Example sheet 1

I, =0 otherwise

@i
dr

tr =20

.=0

M = const

32
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4 Covariant derivative

4.1 Introduction

Physical laws involve derivatives.

For functions we have: are the components of the gradient df

Dat

Vectors and tensors: This does not work. We cannot take the difference

between vectors at different points: U € T,(M), V € T, (M)

— Covariant derivative V on manifold M

Def.: “Covariant derivative V” := map from two smooth
vectorfields X, Z to a smooth vectorfield VxZ with
(1) VixigvZ = fVxZ +gVyZ, f,gfunctions
2) Vx(Y +2Z)=VxY +VxZ
(3) Vx(fY) = fVxY +(Vxf)Y “Leibnis’; Vxf = X(f)
Comments: we can view VY : T,(M) = T,(M), X — VxY
or VY : (M) xT,(M) =R, (n,X)—=n(VxY); (1) tensor

Def.: The (1) tensor VY is the covariant derivative of Y:

Notation: (VY)% =V, Y=Y,

Comment: e for a function f: Vf: X — Vxf=X(f) isa ((1]) tensor
e we cannot view V:(X,Y) — VxY asa (}) tensor field:

not linear in Y.

Def.: Let {e”} be a basis. We define the
“connection components” Fﬁp: Ve, = Ve, e, = Fﬁpeu

Example: The Christoffel symbols are one connection:

the “Levi-Civita” connection in a coord. basis; cf. below.
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Comment: For a vectorfield V' and a coord. basis,

oVH
oxv

This is not chart independent and, hence, not a tensor.

we can define T, := 0,V =

We are missing the variation of the basis vectors!
For an arbitrary basis {e,} write:
X =X'e,, Y =YVe,
= VxY =Vx(Yte,) = X(Y")e, +Y"Vxe,
=X"e,(Y") e, +Y"Vxvee€,
=X"e,(Y")e,+Y*X" V,e,
——

TP
=Luvep

:‘X”(QAYW)+—F%Y”>eu

= (VxY)'=X"e, (Y")+T0,Y"X" ‘ X arbitrary

= (VY)', =V, YF =Y+, =e, (V") +THY"

Coord. basis = |V, V" =9, Y" + 1" Y"

Change of basis

e, = (A"")"e,

=...= f‘,‘jp = At (A7 (AN I, + AP (A7h, ea((A_l)T,,)J ’ Ex. sheet 2

indepencfgnt of I"!

= Difference of 2 connections I') ) — T = transforms as tensor
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Covariant derivative of tensors

Obtained from Leibniz rule; (r,s) tensor T' +— VT is (r, s + 1) tensor
E.g lform: (Vxn)(Y):=Vx(n(Y)) -n(VxY)
Vn is a (0,2) tensor since:
(Vxn)(Y) = Vx(m,Y") = . (VxY )"
= X (0)Y" + 1, X (V") = . (X"e, (V) +17, Y7 X")
=0
= X", (n)Y" =T m,Y P X"

= (ev(np) = I,n,) XVY? s linear in X, Y

Components: | 7,., = V.1, =e,(n,) — Lo

Coord. basis: = Oynyu — I0,mp

Covariant derivative of (r, s) tensor:

— 1--- 1 T2 ... oy 1eoebp—10
Y THtr g = T,y + TRt Dl it

_ o U1 ...y _ _ o ..
Fl/lpT ovy...Vg A Fl/spT V1...Vs—10

Higher derivatives

fuw =0,0,f or X%, =V./V, X
Note order of indices! Derivatives sometimes commute, sometimes not.
Eg. 0,0.,f =0.0.f
but V,V,f =V, 0.f =0,0.f = 19,0,
=V, NV f=T0,0,f +17,0,f
=V, V.f - 2Fﬁw] O, f

. « : 9 A _TA _TA
Def.: “Torsion tensor” T),,":=1", —1I7,

I is torsion free & T . =0

(]

Lemma: I' torsion free, X, Y vector fields = VxY —VyX =[X,Y]
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Proof: Coord. basis
= X"V, YY"V, Xt=X"0,YH+ X’TgVYp —-YYo, X" — Y”FgVXp

_ Hn
= [X, Y]+ 21,

XY =[X,Y]"
Note: Even with torsion-free connection, 2" cov. derivs. of

tensor fields generally do not commute.

4.2 The Levi-Civita connection

A metric singles out a preferred connection.

Fundamental theorem of Riemannian geometry:

On a manifold M with metric g, there exists a unique,
torsion-free connection with Vg = 0: The “Levi-Civita connection”

Proof: 1) Uniqueness

Let V be a Levi-Civita connection, X, Y, Z vector fields

= X(g(Y,Z2)=Vx(g(Y,Z)=g(VxY.Z)+g(Y,.VxZ) +0
Z(g(X,)Y))=Vz(9(X,Y)) =9¢g(VzX,Y) +g(X,VzY) +0
Y(9(Z, X)) =Vy(9(Z,X)) =g(VyZ,X)+9(Z,VyX) +0

= X(g(Y. 2))+Y (9(Z, X)) - Z(9(X.Y))
=g(VxY +VyX,Z) - g(VzX - VxZ,Y)+g(VyZ - VzY,X)
Torsion free: VxY — Vy X = [X,Y]; permute X, Y, Z
= X(g(Y,2)+Y(9(Z2,X)) - Z(g(X,Y))
=29(VxY.Z)-g([X.Y],Z2) - g([2,X),Y) +9g([Y. Z], X)

=g(VxY,Z) = % {X(g(Y.,Z2))+Y(9(Z. X)) - Z(9(X,Y))

+9((X.,Y],2) +9(2,X].Y) —g([Y. 2], X)}

g non-degenerate = unique expression for VxY
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2) Existence: Is Vx thus defined a connection?
Check (1) of the definition of the covariant derivative.
Let f be a function; use (*) with X — fX
1

+g([f X, Y], 2)+9([Z.f X].Y) - fg([Y.Z], X)}

{1 X(9(¥.2)) + 1Y (9(2.X))+Y (/) 9(Z. X) - f Z(g(X.Y))

(NN

~Z(f)g(X.Y)+ f9(X.Y].2)-Y (/)g(X.2)

#1912 X).¥)+Z(1)9(X.Y) ~ Fo([¥.21. X)

- g {X(g(Y,2))+Y(9(Z2,X)) - Z(9(X,Y))
+9([X.Y),Z2)+9(2.X].Y) - g([Y, 2], X)}

= g(foY—vaY,Z):O Y Z
g non-degenerate = VixY = fVxY

(2), (3) of the definition of the cov. deriv. can be shown similarly.

Components of Levi-Civita connection in coord. basis

Use (%) with [e,,e,]=0

=g( Ve, e) = % [e,(gue) + €0(gop) — € (gpw)]

=I'l e,

1
= Q(Fﬁpem eU) = Do = 2 (a/’g”a +0vgop — 009,)1/) ’ a

1
= 5Aufﬁp = Ffj‘p = 59)‘0 (3pgyg + 0vGop — 809,),,) <+ Christoffel symbols!
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Comment: In GR we take the Levi-Civita connection.
Different connection — AI' which is a tensor

— can be viewed as matter source

4.3 Geodesics

d*at dz¥ dz?
Curves extremizing proper time: di +1, (:c(T)) d:i % = (%)

here: 7 = proper time along curve
dz*

Xt = i tangent vector along curve
T

Let’s extend X to be a vectorfield in a neighbourhood of curve.

N Azt B dX“(x(T)) _dx” OX*
dr? dr -~ dr Oz
LHS independent of the extension = RHS too.

= X0, X"

(%) = X" (0, X" + F’,ijp) =X"V,X!'=0 or VxX=0.
We derived this for the Levi-Civita connection but define for any connection:
Def.: “affinely parametrized geodesic”

:= integral curve of vector field X with VxX =0

Comment: Let u be another parameter of the curve

dt
h that 7= — .
such that 7 = 7(u), du>0
. dr
= tangent vector now: Y =hX with h:= T
u
9 dh
=VyY =Vx(hX)=hVx(hX)=h"VxX+X(h)hX =—Y
SN—— dr
=0
dh . .
= VyY = %Y describes the same geodesic.
Unless i 0, it is not affinely parameterized.
T

u is also an affine parameter < h constant < v =ar +0b, a, b= const

= 2 parameter family of affine parameters
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Note: e Forany connection, we can write the geodesic eq. (*) for some affine parameter.

e Curves of extremal proper time are timelike geodesics.
We can also define spacelike geodesics through ().

Then 7 is not proper time but arc length often denoted by s.

Theorem: Let M be a manifold with connection, p € M, X, € T,(M)

= d unique affinely parametrized geodesic with tangent vector X, in p

Proof: Let x" be a coord. chart in nbhd. of p, X/' components of X,

d*zt dz¥ dx”
3 . 1Y —
geodesic eq.: 772 g g 0
e o dzt
with initial conditions x*(0) = z*(p), I = X)
’7—

This is a system of ODEs for x#. Theory of ODEs
= unique solution exists.
Note: Levi-Civita connection, Vx X = 0 along affinely parametrized geodesic implies:
Vx(9(X,X)) = (Vxg)(X,X)+29(VxX,X)=0+0
= g(X, X) const. along curve
= tangent vector cannot change time, space or null character

= geodesic is either time, spacelike or null

Postulate: massive (massless) particles in GR move on timelike (null) geodesics

Note: Null geodesics have no analogue of proper time or arc length,

but still affine parameters.
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4.4 Normal coordinates

Def.: Let M be a manifold, I' a connection, p € M.
“exponential map” :=e: 7, = M, X, ¢ with
q := point a unit affine parameter distance along

geodesic through p with tangent X,

Comments: 1) e can be shown to be one-to-one and onto locally,
(geodesics can cross globally)
2) The vector X, fixes the parametrization of the geodesic:
One can show that ¢ X,, 0<t?¢ <1 ismapped to point at

affine par. distance ¢ along the geodesic of X,,.

Def.: Let {e,} be a basis of 7,(M). “Normal coords. in nbhd. of p € M”:
chart that assigns to ¢ = e¢(X) € M the coordinates X*
Note: The coords. X* are not fixed by the vector X.

We still have the freedom to choose a basis for 7,(M).

Lemma: In normal coordinates, F?Vp) =0 at p.

If I' is torsion free, then I') = 0.

Proof: From (xx) = affinely parametrized geodesic is given by

o#(t) =t X} in normal coords.

, dz¥ dz? Y
= geodesic eq.: 0417, T a X, X =0 atp VX € T,(M)
noo_
= F(Vp) =0

torsion free = T

=0 = T¥ =0

Note: in general I}, # 0 away from p!

40

()
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Lemma: with metric, we can use the Levi-Civita connection
= in normal coords. at p: 9,9, = Guv,p = 0
Proof: I%,=0 = 2g,,0%, = 0,90y + Ougvo — Ovgp =0
symmetrize on o, pt, add = 0,9, =0
Note: Again valid only at p!

In general we cannot make 0,¢,, vanish away from p.

Lemma: Let M be a manifold with metric g,,, and torsion free connection.
= we can choose normal coords. such that at p:
0pGuw =0, g =N (or d,, in Riemannian case)
Proof: Choose an orthonormal basis {e,} for 7,(M).
Let X be a vector field.

= at p: X = X'e; +...+ X"e, defines normal coords. i* = X*

Consider vector o = its integral curve is z#(t) = (¢, 0, ..., 0)
z
b d di* 0 . 0 0
ecause — = — —— = = —
dt — dt 9ir - '9ir i
The components of the tangent vector to the curve z#(t) = (¢, 0, ..., 0)
dz+
are also: — = (1,0, ...,0
il )
. 0
= The tangent vector is e; = e; = —
ozt
o 0
Likewise: €, = @

0
— { 8”‘} defines a coordinate orthonormal basis.
T

Summary: Locally, we can choose coordinates such that the metric is 7, = diag(—1, 1, 1, 1)
and its first derivatives vanish.

Def.: “local inertial frame at p € M” := normal coord. chart with these properties
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5 Physical laws in curved spacetime

5.1 Covariance

“general covariance”: Physical laws should be independent of
the choice of charts and basis.

“special covariance” in special relativity: laws independent of inertial frame

Recipe for converting SR laws — GR laws

D) M = 9w Minkowski — curved metric

2) 00—V partial — covariant derivs.

3) i, V,...—a, b, ... coord.indices — abstract indices
Examples:

1) Let a* be inertial frame coords., 7,, the Minkowski metric.
= scalar wave eq.: 70,0, =0 in SR
= 9"V Vg =VV,h =9, =0
2) Electromagnetic field in SR:
F, = Fy, with Fy =—-E;, Fj=epbBy, (4,5, k=1...3)
vacuum Maxwell eqs.: "0, F,, =0, 0pf,, =0
— in GR: ¢®V,F,. =0, Viefpg =0

Az dxP
Lorentz force in SR: di = %n””FW, % :
~—~

T = proper time
= u? = 4-velocity

—in GR: «’V,u® = 2gabecuc
m
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Comment: This procedure satisfies the EP. In a local inertial frame:
L, =0, guwl, = 1w
= V — 0, soin a LIF we have SR.
But: The step SR — GR is not unique.
E.g. we can add curvature terms to the GR eqs.
Such terms are zero in SR (see below).

Ultimate test: experiment.

5.2 Energy momentum tensor

Energy, momentum, mass source gravity. Ho do we describe them in GR?

Particles

1) in SR: Associate rest mass with particle
= 4-momentum P* = mu* = (E, P') in this frame
4-velocity of observer in particle’s rest frame: v = (1, 0, 0, 0)
particle energy measured by this observer: F = —n,, 0" P¥

particle’s rest mass: 1, P*P" = —E? + p? = —m?; note: ¢ =1

2)in GR: EP = P*=mu® = guP*P’"=—m?
Particle energy measured by observer: E = —g.(p) v*(p) P°(p)
works only if both are at p

An observer at p € M cannot measure the energy of a particle at ¢
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electromagnetic field

1)

pre-relativistic notation, Cartesian coordinates:
1

energy density: € = 8—(EZEZ + B;B;)
7T

momentum density, energy flux: S; = ﬁeijkEjBk “Poynting vector”

Maxwell eqs. = % +0;S; =0

ot
1 [1
stress tensor: tij = 4— §(EkEk + BkBk>52] - EZE] — BZBj
T
conservation law: 8—1; +0;ti; =0

Force exerted on surface element dA with normal n;: t;;n,;dA

Special relativity:
energy momentum tensor (= stress tensor = stress-energy tensor) in IF:

1 1
T = o (FHPF,/’ - FMW) ~ T,

T()Q = €, T()Z' = _Si> 7—‘” = t” X from 1)

Conservation: "7, = n"°0,1T,, =0

GR: we define by covariance:

1

1
Ty = — | Fou )¢ — = F“F.uq.
b In ( b 1 a9 b)

Maxwell eqs.: VT, =0; cf. example sheet 2

Postulate: In GR, continuous matter is described by a conserved, symmetric

(0,2) tensor which contains the information about the matter’s
energy, momentum and stress.

The energy momentum tensor is conserved: VT, = 0.
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Comment:

Comment:

Example:

Let O be an observer with 4-velocity u®.

Consider a LIF at p where O is at rest.

Choose orthonormal basis {e,} at p aligned with the coord. axes of this LIF.

= e =u", spatial basis vectors ef, =1, 2,3

b — energy density at p measured by O

EP = e=Ty = Tabegeg = T puu
S; = —Ty; = momentum density
j¢ = —T%ub = (¢, S;) in this basis = energy momentum current

ti; = T;; = stress tensor as measured by O

Consider an IF in Minkowski spacetime.

integration

local conservation 0#7),,, —————— global conservation
d -
ot dt J, v

in GR: This is not possible! The grav. field contains energy,

but there is no invariant definition for it.
1 -

Newtonian analogue —8—(V¢)2 does not work because
7r

metric derivatives vanish in normal coordinates.

= energy only defined for global spacetime or special cases, e.g. horizons

A perfect fluid is matter described by a 4-velocity field u* and
functions p, p such that Ty, = (p + p)ugup + Pgap -
p, p = energy density, pressure measured by observer co-moving with fluid
One can show: 1) Tyuu® = p
D VTy=0 & u'Vep+(p+p)Veu=0
A (p+p)ubVyu® = —(gay + utuy)Vop
These are GR’s version of the Euler eqgs. and mass conservation.

Note: p = 0 = fluid moves on geodesics.

45
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6 Curvature

6.1 Parallel transport

A connection gives us a notion of “a tensor that does not change along a curve”
Def.: Let X be tangent to a curve. A tensor is

“parallely transported/propagated along the curve” & VxT =0

Comments: e The tangent of a geodesic is parallely propagated along itself.
e VxT =0 determines T uniquely along the curve:
in coords. (z*) the curveis z*(t)
= X7V, 1", = X7°0,T", + TW, TP, X7 =T, T",X°

d (o (o
— Ty 4+ DT, X7 = T2, T4, X7 =0

ODE theory =- unique solution for all T*,
e g € M, q+# p : parallel transport T along a curve from p to ¢
— isomorphism between tensors at p, ¢

e FKuclidean space or Minkowski in Cartesian coords.

d
= " =0 = —T", =0
e dt
= parallel trapo. leaves tensor components constant
= parallel trapo. is independent of the curve chosen!

This is not the case in GR!

6.2 The Riemann tensor

Def.: The Riemann curvature tensor R%,.q is defined such that
for VFs X, Y, Z: R%.q2°X°Y? = (R(X,Y)Z)“ with
R(X,Y)Z =VxVyZ -VyVxZ -Vixv|Z
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Linearity in X, Y, Z: Let f be a function.
(1) R(fX,Y)Z=VixVyZ - VyVixZ —Vixv|Z
= fVxVyZ ~Vy(fVxZ) — Vixy-v()xZ
= fVxVyZ — [VyVxZ - Y (f)VxZ ~VixvZ+ Vv xZ
= [VXVyZ — [VyVxZ-Y (f)VxZ - [Vixv)Z+Y (f)VxZ
—fR(X,Y)Z
(2) R(X,Y)Z=—-R(Y,X)Z = linear in Y too
B)R(X,Y)(fZ)=VxVy(fZ) - VyVx([fZ) - Vixy|([fZ)
=Vx(fVvyZ+Y(f)Z)-Vy(fVxZ+X(f)Z) - fVixy)Z - X, Y|(f)Z
= fVXVYyZ+X(/)VyZ+Y(f)VxZ+X(Y(f)) Z

~fVyVxZ-Y(f)VxZ - X()VyZ-Y (X(f) Z

—fVixyZ - X, Y](f)Z
= fR<X7Y)Z O

0

O

= R(e,,e,)e, =V, V,e, —V,V,e,

eun

Coord. basis {eu } = le,e|=0; V,:=V

= VP(FZJeT) - VU (FZpeT)

=0,l'),e, + 17,1 e, — 0,1 e, —T7 I'" e,

voT Tp vpT TO

= |RV'Ype = 0,10 — 801“5[) + I T+ —T7 T¢ (%)

Vo Tp vpT TO

Comment: R*,,, =0 in Minkowski or Euclidean:

We can choose coords. such that I, =0 everywhere.

Def.: “Ricci tensor” | R, := R0
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Comments: 2" cov. derivs. of functions commute < no torsion
ond deri f d if ion = 0
cov. derivs. of tensors do not commute even if torsion =

e.g. one can show: (V.Vyq— ViV.)Z% = R%.4Z" “Ricci identity”

6.3 Parallel transport and curvature

Let X,Y be VFs with: lin. indep. everywhere and [X,Y] = 0; let torsion = 0

= we can choose coords. (s, ¢, ...) such that X = —, Y = 9

0s ot

: . X r (3s,)
Let p, ¢, r, u € M along integral curves of X, Y with coords. U (0O,8t)
0,...,0), (ds,0,...), (ds,9t,0,...), (0,6t 0,...)
Let Z, € T,(M), parallel trapo Z along pgrup Y v
to get Z), € T,(M)
: (Z; B Zp)a a by cyvd p (O 0) X q (65'0)

|l = (FZrx,
Proof:

Let Z, € T,(M),(z") be normal coords. at p.
s, t are now “only” parameters along the curves.

We assume ds, 6t are small and 0t = ads for a = const.
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(1) p — ¢: curve with tangent X and parameter s

parallel transport VxZ =0

0 dzH
= XV, =X"—Z"+10 7PX° = — 4+ T8 ZPX7 =0
ox° P ds o

dzH

0 &
= ds ad

d>zZ+ 0 d

YN G ) x—x2 -2

= ds? M re ) ozt ds

Taylor expand around p and use Fija}p =0

dz» 1 (d*Z"
Zh =zt = —— = ? ’
= Z! s <d$ )p68+2<d82 )pés + O(6s7)

1
=3 (XAZPX70\I%,) 05" + O(3s%)

dzm 1 [/d*Z+
2 CZh—ZF = =) t+ = 5t? 5t?
Qa2 7= (G0 ) ey (G ) oo

= — (I, 2°Y") ot —% [Wak(rgazpya)}qaﬂ + O(5t?)
~—_——

= [(T4,2°Y7), + (X AT, Z2°Y 7)) b5 + O(ds%)] ot

= [0+ (Z°PY X 05T )05 4+ O(0s%)] ot

= 21— 2 = = [(Z°Y X 0\I,),05 + O(9s%)| bt
—% [ (YP0\(1),27Y7)) +O(3s)]6t° + O(5t?)
= (Z°Y°Y N0,
= (2 = Z}) . = —%@FZU) [2°(X7X205% + YOV 6t + 2Y 7 X35 0t)] + O(6t)

We obtain (Z}' — Z}),u by simply interchanging X <Y, s <>

= (zk -2 =

. —%(&F‘p‘g) [Z° (VoY 51* + X7 XA6s” + 2X Yot 53)}70 + O(05%)

49
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= ZW =2l = (2 = Z)par — (2 = Z)pur = = [(Y7 X = XTY)(0\T,,)] 27 b5 6t + O(8%)

r p

— [XUY)‘ZPEa)\Fﬁg — 8UFQ}F +0(8%) = (R0 2°Y?X7) +0(8°) o

© R¥,\s in normal coords: (I'g, ), = 0
Conclusion: Curvature measures the change of vectors under parallel transport

along closed curves or, equivalently, the path (in)dependence of par. trapo.

6.4 Symmetries of the Riemann tensor
(i) R%ca=—R"% < R%eq) =0 by def.
Torsion = 0, let p € M, (") normal coords. Then:

(i) T% =0 atp, I},

| = 0 everywhere
= R'ypo = 0,10, — 0,10, ‘ antisymmetrize on vpo

= R”[,,pg} =0 = Ra[bcd] =0
iii) V. RM,,, = O-R",,» “OR = 00’ — T'0I' = 90I'”
p p
= 0,0, — 00,1} ‘ antisymmetrize on poT

TV vp

= RF)jpeir) = 0 “Bianchi identity”

= R%g:e) = 0 tensorial equation !

50
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6.5 Geodesic deviation

Goal: quantify relative acceleration of geodesics

Def.: Let (M,I") be a manifold with connection.

“l-parameter family of geodesics” := a map

v:IxI'— M with I, I’ C R, open and
(i) for fixed s, ~(s,t) is a geodesic with affine par. ¢
(ii) locally, (s,t)+ v(s,t) is smooth, 1-to-1 has smooth inverse

= the family of geodesics forms a 2-dim. surface ¥ C M

Let T be the tangent vector to v(s = const,t) and S to y(s,t = const)

oxt
I C(at): St = —
n coords. (z*): S Ep
= a'(s + 0s,t) = 2#(s,1) + 05 S (s,t) + O(55%) s const

= s .S points from one geodesic to a nearby one: “deviation vector”
= “relative velocity” of nearby geodesics: Vr(0s.S) =ds VS

= “relative acceleration” of nearby geodesics: 0s VoV 1S

Geodesic deviation: |VyVrS = R(T,S)T

& TV (T"VpS) = R%qT"T°S?
Proof: Use coords. (s,t) on ¥ and extend to (s,t,...) in nbhd. of X

0 0

No torsion = V¢S - VT =[T,S5]=0
= VrVrS =VyVsT =V VT —|—R(T, S)T 0O
~—

=0 geodesic!
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Comments: e R%,,; measures geodesic deviation; manifestation of curvature.
e R%.q = 0 < relative acceleration = 0 for all families of geodesics.

e Tidal forces arise from geodesic deviation.

6.6 Curvature of the Levi-Civita connection

From now on: A manifold is assumed to have a metric and

and the connection is the Levi-Civita one unless stated otherwise.
Note: Rabcd = gaeRebcd

Def.: “Ricci scalar” R := g% Ry,
1
“Einstein tensor” Gy := Ra, — §Rgab
PI‘OpOSitiOHSI (1) Raped = Redan ( = R(ab)cd = Rcd(ab) =0 = Ry = _Rabcd)
(2) Rab - Rba
(3) V'Ga =0 “contracted Bianchi identities”
Proof: (1) Let p € M, use normal coords. at p = 09,9,, =0
= 0= 8“(5'/[) = au(guaggp) = gopaugua ‘ : ng
= 0,9"" =0

1
= 0,00, = 307 (00sGyu + 0p0u90 — 00,91

DO | —

—— o o T =TT
= Ruupa (apaugau + aaaugup aaal/gpu apaugua) + ~

= R,s;,  because gng symmetric, 0,03 commute

(2) Rab = ngRdacb = QCdRcbda = Rba

(3) Example sheet.
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6.7 Einstein’s equation

Postulates of GR

(1) Spacetime is a 4-dim. Lorentzian manifold with metric and Levi-Civita connection.
(2) Free particles follow timelike or null geodesics.
(3) Energy, momentum and stress of matter is described by a symmetric,

conserved tensor T, : VT, =0.

(4) Curvature is related to matter by the Einstein egs.

1 81G
G = Ry — §gabR = L4Tab ;G = Newton’s constant
c

Comments:
(i) Simplest relation between curvature and energy-momentum is linear.

— Einstein’s first guess: Ry = kT ; Kk = const

1 1
But: V*Gap = VR, — igabV“R =0- §gabV“R because VT, =0

L0 = V'R=0 = VT=0
not satisfactory since T' = 0 outside and 7" # 0 inside matter

Solution: replace Ry, with G, <+ “contracted Bianchi Id.”

k follows from Newtonian limit; cf. below.
1
(il) Vacuum = Gu = Ry — 5 Jab R=0 g™
= R=0 = Rup=0
(iii) The geodesic postulate can be shown to follow from VT, =0

G
A

(iv) Gap = T,, are 10 coupled, non-linear PDEs — tough to solve
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Theorem: (Lovelock 1972) Let H,, be a symmetric tensor with
(i) in any chart H,, = H,, (9w, Opu, 050,9,) at every p € M
(il) V°Hy, =0

(iii) H,y linear in 0,0,9,.

= dager Hap = aGap + Bgap

= we can modify Einstein’s eq.: G, + Agay, = 87Ty

—  Cosmological constant: A; |A|7Y/2 ~ 107 light years (from observations);

J— AC4 .
- 8rG

A can be regarded as a perfect fluid with p = —p “dark energy”

6.8 Units
In GR we often set G=1,c=1

3
G=667x10""  c=3x10°2
kgs S

= 1s=3x10°m
A 1kg=0.74x10"2"m
E.g. M, ~ 148 km

o4
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7 Diffeomorphisms and Lie derivative

7.1 Maps between manifolds

Def.: Let M, N be differentiable manifolds of dimension m, n respectively.
A function ¢ : M — N is smooth
& Yaogo i R™ — R" is smooth V charts ¢, on M, 14 on N

Def.: Let ¢: M — N, f:N — R besmooth. The “pull-back of f by ¢” is
¢ (f): M =R, pe ¢*(f) (p) = f(6(p))

Def.: The “push-forward of a curve \: I C R — M” is

poX:ICR—=N, t ¢(\1))

Def.: Let pe M, X € T,(M) be the tangent vector of \: I C R - M

The “push-forward of X by ¢” is /q;\
(X)) € Ty (N) defined as tangent vector of ¢ o A
Lemma: Let X € T,(M), f: N =R

= (6.(X))(f) = X (¢*(/))

Proof: Let A0)=p

d

oo {E(f o (¢o A))(t)} d

- [Fesren o]

= (6.(X))(f)

t=0 =0
Def.: Let ¢: M — N besmooth, p e M, n € T, (N).
The “pull-back of i by ¢” is

¢'(m) € T, (M), (¢"(m)(X) =n(¢(X)) VX € T,(M)
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Lemma: Let f:N =R = dfeTj, (N).
Then ¢*(df) € 7,(M) is ¢*(df) = d(¢"(/))
Proof: Let X € 7,(M)

= (6"(df)) (X) = df (¢.(X)) = (6.(X)) (f) = X (°(f)) = [d(¢"(f))] (X)

Components

Let z* be coords. on M, y® coords. on N, p=1...dim(M), a=1...dim(N)

= ¢: M — N defines a map z* — y*(z")

One can show: for a vector X € T,(M) : (¢.(X))" = % XH
x
p
* * aya
for a 1-form n € Tg,,(N) = (¢ (77))” = apn| e

Comments:
e p € M was arbitrary

= push-forward applies to vector fields, pull-back to covector fields

e pull-back of (2) tensor S:

(6°(S)) (X1, ..., Xo) = 8(6u(X1), ..., (X)) VX4, ..., X, € T,(M)

push-forward of (6) tensor T

(¢*(T>) (M1, - my) = T(¢*("71)7 R ¢*(77r)) N, M, € <¢>*(p)(N)

. . B 8yoc1 ayas
Components: (gb (S))m...us = o ) D |, ..o
aq...0p ayal ayaT 1---Mr
(¢* (T)) = Dy . —axm T
P P

Example: Let M = S? (unit sphere), N' = R? 2/ = (6, ¢) spherical coords. on S?
¢: M =N, pd o) y* = (sinf cos @, sinf sin ¢, cosd) € R3.
Let g be the Euclidean metric on R?, g,5 = .5 in coords. (x, y, 2)

= ... = The pull-back of g onto S?is: (¢*g),, = diag(1, sin*0) .
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7.2 Diffeomorphisms, Lie derivative

Def.: ¢: M — N is a “diffeomorphism” (dfm.)

& ¢ is 1-to-1, onto, smooth, and has a

smooth inverse. M, N must have the same dimension.
with a dfm., we have:
Def.: Let ¢ : M — N be adfm., T a () tensor on M.

The “push-forward of T under ¢ is the (Z) tensor on N:

o (TYMyy -y My X1, ooy X)
=T (¢ (), -5 0" (1), (67 )u(X1), - (¢71)u(Xs))
v, € TN, Xi € Top)(N)

One can show:
1) Push-forward commutes with contraction and outer product.

2) Components for G) tensor in coord. basis:

o0x°
p dy”

r "
[T ) = G

(T%5)p (%)

p
generalizes obviously for (Z) tensors
Comments: 1) pull-back of (%) tensors can be defined likewise = ¢* = (¢7).
2) We took “active” viewpoint: ¢ : p — ¢(p), 2 manifolds
“passive interpretation”: a
pull coords. y* back from N to M @
= simply 2 coord. charts z*, y* on M M

= (*) becomes the ordinary tensor transformation law
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Def.: Let ¢ : M — N be a dfm., V a covariant deriv. on M,
X a vector, T a tensor on N.
= The push-forward of V is the cov. deriv. V on A defined by
VxT = ¢. [V (x) (¢*(T))]

One can show (Example sheet 3):

(1) V satisfies the properties of a cov. deriv.

(2) The Riemann tensor of V is the push-forward of Riemann(V)

(3) Let V be the cov. deriv. of the Levi-Civita connection of g on M

= V is that of the Levi-Civita connection of ¢,(g) on A

Diffeomorphism invariance

We defined a spacetime as a pair (M, g).
Let’s add matter fields F, ... — (M,g,F,...)
2 models (M, g, F,...), (M’ g, F’,...) are taken to be equivalent if
Jdfm. ¢ : M — M’ which carries g, F, ... tog', F', ... :

g =09 F =0¢F,..
active-passive equivalence =- the models just differ by a coord. trafo.
= A spacetime is really an equivalence class of all equivalent (M’ g', F', ...)
Consequences: 1) Einstein’s egs. will not predict all 10 metric components!

2) Physical statements in GR must be diffeomorphism invariant.

3) This is the gauge freedom of GR.

Examples: 1) “Two geodesics intersect at x* = (...)” is not gauge invariant
2) Consider a geodesic intersected exactly once by
each of two other geodesics.
= The proper time along the geodesic between

the intersections is gauge invariant.
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Lie derivatives, symmetries

Push-forward and pull-back provide a way to compare tensors at different p, ¢ € M
Def.: A dfm. ¢: M — M is a “symmetry transformation of a tensor field T”
= ¢.(T) =T everywhere.
“isometry” := a symmetry trafo. of the metric
Def.: Let X be a VF on a manifold M. Let ¢, : M — M, p+— ¢ such that
q := point a parameter distance ¢ along the integral curve of X through p
For small enough ¢, ¢; can be shown to be a dfm.
Comments: 1) ¢y is the identity map; ¢s0 ¢y = ¢rrs; Gy = (¢r) 7L
2) If ¢y is a dfm. Vt € R = the ¢, form a 1-par. Abelian group
Then we can define Vp € M the curve
ANt R—= M, t—= ¢u(p).
Doing this Vp € M defines a VF:

X := tangent vectors of these curves.

3) The push-forward (¢;). allows us to compare tensors at different points.

— Def.: The “Lie derivative of a tensor T" along a VF X at p € M” is

(L:XT)p _ lg% [(QS—t)*CI;]p B TP

Comments: e Lx maps (2) tensor fields to (Z) tensor fields

o, fconst. = Lx(aS+pT)=alxS+ LxT
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Adapted coordinates

1) Let ¥ be an n — 1 dim. hypersurface of M,
X a VF that is nowhere tangent to X.

2) Let 2°, i=1...n—1 be coords. on X. Assign to ¢ € M
coords. (¢, #*) such that ¢ is a parameter distance t along
the integral curve of X through z* on X.

— coord. chart for sufficiently small ¢

. 0
Note: Int. curves of X have fixed (z') and parameter t: X = —

ot
The dfm. ¢, sends point p with (¢,, 2*) to ¢ with y* = (¢, + ¢, 2').
oy*
= =",
oxV

Now consider an (g) tensor T in these coords.:

8yﬂ1 ayUT Ox°1t O0x°s

A1 for _ 1e--Pr
= [((¢t)*T) V1...V5i|¢t(p) - a:)jpl e al’[)r ayl’l T aylfs |:Tp g U1...0'5j|

= [Tﬂl"'”"ul...us}

p
N |:((¢it)*T)ulmurl/l---l/s}p _ [Tﬂl...ﬂryl,..l/s}(bq:t(p)

= at p with (¢,, %):

1 ; ;
(LXTY = 2 [T, (b + £,27) = T, ()]

_ |9
ot

T“l---ﬂrylmys (t’ x7‘> ln thlS Chal"t!
(tp,x?)

It follows: Leibniz rule: Lx(S®@T) = (LxS)®T + S ® (LxT);

L x commutes with contraction
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We still need a chart independent expression:

i a

1) In this chart: Lxf = %f for function f, X(f) = 5%

= Lxf = X(f) in any basis!
oY+

2) Inourchart: (LxY )" = e for VF Y';
y#
(X, Y" = % (because X* = o*g)

= LxY = [X,Y] in any basis!
Comment: LxT depends on X, and its derivative
= L, LT are not tensors
cf. covariant deriv.: VxT depends only on X ; also linear in X,
= VT is a tensor
One can show:
1) For 1-form w: (Lxw), = X" 0w, + w,0, X",
(Lxw)y = X°Viyw, + wpV, X?
2) Foratensor T: (LxT)% 5. = X"0,T7% 5. — (0, XTI 5. — ...+ (0sX") T +...
(LxT)% . = XNVT ., — (Ve X)T  — oo+ (Ve XO)T% o+ ...
3) For metric: (£Lxg)uw = X?0,9u + 9up0u X? + G0, X"

=g,V X"+ 9, V,X? (for Levi-Civita connection)

Killing’s equation: Let ¢; be an isometry V;eg = Lxg =0

V. Xy + VX, =0 solutions X are “Killing vectors”
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Note: 1) If 3 chart with one coord. z on which g, do not depend
g . ..
= — is Killing VF
0z
2) Conversely, if 3 a Killing VF

= we can choose coords. such that g,, does not depend on one of them

Lemma: Let X be a Killing field and V' a VF tangent

to an affinely parametrized geodesic.
d

%(XGV“) =V (X, V) = Vy (X, V) = VV,(X, V%)

__Yray/sb b a __
=V VX, +XV°VVe =0

Symim. antisymm.

= X,V const. along geodesic.

One can show: T, = energy-momentum tensor, X¢ = Killing VF, J* :=T9%X"

= V,J* =0 “conserved current”
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8 Linearized Theory

8.1 The linearized Einstein eqs.

Consider small deviations from Minkowski in Cart. coords.
“Background”: Manifold M =R*, 7, = diag(-1, 1, 1, 1)
“Perturbation”: h,, = O(e) <1 = g = Nw + My

regard h,, as a tensor field on Minkowski background
2 metrics: 1), and the “physical metric” g, .

inverse metric: g"” = nt 4 kH

= glwgup — 5up + kuvnup + U””hup + kuuhyp - 5Mp

=0(e2)—0

= K = by, = —h" = O(e)
1 g
To O(E)Z Flrjp = 5”” (aphm/ + al/hpd - aahup) 5

Rywpo = Nur (apFZa - (%F,Cp) ‘ I'-I'=0(e)

= 10,0,h0 + 00Oy — 0yl — Doy

1 1
By = 0 by = 500yl = 50,0, ‘ ho=ht, o= g'o,

p Loy 1 1 p Ao P !
G = 0D uhiry = 50" Oyl = 50u0h = 510 Ny — O7D,h) £ 87T,

=T, <1

h=h", =—h

1 - - 1 _
= o= Gy = =50 by + Nl — 50000 e = 87T,
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Gauge symmetry

Let (M, g, T) be a spacetime, ¢ : M — M’ a diffeomorphism.
= (./\/l’ L 04(9), gb*(T)) is a physically equivalent spacetime.
We want 7, to remain the background metric = ¢ ~ O(e)
Consider dfm. ¢, defined by integral curves of VF X =t = O(e)
= With " =t X# = O(e) for any tensor T"
(0—)«(T) =T +tLxT + Ot?) =T + LT + O(€?)
!

energy momentum tensor: 7}, = O(e) = ((gb_t)*T)W =T, + O(e?)

metric: (¢p_4)«(g) =g+ Leg+...=n+h+ Ley+ O(€)

= h,,, and hy, + (L¢n),. are physically equivalent perturbations

= gauge symmetry: | by, — hy + 0,8 + 0,8, |, &= Ole)

Now choose &, such that 979,&, = —0"h,,
= "l — ... =0hy, +0"0,€, =0

1 _
= G = —58”8,)}%

= lin. Einstein eqs.: |0°0,h,, = —167T,,,| “Lorentz gauge”

8.2 Newtonian limit
Newtonian gravity: V2P = dip; c=G =1, d~?<Kl, e:= =0

= matter sources weak: p ~ O(e)

energy momentum tensor

for Newtonian matter: Tpg = p + O(e?)
Toi ~ Too v ~ O(€%/?)

T;; ~ Too vivy ~ O(€?)
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E.g. perfect fluid: 7, = (p+ P)uyu, + Py,

P
Prvpv—2, — ~ 107 in sun
¢ P
1 vl .
In SR: ut = , o v =0
V1I—v2 V1 —0?
In Newt. gravity temporal changes in ® are caused by motion of sources
0 0 0
"~ Vo = O g

= Ohyy = 0P,y = 80;hy,, = V?hy,, = —167T),

= V2hgy = —167Th = —167p + O(2),  ho; = O(e¥/?),  hy; = O(2)
Newton’s law with hgy = —4®

= h=n"h,, =49+ O(?) = —h

_ 1 - - 1 -
= hoo = hoo — 57700}1 = =20, hiy=hy— §7h'jh = —2®¢;;

or |ds®* = —(1+2®)dt* + (1 —2®)(da* + dy® + dz*)| cf. Sec. 1.4

Geodesics in the weak field

dr dr

Lagrangian: L = —g,, ( = G? in Sec. 3.3)

= (14 29)% — 6;;(1 — 20)i*d’ =1 (proper time)

= {2 = (1420) 7 [1 + §;i'd? + O(e?)]
. 1 o
=>t=1-—0+ 55,-jz’;'zﬂ + O(é%)

d i oL ' i
EL-eq. for z*: p [—20;,(1—2®)i] = Dk 20,01 + 20, D037 + O(€?)
- 28k<I> + 0(62)
= —2(5jkii’j + 0(62) = 20,P
L

= T = g = —0r® test body in Newt. gravity
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8.3 Gravitational waves

weak field but now: vacuum; no longer “0; < 9,

= Ohyy = (02 = V) Iy = 0

Plane wave solution: BW = We“fpf”p ; H,, = const

(i) Ohw =0 = k" =0 — speed of light

(ii) Lorentz gauge: 0"h,, =0 = kFH,, =0 “transverse”

E.g. wave in z-dir.: k* =w (1,0,0,1) = Hyp+H,;3=0

Remaining gauge freedom: take &, = X, = 979,£, = 0
=...=> H, — H, +ik,X,+ kX, —nu,k’'X,)
=...= 3dX,: Hy,=0, H*, =0 “traceless”

In this gauge: 1) h=0= h,, = h,,

2) plane wave in z-dir.: Hy, = H3, = H", =0

00 0 o0
0 H, H. 0
= Ho=10 B, —H, 0
00 0 0

Effect on particles

Consider particle at rest in background Lorentz frame: u§ = (1, 0, 0, 0)

geodesic eq.: %ua + Iufu” = 4% + 15, =0

1
I'o = 5770‘5(80}150 + Oohog — Oghoo) = 0 since Hp, =0
=u*=1(1,0,0,0) always

= particle stays at x* = const in this gauge
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8 LINEARIZED THEORY

Proper separation: ds* = —dt* + (1 + hy)dz® + (1 — hy)dy* + 2hydx dy + dz?

Case 1: Hy =0, H #0 = hy oscillates
= d82 — (]_ ‘l— h+) 452

2 particles at (—d, 0, 0), (4, 0, 0)

2 particles at (0, —¢, 0), (0,6, 0) = ds* = (1— hy)4d>

[ ] i [ ] °
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] i
[ ]
Case 2: H, =0, Hy #0
2 particles at (=8, —d, 0) /v/2, (6,5,0)/vV2 = ds* = (14 hy) 45>

2 particles at (6, —6, 0) /v/2, (=6,6,0)/vV2 = ds*=(1— hy)4s>

8.4 The field far from a source

weak field with matter: 8p8p7zu,, = —167T},
T 5 t — —)| , — ~

xr —

Green’s function: hy, (t,Z) = 4/
Assume matter has compact support inside radius d

= far from the source: r := |Z| > d > |y

S8

=r—2-5+0(%); &

"y (aOTuV) (t—

<

=...=>|T—1]
= T (t — |7 —7],9) = Tt —1,9) — & r,j)  Taylor

Ty
Assume v < ¢ = 0T}, ~ TW% < #

_ . 4 .
= Bt ) % [ Tt = r)dy
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Lorentz gauge: 9" h,,, =0
= aoﬁoi = @Bj,-, 00%0 = &Boi; sum over 7, ] =1...3

= Strategy: calculate i_zij ., — hoi = hoo

/Tijdgy _ / ak(Tzk yj) _(aszk) yj d3y

surface term —0

= /(80Ti0) Y d®y since 9,T"* =0

= / TPy = 9y / 0y dy = 9, / S 0T ) =5 (OT™) y' ' dPy
2 2

—0

1 o
= 50080 /Tooy’ Y dy ’ 9, T =0

g, N
= | hi;(t, ) = ;fij(t—r)% Lij(t —r) = /Too(t—ﬁy)y y d’y

I;; = “Quadrupole tensor”

Next: 7101'
J

zwm_ahﬂ_a<2wa—m) [ or="

2
::@_a< Mpw0+c_—fnwz i+
——
O(%)—m

4 4
Const. of integration: (%) = C; = —/TOZ(O ) d*y =: ——P “Momentum”

80 t—’l“ /aondy— /aTﬂdgy—O
surface term

= P, conserved at leading order

P, = C; = 0 in ctr. of mass frame
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8 LINEARIZED THEORY

Finally: 7100
aOBOO = aziLOZ

2!13'2'1’]'

= hoo = O <_2%jij(t - r)) +Cy = It —7) + Cot O(5)

4 4
Co= - /TOO(O,g) dy=:—-E  “Energy”
r r

80E(t - 7”) = 80 / TOO d3y = /(8/]10) d3y =0
—_—

surface term

= F conserved at 1% order

At higher order: E, P; not conserved!

8.5 Energy in gravitational waves

Consider 2" order pert. theory, vacuum

Notation: Guv = guu + 5(1)gul/ + 5(2)gul/ = Nuv + hm/ + h;(fu)

Eg gl’“’ = fr]l’”’ + 5(1)9/“/ + 5(2)9/“/

= g“pgp,, = 0k, + thV + 5(1)gup npul‘l’ [5(2)gup Now + K2 r o+ 5(1)gup h””l

/\/62

with h®#, = pehl)
= 5(1)gw — _hpp —- g(l)up[h]

5(2)gw N hHo bV =: g(l)uv[h@)] + 9(2) v Th)
—— ——

linear in h(2) quadratic in h

Generic pattern in pert. theory: §()S#, = SW# [h]

IS 5(1)uy[h(2)] + 5(2)uy[h]
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Einstein equations

Gu =G +6YG,, +69G,
=0+ GYN + GO+ G

GER] = RQH ~ SROM by — 5 RO ] 7

In vacuum: GE}V) [h] = Rf},} [h] =0 as before

GORO)] = 87t [1]

1 1 L
b = =GN = = (R M = 0" R ] )

Contracted Bianchi Identities: ¢"*V,G, =0

at e 8“Gf},,) [h] =0 = 8“Gf}l,) R3] =0 ‘ Bianchi Ids. true for 7, + hf?,,) !

at €% Einstein eqs.: G, =0, 0YG,, =0

= ... = (GDn]) =0

= 0", =0]; like energy-momentum tensor!

= regard t,, as energy momentum of grav. field.
Problem: ¢,, gauge dependent
“global solution”: integrate over all space — ADM mass...

“local approximation”: use “large” 4-volume V ~ a* as follows:

Def.: “average” (X,,):= / X, (2) W(z) d'z
v
weight W (z) >0, / Wd'z =1, W(x)— 0 on 0V smoothly
v

(9,0 = / (0, X ) W d'e = — / X, (0,1) d'z
1% 1%
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8 LINEARIZED THEORY

X
A

Let X, oscillate with wavelength A\ = 0,X,, ~

W
Also: 8pW~?, a> A

X

v Xuw
= (8PXW) ~ C/; < ; NapX,uz/

= neglect total derivs. in (. )
= “(A0B) = (9(AB)) = ((94) B) ~ =((94) B) 7

= ...= () @"R2[K) =0
| I o
(i) (t) = 55— (Ouhor D17 = 50, O — 20,1 0 uy)

(iii) (t,) is gauge invariant

8.6 The quadrupole formula

Energy flux in gravitational waves: —(t;)

) N !
consider sphere far from source: r > d; z; = —
,

= power (p) = — /r2<t0i>§ci dQ; dQ:=sinfdfde

Lorentz gauge: 0"h,,, =0
1 = - 1. - . -
) = — hPO _ i
= <t01> 397 <80hpo azh 280h 82h>

1, L N T
- —<aohjk Oifsi. — 20oho; Oho; + Golon Difooo — 5o a,-h>

327
@ @ €) @

Take h,, from Sec. 8.4, order O(1/r), do some §;; algebra (cf. [5])

...... 1

1
= .= | =2(QyQy),_; Q=1 3

=5 Ty 035

valid for: wave zone r > d, A>d (& v <)
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Examples:

M
l)binary M1:M2:M :>:><p>w<g

2

5/2
) — black holes, neutron stars

. M
2) hij ~ o~ O(107?") when the signal reaches the earth

9 Differential forms

d
Consider curve A(t), vector —, 1-form w

dt

:>//\w::/)\w<%>dt://\wudx”

Goal: generalize to areas, ...

Note: in 3 dims. V x W is an antisymmetric ar

9.1 p-forms
Def.: “p-form” := totally antisymmetric (2) te
0-form: function, 1-form: covector

Def.: Let n be a p-form, w a ¢-form

(»+9q)!
(n /\w)m...apbl...bq = g Nay...apWhy...bg]
+q)!
eSnNAw= v ' (‘1) An @ w|
p-q:

ea element

11SOor

totally antisymm. operator

e.g8. Ng N\ Wy = MWy — Mpg

one can show: 1) nAw=(-1)P%w An; mAn=0ifpodd

2) MAW)AXx=nA(wAX)
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Basis: Dual basis {f*} = The set of p-forms

flrrn . NFP = p!(f[”1 ®...Q f””}) is a basis for p-forms:

1
’r’ — Hnﬂl--'upful /\ [N /\ fﬂp

Def.: “Exterior derivative” of p-form n := p + 1 form

(dn>u1...up+1 = (p + 1) 8[#177;12..-Mp+1}

= (p + 1) [V[u177u2---up+1] + Fﬁmm Molus...ppa] 1 - - ]
——

torsion=0
=...= 1) d(dn)=0
2) dnAw)=(dn) Aw+ (—-1)Pn A dw
3) d(¢*n) =¢*dn  “d, pullback commute”

Def.: A p-form n is “closed” &= dn=0.
nis “exact” & dp—1)foomw : n=dw.

1 exact = 1 closed

Poincaré Lemma: 7 closed

= V points re M 3 neighbourhood O of r, (p—1) form w *

N =dwin O
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9.2 Integration on manifolds

Lemma: Let w be a n-form, {f*} basis, ' n-dim. manifold

Def.:

Def.:

Def.:

Def.:

= Jfunc. h : w="hf A.. A"
“Orientation” of n-dim. manifold A/
:= a smooth nowhere vanishing n-form n.
/

2 orientations m, i’ are “equivalent” :< 3 func. h >0 : 0 = hn

a coord. chart z# on N is “right-handed” (RH) relative to orientation n

& Jpso = hdzt AL A da”
“volume form” on N: €:= /[]g|f' A...Af"; g:=detg,,

Let v =2 : O C N — R" be a RH coord. chart, w a n-form

/ w = / wy pdxt. . dx"
O P(O)CR™

can be shown to chart independent

> 1 chart — add patches O,

Example: scalar f : / fe= flgldx' ... dx"
o $(0)

Def.:

)

a diffeomorphism ¢ : N'— N is “orientation preserving’

& ¢*(n) is equivalent to m V orientations 0

:>...:>/N¢*(w)://vw

9.3 Submanifolds, Stokes’ theorem
Let M, N be orientable manifolds of dim. m < n

Def.:

“embedding”: ¢ : M — N, ¢ smooth, 1-to-1 and
Vet Fubhhd, 0 @ ¢ ¢[O] — M is smooth.

m=n—1 = ¢[M] isa “hypersurface”
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Def.: Let ¢[M] be m-dim., n a m-form on N'

:/ n—/¢  n—dw = ¢W]d“’:/Md<¢*“’) (%)

Def.: 1R":={(z!,...,2") e R"| 2! <0}
N = “manifold with boundary”: like manifold, but charts v, : O, — %R"
“boundary” := ON := {p € N'| z'(p) = 0} is n— 1 dim.
(2%,...,2") is right-handed on ON & (2',...,2")is RHon N/

Stokes’ Theorem:

For a n-dim. orientable mfld. A/ with boundary ON and (n — 1)-form n

fon=
N ON

where the rhs. is defined through (%) with ¢ : ON = N, p—1p ()

Def.: a) X € 7,(N) is “tangent to ¢[M]
< dcurve in ¢[M] with tangent X
b) 7€ T (N)is “normal” to ¢[M]

= n(X)=0 VX tangent to ¢[M]
Def.: Let ¥ be a hypersurface of a Lorentzian mfld., n its normal field.

Y is “timelike” (“spacelike”, “null”) :& n is spacelike (timelike, null)

OnoN: 2zt =0 = dz! is outgoing normal to ON

. dz! :
= n= = unit normal
+g(dzt, dz!)

Divergence Theorem:

Let ON be time or spacelike, X a VF on N, h,, = ¢* g, ¢ as in (%)

= /VaXa\/|g|d"x:/ o X%/ |h|d" 1
N ON
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10 The initial value problem

10.1 Extrinsic curvature
Let NV be a manifold, 3 a hypersurface, g the metric (Riemannian or Lorentzian)
Unit normal to o : n,n® = F1; upper sign: n timelike
lower sign: n spacelike
Def.: “Projector” 1%, := % £+ nny
Projection of tensor: 1T, = J_“ej_bf U N O .Tef"'ghm
= 1) Loynt=0, 1o%l¢=_19%
2) VX € T,(N) : 1%X° tangent to ¥, X = 1%X"F non, X"
3) X,Y tangent to ¥ = guXYV? = 1,X°Y"
= 14 = induced metric on X,

We write v, = Ly “15' fundamental form”

Let X, Y be tangent VF's to ¥, N normal VF
par. transport IN along int. curve of X : X*V,N? =0 N

Does N remain normal to %7 No!

XPV,(YON,) = N, XV, Ve

Def.: Extend unit normal m in nbhd. of ¥ with n%n, = F1
“extrinsic curvature” = K : T,(N) x T,(N) > R, X, Y = n,(Vix(LY))"

Note: sign convention

Lemma: K, = —1°1%V.ny indep. of extension
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Proof: 1) KXV’ = ng (LX)V(LY)* = —(LX)(LY)*Vn, | na(LY)* =0

= — 19X 1Y V.n,
= Kpg = —L%1%Ven,
2) nl another extension — m, =mn), —n, =0 on X
= 0nY : XV (Ky—K') = L1614 XY Vg

= (LX)°[(LY)*Vemg + Q_@Vc(iY)d]

= (LX)V,(mg(LY)?) =0 ‘ deriv. inside ¥

1
Comment: n’V.n, = §Vc(nbnb) =0

= Kab = —J_caJ_deCnd = —J_Ca(ddb + ndnb)Vcnd = —J_Cavcnb

Def.: Let ¢t : NV — R with ¢ = const and normal dt # 0 on X

= unit normal n = Fadt, o := 1
4 \/:Fg_l(dt, dt)

n future pointing if timelike

= “Lapse function”

Lemma: K, = K,
Proof: V.n; = FV.(adty) = FaV . V4t + (Vca)%
= Ky =+11%aV Vgt +0 is symmetric (torsion = 0)

Def.: K = Kbb = gabKab
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10.2 The Gauss-Codazzi equations

Def.: Covariant deriv. D, on X:
D Ty = L 10 L L T
= ... = D is torsion free and Levi-Civita conn. of v, on ¥ if V is that of g, on N
Da’}/bc =0

D defines the Riemann tensor of v,5: R%eq

One can calculate the projections of R%,., from the Ricci Identity:

Gauss eq.: L R%cq = R%ea £ 2K Kap

Contracted Gauss: 1R, £ J_candJ_ebnchdef =R+t KK, F K, . K
Scalar Gauss: R+ 2Ryn‘n? =R + K? F K 4K

Codazzi eq.: J_daJ_ebJ_fcnngefg = —D,Ky. + Dy K,

Contr. Codazzi: L%Regn® = =D, K" + DK

10.3 The constraint equations

From now on n timelike, “upper sign”
Project Einstein eqs.: Gy, = 87T,
1) EM tensor: p:= Tyn®nb, j,:=—1°Tyn®, Sy := LTy

= Tab = PNaNp + janb + jbna + Sab; T = Tbb =—p + S

1
2) n-n proj.: Rgyn®n® + §R = &7p ‘ + scalar Gauss

= |R— K4 K+ K?—16mp =0 “Hamiltonian constraint”

1
3) n-_L proj.: 1°%.n¢ (Rbc — §gbcR) = 1% n°Ry. = —87j, < contr. Codazzi

= ‘DCKCQ — D,K —8mj, = 0‘ “momentum constraint”
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10.4 Foliations
Def.: “Cauchy surface” := spacelike hypersurface ¥ in A such that

each timelike or null curve without endpoint intersects X exactly once.

(N, g) is “globally hyperbolic” :< it admits a Cauchy surface

From now on: Let (N, g) be globally hyperbolic.
= ...= 3Jsmootht: N — R, di# 0 everywhere and hypersurfaces ¥ are level

surfaces £ = const : Vg Et:{pEN’: f(p):t}, YNy =0=t#t

We assume: Y, spacelike, N = tURZt : this is called a “foliation” of N.
€

PN

From now on: use just ¢ (no t)

Def.: m = an “normal evolution vector”
Note: n=-adt, n-n=-1

1
= m-m=-a’, (dt,m) :—a<n,m) =—(n,n)=1

= Lot = m(t) = (dt,m) = 1

= Proper time along int. curve of m (cf. Sec. 3.2):

T:/t VvV—g(m,m)dt = %:\/—g(m,m)za

Def.: “acceleration” ap := n°V.ny
Lemma: a, = D, Ina

Recall: K, = —1¢,V.ny = —Vany — nganVeny

= ‘Vanb = —Kyoy —ngap = — Ky — ny,Dy 11’104‘

= Voemy = Va(any) =nyVea + aVny,

= ‘Vamb =nmVeo — aKy —nyg Dboz‘
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Lemma: 1) L,,v0 = —2aKy,
2) LnYa = —2Ky
3) Lo = Lo L% =0
4) L% =n"Dylna

Corollary: Let T be a tangent tensor: LT =T
=Ly T =Ly(LT) = (L, L) T + LL,,, T Lo Ll% =Ly =0

= LT is tangent to X

With these tools we can calculate the final projection: 1¢.nf J_gbnhRefgh

Starting point: Ricci Identity; cf. Sec.3.4.1 in [2]

1 1
= ... = J_eaJ_gbnhRefghnf = _ﬁmKab + Kacch + —D, Dy
« (0%

1 1
with contracted Gauss eq.: | LRy = —— LKy — — DDy + Ry + K Koy — 2K, K€
a a

2 2
1% use scalar Gauss: |R = =LK — =D.Da + R + K? + K 4K
o a

10.5 The 341 equations

1
Einstein eqs.: Rg, — §gabR =811, = — R=87T

1
= Rab = 8w (Tab - §gabT) ‘ L
= LRay =47 (25w + (p — ) V)

® Lo = ~DaDya+ o Ray + K Kup — 2K, K% + 4x[(S = p) = 250 |

Open question: Relate £, to a time derivative —

ot
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Adapted coordinates: z* = (t, '), i=1,2,3, z'label points in ¥,
— basis 8;, 8, ; dual basis dt, da’
Integral curves of the 8; have t = const, i.e. are in >,
What about 0,7 Clearly (dt,8;) = 1= (dt,m) = (dt,0;—m) =0 n oA
Def.: “shift vector” 3:=9;,—m = (dt,3) =0 1
=0, =an+ 3
Curves z' = const are in general not normal to ;.

3 measures this deviation.

Metric components: gy = g(8;,0;) = ... = —a*+ 3 -3 etc.
—a? 4+ BB* B; ) ( —a”? a~?p )
= ... = aflB — J = OCB — _ i iq _ i i
oo ( Bi Vi g a B 4 —agp
det gos = —® dety;; = —g =/

In adapted coords.: The 341 eqgs. contain only tensors tangent to ¥,
=- we can ignore time components

= substitute 7, j, ... =1, 2, 3 for abstract indices

0

We have: L,vi; = La,vi; — Lavij = 3¢ i

- 5m3m%‘j - %nj&iﬁm - %’mﬁjﬁm

0

Kij = 8" 0m Kij — KinjOif™ — Kim0; 8™

= 8t%-j = Eﬁ’Yij — 20&](Z

R+ K?— Ky, K™ — 16mp =0

D, K™, — D;K — 87j; = 0

Comments: 1) a, ' freely specifiable! — gauge freedom
2) Bianchi Identities = ... = constraints preserved under evolution

3) numerical relativity — need new variables



11 THE LAGRANGIAN FORMULATION 82

11 The Lagrangian formulation

1
Consider scalar field in curved spacetime: S = / {—5 ¢V, Vi® —V(®)| v/—g d'z

M

Vary with respect to ®; assume 0P vanishes on OM; use divergence theorem

= 65 = S[® + 5] — S[D]

= / (= g™V, @ Vsi0 — V'(®)00)y/—gd'x
M
/ [ = V(02 V®) + 50 VOV, — V'(2)5]/—g d'x
M

/ —5(I>ﬁaV°‘<I>\/|h|d3:):+/ (VOV,® = V(®))6P /=g d'x
oM L IM
=0

= VoV, @ — V' (®) =0 “Egs. of motion”

Goal: same for GR 7
Sign convention: 1) Unit normal: 72 always outward; past, future, spacelike! d>
2) Extrinsic curvature: Ko =+L1V,iy
y S
Y

Saves us case distinctions on spacelike boundaries. e

L 1
The action in GR: Sggrlg, ¢] = 16—7T(IH[9] + Iplg) — Iy) + Sulé, g]

o
1) Hilbert term: IH:/R\/—gd‘lm
%

2) boundary term: Ip = 2% K+/|v|d%y
av

3) constant term: Iy =2 ¢ Ko/|7] %y
av

4) matter term: Sy = / L(¢, .05 9ap) V—0 d'z
Y

It is convenient to vary g°? instead of gag: 9*"gus = 0% = 09ap = —Gapgp 09"

1
Lemma: 0v/—qg = —5\/ —99a3 5ga5



11 THE LAGRANGIAN FORMULATION
1) oIy :/5(g°‘BRa5\/—g) d*z
%
— [ Bua/=586 + VG 5Rap + ROVG d's
v

1
N / (Raﬁ o §R9a5) 5g*y/=gd'z + / 9* 0Rap V—gd'z
1% v .,

- N

~
Einstein egs. ?

In normal coords.: dR,g3 = 5(F567u — Fgu,ﬁ) ’ =0
= 5FZB,;L — 5FZ%B
L 0Tl — 0Tl | T=0, T = tensor!

tensorial eq. = valid in any coords.!
= / 9?6 Rup/—gdir = /X“W V—gdtz; XH.= g oLl — g™ 5F§6
v

= f X",/ || dPy } Divergence theorem
av
On dV: 0gup =0= 590‘5

1 v
= 5FZ5 = 59“ (5gya,ﬁ —+ 591’6704 — 59&671})

= ... = Xt =g g (5guaﬂ - 59@57’/)

7

=X,

= X, = (7" F 1°7") (8gupa — 09as)
—_———

antisymm. in «, g
= "y (0gus.0 —0gap.)
——

= deriv. of dg,s tangent to 0V — 0

= 6y = / Gop 9™ /=g d*z — 72 Y 5 Gap 1 /Y| Py (%)
y %

83
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2) K =9""Kas =7""Vaiig = 1" (0ais — i)
=

0K = —"P6TH 1y, = =P 0T gt

1, 7
= =37 (0900 + 69u5.0 — 69 ) 7"

1
= 570‘5 0Gap, " ‘ tang. derivs of g, vanish on 9V

= 0lg = % e 5ga57uﬁ”|7|1/2 d*y cancels term in (x)
By

3) Iy depends on g,z only through +/|7|
= 01y =0 on 0V
= no effect on egs. of motion, but on numerical value of Sgr

Let g.s be a solution of the vacuum eqs. R,3 =0 = R =0

1 1 1

= S = —Tp=— ¢ K|~V

R 5710 T Ton B 87r% I dy ;

[5)
evaluate on closed 3-cylinder for a flat spacetime: Q
On2t1,2t2: KZO r=2R
~ 2
at r=R: K:ﬁa;a:...zﬁ, Iv[*/? = R? sin @
~ g

= K |y|Y?dy = 87 R(t, —t;) diverges as R — 00 "

v

This divergence persists in curved spacetimes K”%

t

= cured by Iy with Ky = curvature of 0V embedded in flat spacetime

OL oL 1
4) 6Sy = | ——=09"°/—g+ Léy/—gd'r = — —Lgus ) 6g*° /—gd'x
v 0g*P vy \9g*? 2
Def.: T3 := —2—= + Lgas Energy-momentum tensor

0g*P

1
= 0S5y = _i/TaB 6¢g*° /=g d'z
%

1
Conclusion: ¢ [F (IH +Ig — Io) +Su| =0 = G.p=81Typ
T
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