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Preface

These are lecture notes for AME 60635, Intermediate Fluid Mechanics, taught in the Depart-
ment of Aerospace and Mechanical Engineering of the University of Notre Dame. Most of
the students in this course are beginning graduate students and advanced undergraduates in
engineering. The objective of the course is to provide a survey of a wide variety of topics in
fluid mechanics, including a rigorous derivation of the compressible Navier-Stokes equations,
vorticity dynamics, compressible flow, potential flow, and viscous laminar flow.

While there is a good deal of rigor in the development here, it is not absolute. It is
not hard to find gaps in some of the developments; consequently, the student should call
on textbooks and other reference materials for a full description. A great deal of the devel-
opment and notation for the governing equations closely follows Panto, who I find gives
an especially clear presentation. The material in the remaining chapters is drawn from a
wide variety of sources. A full list is given in the bibliography, though few specific citations
are given in the text. The notes, along with much information on the course itself, can be
found on the world wide web at https://www3.nd.edu/~powers/ame.60635. At this stage,
anyone is free to duplicate the notes.

The notes have been transposed from written notes I developed in teaching this in 1992
and a related course in 1991. Many enhancements have been added, and thanks go to many
students and faculty who have pointed out errors. It is likely that there are more waiting
to be discovered; I would be happy to hear from you regarding these or suggestions for
improvement.

Joseph M. Powers
powers@nd. edu
https://www3.nd.edu/~powers

Notre Dame, Indiana; USA
® ® O 26 July 2019

The content of this book is licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0.

'R. L. Panton, Incompressible Flow, 4th edition, John Wiley, New York, 2013.
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Chapter 1

Governing equations

see Panton, Chapters 1-6,
see Yih, Chapters 1-3, Appendix 1-2,
see Aris.

1.1 Philosophy of rational continuum mechanics

1.1.1 Approaches to fluid mechanics

We seek here to present an approach to fluid mechanics founded on the principles of rational
continuum mechanics. There are many paths to understanding fluid mechanics, and good
arguments can be made for each. A typical first undergraduate class will combine a mix of
basic equations, coupled with strong physical motivations, and allows the student to develop
a knowledge which is of great practical value, often driven strongly by intuition. Such an
approach works well within the confines of the intuition we develop in everyday life. It often
fails when the engineer moves into unfamiliar territory. For example, lack of fundamental
understanding of high Mach number flows led to many aircraft and rocket failures in the
1950’s. In such cases, a return to the formalism of a careful theory, one which clearly exposes
the strengths and weaknesses of all assumptions, is invaluable in both understanding the true
fluid physics, and applying that knowledge to engineering design.

Probably the most formal of approaches is that of the school of thought advocated most
clearly by Truesdell sometimes known as Rational Continuum Mechanics. Truesdell de-
veloped a broadly based theory which encompassed all materials which could be regarded
as continua, including solids, liquids, and gases, in the limit when averaging volumes were
sufficiently large so that the micro- and nanoscopic structure of these materials was unimpor-
tant. For fluids (both liquid and gas), such length scales are often on the order of microns,
while for solids, it may be somewhat smaller, depending on the type of crystalline structure.
The difficulty of the Truesdellian approach is that it is burdened with a difficult notation

I'Clifford Ambrose Truesdell, III, 1919-2000, American continuum mechanician and natural philosopher.
Taught at Indiana and Johns Hopkins Universities.
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14 CHAPTER 1. GOVERNING EQUATIONS

and tends to become embroiled in proofs and philosophy, which while ultimately useful, can
preclude learning basic fluid mechanics in the time scale of the human lifetime.

In this course, we will attempt to steer between the fallible pragmatism of undergraduate
fluid mechanics and the harsh formalism of the Truesdellian school. The material will pay
some due homage to rational continuum mechanics and will be geared towards a basic under-
standing of fluid behavior. We shall first spend some time carefully developing the governing
equations for a compressible viscous fluid. We shall then study representative solutions of
these equations in a wide variety of physically motivated limits in order to understand how
the basic conservation principles of mass, momenta, and energy, coupled with constitutive
relations, influence the behavior of fluids.

1.1.2 Mechanics

Mechanics is the broad superset of the topic matter of this course. Mechanics is the science
which seeks an explanation for the motion of bodies based upon models grounded in well
defined axioms. Axioms, as in geometry, are statements which cannot be proved; they are
useful insofar as they give rise to results which are consistent with our empirical observations.
A hallmark of science has been the struggle to identify the smallest set of axioms which are
sufficient to describe our universe. When we find an axiom to be inconsistent with observa-
tion, it must be modified or eliminated. A familiar example of this is the Michelson Morleyﬁ
experiment, which motivated Einsteinl] to modify the N ewtonian axioms of conservation of
mass and energy into a conservation of mass-energy.
In Truesdell’s exposition on mechanics, he suggests the following hierarchy:

e bodies exist,

e bodies are assigned to place,

e geometry is the theory of place,

e change of place in time is the motion of the body,

e a description of the motion of a body is kinematics,

2Albert Abraham Michelson, 1852-1931, Prussian born American physicist, graduate of the U.S. Naval
Academy and faculty member at Case School of Applied Science, Clark University, and University of Chicago.

3Edward Williams Morley, 1838-1923, New Jersey-born American physical chemist, graduate of Williams
College, professor of chemistry at Western Reserve College.

4Albert Einstein, 1879-1955, German physicist who developed the theory of relativity and made funda-
mental contributions to quantum mechanics and Brownian motion in fluid mechanics; spent later life in the
United States.

9Sir Isaac Newton, 1642-1727, English physicist and mathematician and chief figure of the scientific rev-
olution of the seventeenth and eighteenth centuries. Developed calculus, theories of gravitation and motion
of bodies, and optics. Educated at Cambridge University and holder of the Lucasian chair at Cambridge. In
civil service as Warden of the Mint, he became the terror of counterfeiters, sending many to the gallows.
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e motion is the consequence of forces,

e study of forces on a body is dynamics.

There are many subsets of mechanics, e.g. statistical mechanics, quantum mechanics,
continuum mechanics, fluid mechanics, or solid mechanics. Auto mechanics, while a legit-
imate topic for study, does not generally fall into the class of mechanics we consider here,
though the intersection of the two sets is not the empty set.

1.1.3 Continuum mechanics

Early mechanicians, such as Newton, dealt primarily with point masses and finite collections
of particles. In one sense this is because such systems are the easiest to study, and it makes
more sense to grasp the simple before the complex. External motivation was also present
in the 18th century, which had a martial need to understand the motion of cannonballs
and a theological need to understand the motion of planets. The discipline which considers
systems of this type is often referred to as classical mechanics. Mathematically, such systems
are generally characterized by a finite number of ordinary differential equations, and the
properties of each particle (e.g. position, velocity) are taken to be functions of time only.

Continuum mechanics, generally attributed to EulerE] considers instead an infinite num-
ber of particles. In continuum mechanics every physical property (e.g. velocity, density,
pressure) is taken to be a function of both time and space. There is an infinitesimal prop-
erty variation from point to point in space. While variations are generally continuous, finite
numbers of surfaces of discontinuous property variation are allowed. This models, for ex-
ample, the contact between one continuous body and another. Point discontinuities are
not allowed, however. Finite valued material properties are required. Mathematically, such
systems are characterized by a finite number of partial differential equations in which the
properties of the continuum material are functions of both space and time. It is possible to
show that a partial differential equation can be thought of as an infinite number of ordinary
differential equations, so this is consistent with our model of a continuum as an infinite
number of particles.

1.1.4 Rational continuum mechanics

The modifier “rational” was first applied by Truesdell to continuum mechanics to distinguish
the formal approach advocated by his school, from less formal, though mainly not irrational,
approaches to continuum mechanics. Rational continuum mechanics is developed with tools
similar to those which Euclid] used for his geometry: formal definitions, axioms, and theo-
rems, all accompanied by careful language and proofs. This course will generally follow the

SLeonhard Euler, 1707-1783, Swiss-born mathematician and physicist who served in the court of Cather-
ine I of Russia in St. Petersburg, regarded by many as one of the greatest mechanicians.

"Euclid, Greek geometer of profound influence who taught in Alexandria, Egypt, during the reign of
Ptolemy I Soter, who ruled 323-283 BC.
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16 CHAPTER 1. GOVERNING EQUATIONS

less formal, albeit still rigorous, approach of Panton’s text, including the adoption of much
of Panton’s notation.

1.1.5 Notions from Newtonian continuum mechanics

The following are useful notions from Newtonian continuum mechanics. Here we use New-
tonian to distinguish our mechanics from Einsteinian or relativistic mechanics.

e Space is three-dimensional and independent of time.

e An inertial frame is a reference frame in which the laws of physics are invariant; further,
a body in an inertial frame with zero net force acting upon it does not accelerate.

e A Galilean transformation specifies how to transform from one inertial frame to another
inertial frame moving at constant velocity relative to the original frame. If a second
inertial frame has constant velocity v, = u,i+v,j+ w,k relative to the original inertial
frame, the Galilean transformation (x,y, z,t) — (2/, ¢/, 2/, ') is as follows

¥ = x—ut, (1.1)
R (12)
2= z—w,t, (1.3)
t =t (1.4)

e (Control volumes are useful; we will study three varieties:

— Fixed: constant in space,
— Material: no flux of mass through boundaries, can deform,

— Arbitrary: can move, can deform, can have different fluid contained within.
e (Control surfaces enclose control volumes; they have the same three varieties:

— Fixed,
— Material,
— Arbitrary.

e Density is a material property, not used in classical mechanics, which only considers
point masses. We can define density p as

N
. = m;
o=t B 9

Here V' is the volume of the space considered, N is the number of particles contained
within the volume, and m; is the mass of the ith particle. We can define a length scale

CC BY-NC-ND. 26 July 2019, J. M. Powers.
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L associated with the volume V to be L = V/3. In commonly encountered physical
scenarios, we expect the density to vary with distance on a macroscale, approach a
limiting value at the microscale, and become ill-defined below a cutoff scale below
which molecular effects are important. That is to say, when V' becomes too small, such
that only a few molecules are contained within it, we expect wild oscillations in p.

We will in fact assume that matter can be modeled as a continuum: the limit in which
discrete changes from molecule to molecule can be ignored and distances and times
over which we are concerned are much larger than those of the molecular scale. This
will enable the use of calculus in our continuum thermodynamics.

Continuum mechanics will treat macroscopic effects only and ignore individual molec-
ular effects. For example molecules bouncing off a wall exchange momentum with the
wall and induce pressure. We could use Newtonian mechanics for each particle collision
to calculate the net force on the wall. Instead our approach amounts to considering
the average over space and time of the net effect of millions of collisions on a wall.

The continuum theory can break down in important applications where the length
and time scales are of comparable magnitude to molecular time scales. Important
applications where the continuum assumption breaks down include

— rarefied gas dynamics of the outer atmosphere (relevant for low orbit space vehi-
cles), and

— nano-scale heat transfer (relevant in cooling of computer chips).
To get some idea of the scales involved, we note that for air at atmospheric pressure
and temperature that the time and distance between molecular collisions provides the
limits of the continuum. Under these conditions, we observe for air that

— length > 0.1 pm, and

— time > 0.1 ns,
will be sufficient to admit the continuum assumption. For denser gases, these cutoff

scales are smaller. For lighter gases, these cutoff scales are larger. A sketch of a possible
density variation in a gas near atmospheric pressure is given in Fig. [Tl

Details of collision theory can be found in advanced texts such as that of Vincenti and
Kruger, pp. 12-26. They show for air that the mean free path A is well modeled by the

equation:
M
A= ——m—. 1.6
V21N pd? (1.6)
Here M is the molecular mass, N is Avogadro’s number, and d is the molecular diam-
eter.
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p (kg/m?)

100+

variation on the
sub-continuum
molecular scale

variation on the
continuum scale

0.01}+

108 106 10+ 102 10°

Figure 1.1: Sketch of possible density variation of a gas near atmospheric pressure.

[
Example 1.1

Find the variation of mean free path with density for air.

We turn to Vincenti and Kruger for numerical parameter values, which are seen to be M =
28.9 kg/kmole, N = 6.02252 x 1023 molecule/mole, d = 3.7 x 1071% m. Thus,

(28.9 kg )(1 fanole )

P kmole 1000 mole (1 7)
V27 (6.02252 x 1023 meleeule) ), (375 1(=10 1)?’ '

mole
_ k
_ 78895 x 10 8 m (1.8)

p

Note that the unit “molecule” is not really a dimension, but really is literally a “unit,” which
may well be thought of as dimensionless. Thus, we can safely say

7.8895 x 107° k&
p
A plot of the variation of mean free path A as a function of p is given in Fig. Vincenti and

Kruger go on to consider an atmosphere with density of p = 1.288 kg/m?. For this density

7.8895 x 1075 X8

= : (1.10)
1.288 k&

= 6.125x 107% m, (1.11)

6.125 x 10~ 2 pm. (1.12)

Vincenti and Kruger also show the mean molecular speed under these conditions is roughly
¢ =500 m/s, so the mean time between collisions, 7, is

A 6.125x10 % m
~D = 1995 % 10710 6. 1.1
T~ 50 & 5x 10710 (1.13)
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Figure 1.2: Mean free path length, A, as a function of density, p, for air.

Density is an example of a scalar property. We shall have more to say later about
scalars. For now we say that a scalar property associates a single number with each
point in time and space. We can think of this by writing the usual notation p(z,y, z, t),
which indicates p has functional variation with position and time.

e Other properties are not scalar, but are wvector properties. For example the velocity
vector
v(z,y, z,t) = u(z,y, 2z, )i+ v(x,y, 2, t)] + w(z,y, 2, t)k, (1.14)

associates three scalars u, v, w with each point in space and time. We will see that a
vector can be characterized as a scalar associated with a particular direction in space.
Here we use a boldfaced notation for a vector. This is known as Gibbs] notation. We
will soon study an alternate notation, developed by Einstein, and known as Cartesia
index notation.

e Other properties are not scalar or vector, but are what is know as tensorial. The
relevant properties are called tensors. The best known example is the stress tensor,
whose physics and mathematics will be fully described in Sec. 1.4.2.2. One can think

8Josiah Willard Gibbs, 1839-1903, American physicist and chemist with a lifelong association with Yale
University who made fundamental contributions to vector analysis, statistical mechanics, thermodynamics,
and chemistry. Studied in Europe in the 1860s. Probably one of the few great American scientists of the
nineteenth century.

9René Descartes, 1596-1650, French mathematician and philosopher of great influence. A great doubter
of existence who nevertheless concluded, “I think, therefore I am.” Developed analytic geometry.
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of a tensor as a quantity which associates a vector with a plane inclined at a selected
angle passing through a given point in space. An example is the viscous stress tensor
7, which is best expressed as a three by three matrix with nine components:

Toa(T, Y, 2,1)  Toy(x,y,2,1)  Tua(x,y, 2,1)
T(x7y7zut> = Tyx(x,y,z,t) Tyy(x7y7zat> Ty2<x7y7zut> (115)
Toa(T, Y, 2,t)  Toy(w,y,2,t)  Too(w,y, 2,1)

1.2 Some necessary mathematics

Here we outline some fundamental mathematical principles which are necessary to under-
stand continuum mechanics as it will be presented here.

1.2.1 Vectors and Cartesian tensors
1.2.1.1 Gibbs and Cartesian Index notation

Gibbs notation for vectors and tensors is the most familiar from undergraduate courses.
It typically uses boldface, arrows, underscores, or overbars to denote a vector or a tensor.
Unfortunately, it also hides some of the structures which are actually present in the equations.
Einstein realized this in developing the theory of general relativity and developed a useful
alternate, index notation. In these notes we will focus on what is known as Cartesian
index notation, which is restricted to Cartesian coordinate systems. Einstein also developed
a more general index system for non-Cartesian systems. We will briefly touch on this in
our summaries of our equations later in this chapter but refer the reader to books such
as that of Aris for a full exposition. While it can seem difficult at the outset, in the end
many agree that the use of index notation actually simplifies many common notions in fluid
mechanics. Moreover, its use in the archival literature is widespread, so to be conversant in
fluid mechanics, one must know index notation. Table [Tl summarizes the correspondences
between Gibbs, Cartesian index, and matrix notation. Here we adopt a convention for
the Gibbs notation, which we will find at times conflicts with other conventions, in which
italics font (a) indicates a scalar, bold font (a) indicates a vector, upper case sans serif

(A) indicates a second order tensor, over-lined upper case sans serif (A) indicates a third

order tensor, double over-lined upper case sans serif (A) indicates a fourth order tensor. In
Cartesian index notation, their is no need to use anything except italics, as all terms are
thought of as scalar components of a more expansive structure, with the structure indicated
by the presence of subscripts.

The essence of the Cartesian index notation is as follows. We can represent a three
dimensional vector a as a linear combination of scalars and orthonormal basis vectors:

a=a,i+a,j+ak (1.16)

We choose now to associate the subscript 1 with the x direction, the subscript 2 with the
y direction, and the subscript 3 with the z direction. Further, we replace the orthonormal
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Quantity Common | Gibbs | Cartesian Matrix
Parlance Index
zeroth order tensor | scalar a a (a)
aq
a2
first order tensor vector a a;
Qp,
a1; a2 Qip
21 Q22 A2n,
second order tensor tensor A ;i . . .
o ap1  Ap2 Ann
third order tensor tensor A @ijk -
fourth order tensor tensor A @ikl -

Table 1.1: Scalar, vector, and tensor notation conventions.

basis vectors i, j, and k, by e;, es, and e3. Then the vector a is represented by

3 aq
a = ajeq| + ases + azes = E a;e; — a;e; — a; = [¢5) (117)
i=1 as

Following Finstein, we have adopted the convention that a summation is understood to exist
when two indices, known as dummy indices, are repeated, and have further left the explicit
representation of basis vectors out of our final version of the notation. We have also included
a representation of a as a 3 x 1 column vector. We adopt the standard that all vectors can
be thought of as column vectors. Often in matrix operations, we will need row vectors.
They will be formed by taking the transpose, indicated by a superscript 7', of a column
vector. In the interest of clarity, full consistency with notions from matrix algebra, as well
as transparent translation to the conventions of necessarily meticulous (as well as popular)
software tools such as MATLAB, we will scrupulously use the transpose notation. This comes
at the expense of a more cluttered set of equations at times. We also note that most authors
do not explicitly use the transpose notation, but its use is implicit.

1.2.1.2 Rotation of axes

The Cartesian index notation is developed to be valid under transformations from one Carte-
sian coordinate system to another Cartesian coordinate system. It is not applicable to either
general orthogonal systems (such as cylindrical or spherical) or non-orthogonal systems. It
is straightforward, but tedious, to develop a more general system to handle generalized co-
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Figure 1.3: Sketch of coordinate transformation which is a rotation of axes.

ordinate transformations, and Einstein did just that as well. For our purposes however, the
simpler Cartesian index notation will suffice.

We will consider a coordinate transformation which is a simple rotation of axes. This
transformation preserves all angles; hence, right angles in the original Cartesian system will
be right angles in the rotated, but still Cartesian system. It also preserves lengths of geomet-
ric features, with no stretching. We will require, ultimately, that whatever theory we develop
must generate results in which physically relevant quantities such as temperature, pressure,
density, and velocity magnitude, are independent of the particular set of coordinates with
which we choose to describe the system. To motivate this, let us consider a two-dimensional
rotation from an unprimed system to a primed system. So, we seek a transformation which
maps (z1,72)7 — (2], 25)T. We will rotate the unprimed system counterclockwise through
an angle « to achieve the primed system. The rotation is sketched in Figure [[L.3l Note that
it is easy to show that the angle 8 = /2 — a.. Here a point P is identified by a particular
set of coordinates (x7,x3). One of the keys to all of continuum mechanics is realizing that
while the location (or velocity, or stress, ...) of P may be represented differently in various
coordinate systems, ultimately it must represent the same physical reality. Straightforward
geometry shows the following relation between the primed and unprimed coordinate systems
for o

z} =z} cosa + xk cos 3. (1.18)
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More generally, we can say for an arbitrary point that
Ty = x1 cos o+ 9 cos f. (1.19)
We adopt the following notation
(1, }) denotes the angle between the x; and z/ axes,
(29, 24) denotes the angle between the xo and x, axes,
o (z3,2%) denotes the angle between the x3 and % axes,
(1, 75)

x1,745) denotes the angle between the x; and z!, axes,

Thus, in two-dimensions, we have
@y = xy cos(x1, 7)) + xg cos(xg, 7). (1.20)
In three dimensions, this extends to
xy = @y cos(x1, 2)) + 29 cos(xa, ) + 23 cos(xs, ). (1.21)
Extending this analysis to calculate zf, and % gives

ry = mxpcos(xy,xh) 4 xgcos(z2, xh) + x3 cos(z3,xh), (1.22)

ry = xpcos(xy,xy) + xocos(xe, ) + x3 cos(xg, ). (1.23)
The above equations can be written in matrix form as
cos(xy,zy) cos(xy,xh) cos(zy,xh)
(o) o o) =(z1 x2 x3) | cos(zy,x)) cos(xe,xy) cos(zg,xy) (1.24)

cos(xs, x)) cos(xs,xh) cos(xs,xh)

If we use the shorthand notation, for example, that ¢1; = cos(xy, z}), {15 = cos(z1, x}), ete.,
we have

by i 3
(2 xélz(xl To $32 lor Ly Lo (1.25)
7 T Nl b f33)
Q

In Gibbs notation, defining the matrix of £’s to be Q, and recalling that all vectors are taken
to be column vectors, we can alternatively say x’7 = x? - Q. Taking the transpose of both
sides and recalling the useful identities that (a-b)? = b’ - al and (a’)? = a, we can also
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say x' = QT - X. We call Q = ¢;; the matrix of direction cosines and QT = ¢;; the rotation
matrix. It can be shown that coordinate systems which satisfy the right hand rule require
further that

detQ = 1. (1.26)

Matrices Q that have |det Q| = 1 are associated with volume-preserving transformations.
Matrices Q that have det Q > 0, are orientation-preserving transformations. Matrices Q that
have det Q = 1 are thus volume- and orientation-preserving, and can be thought of a rota-
tions. A matrix that had determinant —1 would be volume-preserving but not orientation-
preserving. It could be considered as a reflection.

It can be shown that the transpose of an orthogonal matrix is its inverse:

Q' =Q. (1.27)

Thus we have
Q-Q"=Q"-Q=L. (1.28)

T = xT.Q is really a set of three linear equations. For instance, the first

The equation x’
is
ZL’ll = [L’lfll + {L’gfgl + l'gfgl. (1.29)
More generally, we could say that

SL’; = LL’lglj + $2€2j + LL’3€3]'. (130)

Here j is a so-called “free index,” which for three-dimensional space takes on values j = 1,2, 3.
Some rules of thumb for free indices are

e A free index can appear only once in each additive term.

e One free index (e.g. k) may replace another (e.g. j) as long as it is replaced in each
additive term.

We can simplify Eq. (L30) further by writing

3
i=1

10The more commonly used alternate convention of not explicitly using the transpose notation for vectors
would instead have our x'7 = xT - Q written as x’ = x - Q. In fact, our use of the transpose notation
is strictly viable only for Cartesian coordinate systems, while many will allow Gibbs notation to represent
vectors in non-Cartesian coordinates, for which the transpose operation is ill-suited. However, realizing that
these notes will primarily focus on Cartesian systems, and that such operations relying on the transpose
are useful notions from linear algebra, it will be employed in an overly liberal fashion in these notes. The
alternate convention still typically applies, where necessary, the transpose notation for tensors, so it would
also hold that x' = QT - x.
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This is commonly written in the following form:

We again note that it is to be understood that whenever an index is repeated, as has the
index i above, that a summation from ¢ = 1 to ¢ = 3 is to be performed and that ¢ is the
“dummy index.” Some rules of thumb for dummy indices are

e dummy indices can appear only twice in a given additive term,

e a pair of dummy indices, say i,¢, can be exchanged for another, say 7, j, in a given
additive term with no need to change dummy indices in other additive terms.

We define the Kronecked'] delta, d;; as

_Jo iy
5ij_{1 iy (1.33)

1 00
s;=1={0 1 0]. (1.34)
00 1

Direct substitution proves that what is effectively the law of cosines can be written as

This is also equivalent to Eq. (L.28)).

[
Example 1.2
Show for the two-dimensional system described in Figure [[3] that ¢;;¢5; = d;, holds.

Expanding for the two-dimensional system, we get
Cirlgr + Liolra = i
First, take ¢ = 1,k = 1. We get then

l11l11 + L1ali2 = 01
cosa cos o + cos(o + m/2) cos(a + 7/2)

)

)

1
1
L,
1

cosacos a + (—sin(a))(—sin(«))

cos?a+sina =

HTeopold Kronecker, 1823-1891, German mathematician, critic of set theory, who stated “God made the
integers; all else is the work of man.”
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This is obviously true. Next, take ¢ = 1,k = 2. We get then

li1loy + Liola = 012 = 0,
cosacos(m/2 — a) + cos(a + 7/2) cos(a) 0,

cosasina —sinacosa =

This is obviously true. Next, take ¢ = 2,k = 1. We get then

lorliy + Lagliz =021 = 0,
cos(m/2 — a)cosa + cosacos(m/2+a) = 0,
sinacosa + cosa(—sina) = 0.
This is obviously true. Next, take ¢ = 2,k = 2. We get then
lo1loy + loolay = b2 = 1,
cos(m/2 — a)cos(m/2 — a) + cosacosae = 1,
sinasina +cosacosa = 1.

Again, this is obviously true.

Using this, we can easily find the inverse transformation back to the unprimed coordinates
via the following operations:

€kj:c;» = Llgjziliy, (1.36)
= Lilgz, (1.37)

= Op;, (1.38)

Uy, =, (1.39)
by =, (1.40)
r; = Llyx. (1.41)

The Kronecker delta is also known as the substitution tensor as it has the property that
application of it to a vector simply substitutes one index for another:

T = Oi;. (1-42)

For students familiar with linear algebra, it is easy to show that the matrix of direction
cosines, (;;, is a rotation matrix. Each of its columns is a vector which is orthogonal to
the other column vectors. Additionally, each column vector is itself normal. Such a matrix
has a Euclidean norm of unity, and three eigenvalues which have magnitude of unity. Its
determinant is +1, which renders it a rotation; in contrast a reflection matrix would have
determinant of —1. Operation of a rotation matrix on a vector rotates it, but does not
stretch it.
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1.2.1.3 Vectors

Three scalar quantities v; where ¢ = 1, 2, 3 are scalar components of a vector if they transform
according to the following rule
U;- = Uz'fij (1-43)
under a rotation of axes characterized by direction cosines ¢;;. In Gibbs notation, we would
say v'T = vT . Q, or alternatively v/ = QT - v.
We can also say that a vector associates a scalar with a chosen direction in space by an
expression that is linear in the direction cosines of the chosen direction.

[
Ezample 1.3

Consider the set of scalars which describe the velocity in a two dimensional Cartesian system:

where we return to the typical x,y coordinate system. Determine if v; is a vector.

In a rotated coordinate system, using the same notation of Figure [[3] we find that
vl = vy cosa + vy cos(m/2 — a) = vy cosa + vy sina,

/ p— . .
vy = vz o8(T/2 + @) + vy cos @ = —vy sin a + v, cos .

This is linear in the direction cosines, and satisfies the definition for a vector.

I
Example 1.4

Do two arbitrary scalars, say the quotient of pressure and density and the product of specific heat
and temperature, (p/p,c,T)T, form a vector?

If this quantity is a vector, then we can say

=(28)

This pair of numbers has an obvious physical meaning in our unrotated coordinate system. If the
system were a calorically perfect ideal gas, the first component would represent the difference between
the enthalpy and the internal energy, and the second component would represent the internal energy.
And if we rotate through an angle «, we arrive at a transformed quantity of

v = P oosa+ ey T cos(m/2 — «).
p

vh = P cos(m/2 4+ a) + ¢, T cos(a).
P

This quantity does not have any known physical significance, and so it seems that these quantities do
not form a vector.
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We have the following vector algebra
e Addition

— w; = u; + v; (Cartesian index notation)

— w = u + v (Gibbs notation)
e Dot product (inner product)

— u;v; = b (Cartesian index notation)

— u’ - v = b (Gibbs notation)

— both notations require uv; + usvy + ugvy = b.
While u; and v; have scalar components which change under a rotation of axes, their inner
product (or dot product) is a true scalar and is invariant under a rotation of axes. This is

easily seen by subjecting vectors u and v to a rotation via Q so that u' = Q" -u, v/ = QT - v.
Thus Q- ' = Q- QY -u=u. and Q- v = Q- Q" - v = v. Then consider the dot product

u’ v = b, (1.44)

Q- u) - (Q-Vv) = b (1.45)

u? - Q- Qv = b, (1.46)
\_,—/

u?l v = b, (1.47)

ut v o= b (1.48)

The inner product is invariant under rotation.
Note that here we have in the Gibbs notation explicitly noted that the transpose is part

of the inner product. Most authors in fact assume the inner product of two vectors implies

the transpose and do not write it explicitly, writing the inner product simply as u-v = u? -v.

1.2.1.4 Tensors

1.2.1.4.1 Definition A second order tensor, or a rank two tensor, is nine scalar compo-
nents that under a rotation of axes transformation according to the following rule:

Ti’j = Lyl Th. (1.49)
Note we could also write this in an expanded form as
3 3 3 3
T; = Z Z Uiy Ty = Z Z 0 Tialy;. (1.50)
k=1 I=1 k=1 I=1
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In the above expressions, ¢ and j are both free indices; while k and [ are dummy indices.
The Gibbs notation for the above transformation is easily shown to be

T=Q"-T-Q (1.51)

Analogously to our conclusion for a vector, we say that a tensor associates a vector with
each direction in space by an expression that is linear in the direction cosines of the chosen
direction. For a given tensor T;;, the first subscript is associated with the face of a unit cube
(hence the memory device, “first-face”); the second subscript is associated with the vector
components for the vector on that face.

Tensors can also be expressed as matrices. Note that all rank two tensors are two-
dimensional matrices, but not all matrices are rank two tensors, as they do not necessarily
satisfy the transformation rules. We can say

Ty Tip Tis
Tij= | T To a3 (1.52)
T3 T3 133

The first row vector, (T3 Ti2 T3 ), is the vector associated with the 1 face. The second
row vector, (To; Ty Ths), is the vector associated with the 2 face. The third row vector,
(T31 T3 Tis), is the vector associated with the 3 face.

We also have the following items associated with tensors.

1.2.1.4.2 Alternating unit tensor The alternating unit tensor, a tensor of rank 3, €;
will soon be seen to be useful, especially when we introduce the vector cross product. It is
defined as follows
1 if ijk=123,231, or 312,
€ijl = 0 if any two indices identical, . (1.53)
—1 if 45k =321,213, or 132

Another way to remember this is to start with the sequence 123, which is positive. A
sequential permutation, say from 123 to 231, retains the positive nature. A trade, say from
123 to 213, gives a negative value.

An identity which will be used extensively

€ijk€ilm = 5j15km - 5jm5kl> (1-54)

can be proved a number of ways, including the tedious way of direct substitution for all
values of i, j, k, [, m.

1.2.1.4.3 Some secondary definitions
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1.2.1.4.3.1 Transpose The transpose of a second rank tensor, denoted by a super-
script T'; is found by exchanging elements about the diagonal. In shorthand index notation,
this is simply

(Ti)" = Tys. (1.55)
Written out in full, if
Ty T Tis
Tij=|Tn T 1|, (1.56)
Ty T3 T3
then
Ty Ty Ty
Tff =Tji=|Te Tn Tn|, (1.57)
Tiz Tas T3

1.2.1.4.3.2 Symmetric A tensor D;; is symmetric iff

Note that a symmetric tensor has only six independent scalars. We will see that D is
associated with the deformation of a fluid element.

1.2.1.4.3.3 Antisymmetric A tensor R;; is anti-symmetric iff
Rij = —Rji. (159)

Note that an anti-symmetric tensor must have zeroes on its diagonal, and only three inde-
pendent scalars on off-diagonal elements. We will see that R is associated with the rotation
of a fluid element.

1.2.1.4.3.4 Decomposition An arbitrary tensor T;; can be separated into a sym-
metric and anti-symmetric pair of tensors:

1 1 1 1

Tij = ot Tt Tl = §ng (1.60)
Rearranging, we get
Ej:%(j—‘ij_l'j—‘ji)‘l'%(ﬂ'_j}‘)- (1.61)
symmetric anti—symmetric

The first term must be symmetric, and the second term must be anti-symmetric. This is
easily seen by considering applying this to any matrix of actual numbers. If we define the
symmetric part of the matrix T;; by the following notation

Tij) = 5 (T + Tj) (1.62)

N —
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and the anti-symmetric part of the same matrix by the following notation

1

Tiojy = 5 (Tiy = Tja) (1.63)

we then have
Ty = Ty + Tiyg)- (1.64)

1.2.1.4.4 Tensor inner product The tensor inner product of two tensors 7;; and Sj;
is defined as follows

ﬂiji = a, (165)
where a is a scalar. In Gibbs notation, we would say
T:S=a. (1.66)

It is easily shown, and will be important in upcoming derivations, that the tensor inner
product of any symmetric tensor D with any anti-symmetric tensor R is the scalar zero:

D:R = 0. (1.68)
Further, if we decompose a tensor into its symmetric and anti-symmetric parts, 7;; =

Tlij) + Tjs;) and take T(;;) = Dyj = D and T};;; = R;; = R, so that T = D + R, we note the
following common term can be expressed as a tensor inner product with a dyadic product:

v, Tyjr; = x'-T-x, (1.69)

zi(T(ij) + T[ij]):l:'j = x! (D + R) X, (170)
Tipr;, = x' -D-x, (1.71)
Tipriw; = D:xx’ (1.72)

1.2.1.4.5 Dual vector of a tensor We define the dual vector, d;, of a tensor T} as

follow ) . .
di = S€ijrTie = 5 €irT k) +5€irT - (1.73)

=0
The term €;;;, is anti-symmetric for any fixed 7; thus when its tensor inner product is
taken with the symmetric T{;;), the result must be the scalar zero. Hence, we also have

1

12There is a lack of uniformity in the literature in this area. First, note this definition differs from that
given by Panton by a factor of 1/2. Tt is closer, but not identical, to the approach found in [Aris, p. 25.
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Let’s find the inverse relation for d;, Starting with Eq. (L73)), we take the inner product of
d; with €, to get

1
€itmd; = §€ilm€ijijk- (1-75)
Employing Eq. (IL54) to eliminate the €’s in favor of §’s, we get
1
€itmdi = 5 (01j0mk — OukOmj) Tk, (1.76)
1
= i(sz —Toa), (1.77)
= Tiim)- (1.78)
Hence,
,—r[lm] = €itmd;. (179)
Note that
0 ds —ds
T[lm} = €1lmd1 —+ €2lmd2 + €3lmd3 = —d3 O d1 . (180)
dy —dpy 0

And we can write the decomposition of an arbitrary tensor as the sum of its symmetric
part and a factor related to the dual vector associated with its anti-symmetric part:

Ti‘ = T(ij) + Ekijdk . (181)
——
arbitrary tensor symmetric part anti—symmetric part

1.2.1.4.6 Tensor product: two tensors The tensor product between two arbitrary
tensors yields a third tensor. For second order tensors, we have the tensor product in
Cartesian index notation as

Sii Tk = Pi. (1.82)

Note that j is a dummy index, ¢ and k are free indices, and that the free indices in each
additive term are the same. In that sense they behave somewhat as dimensional units, which
must be the same for each term. In Gibbs notation, the equivalent tensor product is written
as

S.-T=P. (1.83)

Note that in contrast to the tensor inner product, which has two pairs of dummy indices
and two dots, the tensor product has one pair of dummy indices and one dot. The tensor
product is equivalent to matrix multiplication in matrix algebra.

An important property of tensors is that, in general, the tensor product does not commute,
S-T#T-S. In the most formal manifestation of Cartesian index notation, one should also
not commute the elements, and the dummy indices should appear next to another in adjacent
terms as above. However, it is of no great consequence to change the order of terms so that
we can write S;;Tj; = T,5;;. That is in Cartesian index notation, elements do commute.
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But, in Cartesian index notation, the order of the indices is extremely important, and it is
this order that does not commute: S;;T}, # S;;T;, in general. The version presented above
Sii Tk, in which the dummy index j is juxtaposed between each term, is slightly preferable
as it maintains the order we find in the Gibbs notation.

1.2.1.4.7 Vector product: vector and tensor The product of a vector and tensor,
again which does not in general commute, comes in two flavors, pre-multiplication and post-
multiplication, both important, and given in Cartesian index and Gibbs notation below:

1.2.1.4.7.1  Pre-multiplication

u; = viTij = Ej'UZ‘, (]_84)
uw = v TAT v (1.85)
In the Cartesian index notation above the first form is preferred as it has a correspondence

with the Gibbs notation, but both are correct representations given our summation conven-
tion.

1.2.1.4.7.2 Post-multiplication

wi = Tiju; = vTy, (1.86)

w = T-v£&v . T (1.87)

1.2.1.4.8 Dyadic product: two vectors As opposed to the inner product between two
vectors, which yields a scalar, we also have the dyadic product, which yields a tensor. In
Cartesian index and Gibbs notation, we have

ﬂj = UV; = VU, (188)
T = uv’ #vu’. (1.89)

Notice there is no dot in the dyadic product; the dot is reserved for the inner product.

1.2.1.4.9 Contraction We contract a general tensor, which has all of its subscripts
different, by setting one subscript to be the same as the other. A single contraction will
reduce the order of a tensor by two. For example the contraction of the second order tensor
T;; is T;;, which indicates a sum is to be performed:

Ty = T + T + T3s. (1.90)

So, in this case the contraction yields a scalar. In matrix algebra, this particular contraction
is the trace of the matrix.
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1.2.1.4.10 Vector cross product The vector cross product is defined in Cartesian index
and Gibbs notation as

w; = Eijkuj"l}k, (191)
W = uxv. (1.92)
Expanding for ¢ = 1,2, 3 gives
Wi = €123U2V3 + €132U3V2 = UgV3 — U3V2, (1-93)
Wy = €231U3V] T €213U1V3 = U3V — U1 V3, (1-94)
W3 = €312U1V2 + €321U2V1 = UV2 — UV1. (1-95)

1.2.1.4.11 Vector associated with a plane We often have to select a vector which
is associated with a particular direction. Now for any direction we choose, there exists an
associated unit vector and normal plane. Recall that our notation has been defined so that
the first index is associated with a face or direction, and the second index corresponds to
the components of the vector associated with that face. If we take n; to be a unit normal
vector associated with a given direction and normal plane, and we have been given a tensor
T;;, the vector t; associated with that plane is given in Cartesian index and Gibbs notation
by

t; = nidy, (1.96)
t' = n’ T, (1.97)
t = T'.n. (1.98)

A sketch of a Cartesian element with the tensor components sketched on the proper face is
shown in [L4l

[
Example 1.5
Find the vector associated with the 1 face, t(!), as shown in Figure [.4]

We first choose the unit normal associated with the x; face, which is the vector n; = (1,0, O)T. The
associated vector is found by doing the actual summation
t; = niTi; = niThj + noToy 4+ naTsy. (1.99)

Now ny =1, no = 0, and n3 = 0, so for this problem, we have

1
) =1, (1.100)
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1

Figure 1.4: Sample Cartesian element which is aligned with coordinate axes, along with
tensor components and vectors associated with each face.
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TN

rotate

1

Figure 1.5: Sample Cartesian element which is rotated so that its faces have vectors which
are aligned with the unit normals associated with the faces of the element.

1.2.2 Eigenvalues and eigenvectors

For a given tensor Tj;, it is possible to select a plane for which the vector from 7;; associated
with that plane points in the same direction as the normal associated with the chosen plane.
In fact for a three dimensional element, it is possible to choose three planes for which the
vector associated with the given planes is aligned with the unit normal associated with those
planes. We can think of this as finding a rotation as sketched in

Mathematically, we can enforce this condition by requiring that

S~~~ ~~~
vector associated with chosen direction scalar multiple of chosen direction

Here A is an as of yet unknown scalar. The vector n; could be a unit vector, but does not
have to be. We can rewrite this as

In Gibbs notation, this becomes n? - T = An” - I. In mathematics, this is known as a left
eigenvalue problem. Solutions n; which are non-trivial are known as left eigenvectors. We
can also formulate this as a right eigenvalue problem by taking the transpose of both sides
to obtain TZ - m = Al - n. Here we have used the fact that 17 = |. We note that the left
eigenvectors of T are the right eigenvectors of T?. Eigenvalue problems are quite general
and arise whenever an operator operates on a vector to generate a vector which leaves the
original unchanged except in magnitude.

We can rearrange to form
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In matrix notation, this can be written as

Tll — A T12 T13
(n1 Ng N3 ) T21 T22 — A T23 = (O 0 0) . (1104)
Ty Tse  T33— A

A trivial solution to this equation is (nj,ns,n3) = (0,0,0). But this is not interesting. We
get a non-unique, non-trivial solution if we enforce the condition that the determinant of the
coefficient matrix be zero. As we have an unknown parameter \, we have sufficient degrees
of freedom to accomplish this. So, we require

T11 - A T12 T13
T21 T22 - >\ T23 - 0 (1105)
Ty Tse  T33— A

We know from linear algebra that such an equation for a third order matrix gives rise to a
characteristic polynomial for A of the form

X — 1N 4 1PN — 1P — o, (1.106)

where I}l), I:(f), 1}3) are scalars which are functions of all the scalars T;;. The I7’s are known
as the invariants of the tensor Tj;. They can be shown to be given b

W = T,=trT, (1.107)
1 1
9 = 5 (T3:Ty; — Ty Ty) = 5 (tr T)? —tr (T-T)) = (det T) (tr TY), (1.108)
1
= 5 (T T + Tin T — T Tlan)) (1.109)
11(13) = EijleiT2jT3k = det T. (1110)

Here “det” denotes the determinant. It can also be shown that if AV, A A®) are the three
eigenvalues, then the invariants can also be expressed as

IV = A A0 46, (1.111)
12 = ADAD L A@)G) 4 \GNO), (1.112)
[0 = ALY (1.113)

In general these eigenvalues, and consequently, the eigenvectors are complex. Addition-
ally, in general the eigenvectors are non-orthogonal. If, however, the matrix we are consider-
ing is symmetric, which is often the case in fluid mechanics, it can be formally proven that

13We employ a slightly more common form here than the very similar Eq. (3.10.4) of Panton.
4Note the obvious error in the third of Panton’s Eq. (3.10.5), where the indices j and ¢ appear three
times.
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1

Figure 1.6: Sketch of stresses being applied to a cubical fluid element. The thinner lines
with arrows are the components of the stress tensor; the thicker lines on each face represent
the vector associated with the particular face.

all the eigenvalues are real and all the eigenvectors are real and orthogonal. If for instance,
our tensor is the stress tensor, we will show that it is symmetric in the absence of external
couples. The eigenvectors of the stress tensor can form the basis for an intrinsic coordinate
system which has its axes aligned with the principal stress on a fluid element. The eigenval-
ues themselves give the value of the principal stress. This is actually a generalization of the
familiar Mohr’s circle from solid mechanics.

|
Example 1.6

Find the principal axes and principal values of stress if the stress tensor is
1 00
Ti; =10 1 2]. (1.114)
0 2 1
A sketch of these stresses is shown on the fluid element in Figure We take the eigenvalue
problem
an” = )\nj, (1115)
= )\ni5ij, (1.116)
n; (Tl — )\5”) = 0. (1.117)
This becomes for our problem
1-A 0 0
(n1 na n3) 0 1—-A 2 =(0 0 0). (1.118)
0 2 1—X
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For a non-trivial solution for n;, we must have
1—X 0 0
0 1-—A 2 |=0. (1.119)
0 2 1-—A
This gives rise to the polynomial equation

(1=X)(1=N1=x) —4)=0. (1.120)

This has three solutions
A=1, A=—1, A= 3. (1.121)

Notice all eigenvalues are real, which we expect since the tensor is symmetric.

Now let’s find the eigenvectors (aligned with the principal axes of stress) for this problem First, it
can easily be shown that when the vector product of a vector with a tensor commutes when the tensor
is symmetric. Although this is not a crucial step, we will use it to write the eigenvalue problem in a
slightly more familiar notation:

n; (Ti; — Aij) = 0= (Ti; — Adij) n; =0, because scalar components commute. (1.122)
Because of symmetry, we can now commute the indices to get

(Tj; — Adji) n; = 0, because indices commute if symmetric. (1.123)

Expanding into matrix notation, we get

T11 — )\ T21 T31 ni1 O
T12 T22 - A T32 U = 0 . (1124)
T3 To3 T33— A n3 0

Note, we have taken the transpose of 7" in the above equation. Substituting for 7T}; and considering the
eigenvalue A = 1, we get

00 0\ [m 0
00 2| [n]=1[0]. (1.125)
02 0/ \ns 0

We get two equations 2no = 0, and 2n3 = 0, which require that ny = ng = 0. We can satisfy all
equations with an arbitrary value of ny. It is always the case that an eigenvector will have an arbitrary
magnitude and a well-defined direction. Here we will choose to normalize our eigenvector and take
n1 = 1, so that the eigenvector is

nj=10 for A=1. (1.126)
0

Note, geometrically this means that the original 1 face already has an associated vector which is aligned
with its normal vector.

Now consider the eigenvector associated with the eigenvalue A = —1. Again substituting into the
original equation, we get

2.0 0\ [m 0
02 2| |nl|=[0]. (1.127)
02 2/ \ns 0
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This is simply the system of equations

2n; = 0, (1.128)
2ng +2n3 = 0, (1.129)
2ns +2n3 = 0. (1.130)
Clearly n; = 0. We could take no = 1 and ng = —1 for a non-trivial solution. Alternatively, let’s
normalize and take
0
= % |. (1.131)
vz

2

Finally consider the eigenvector associated with the eigenvalue A = 3. Again substituting into the
original equation, we get

-2 0 0 ny 0
0o -2 2 ne | =10]. (1.132)
0o 2 =2 ns 0
This is the system of equations
—2n; = 0, (1.133)
—2n9+2ng = 0, (1.134)
2ngy —2ng = 0. (1.135)

Clearly again n; = 0. We could take no = 1 and n3z = 1 for a non-trivial solution. Once again, let’s
normalize and take

nj=%]. (1.136)

nl = (1) for A =1, (1.137)
0
0

n® = | 2 for  A® =1, (1.138)
=
0

n® = |2 for  A® =3 (1.139)
7

Note that the eigenvectors are mutually orthogonal, as well as normal. We say they form an orthonormal
set of vectors. Their orthogonality, as well as the fact that all the eigenvalues are real can be shown to
be a direct consequence of the symmetry of the original tensor. A sketch of the principal stresses on
the element rotated so that it is aligned with the principal axes of stress is shown on the fluid element
in Figure [7
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X,

Figure 1.7:  Sketch of fluid element rotated to be aligned with axes of principal stress, along
with magnitude of principal stress. The 1 face projects out of the page.

I
Example 1.7
For a given stress tensor, which we will take to be symmetric though the theory applies to non-
symmetric tensors as well,

1
T,=T=[2 3 -1], (1.140)
4 -1 1

find the three basic tensor invariants of stress I:(Fl), I:(F2), and I:(FB), and show they are truly invariant
when the tensor is subjected to a rotation with direction cosine matrix of

1 2 1
woyy o
li;=Q= ? -7 751 (1.141)
n Y x5
Calculation reveals that
detQ =1, (1.142)
and that Q - QT =1, so that Q is a rotation matrix.
The eigenvalues of T, which are the principal values of stress are easily calculated to be
2D =528675,  A? =_-367956,  A®) =3.39281. (1.143)
The three invariants of T;; are
1 2 4
IV = wT=tr (2 3 —1]|=1+3+1=5, (1.144)
4 -1 1

((tr T)2 —tr (T- T))

N =
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2

1 1 2 4 1 2 4 1 2 4
= 3 tr {2 3 -1 —tr 2 3 -1 2 3 -1 ,
4 -1 1 4 -1 1 4 -1 1
1 21 4 6
= 3 52—tr | 4 14 4 ,
6 4 18
1
= 5(25 —21—14 - 18),
= —14, (1.145)
1 2 4
I = detT=det|2 3 —1|=-66 (1.146)
4 -1 1
Now when we rotate the tensor T, we get a transformed tensor given by
V6 V3 V2 1 2 4 G \/; 6
' AT . T. _ 2 1 _ 4 1 1
T=Q7-T-Q \/; 0 S [ = M iy
a1 1 1 4 -1 1 1 9 _L
V6 V3B V2 V2 V2
4.10238  2.52239 1.60948
= 2.52239 —0.218951 —2.91291 | . (1.147)

1.60948 —2.91291  1.11657

We then seek the tensor invariants of T'. Leaving out some of the details, which are the same as those
for calculating the invariants of the T, we find the invariants indeed are invariant:

IV = 410238 — 0.218951 + 1.11657 = 5, (1.148)
1

12 = 5(3 —53) = —14, (1.149)

¥ = —66. (1.150)

Finally, we verify that the stress invariants are indeed related to the principal values (the eigenvalues
of the stress tensor) as follows

IV = AW 4 A® 4 \B) = 528675 — 3.67956 + 3.39281 = 5, (1.151)
I = ADA® L A@AG) L A®\D),

= (5.28675)(—3.67956) + (—3.67956)(3.39281) + (3.39281)(5.28675) = —14,  (1.152)
I = AOADNG) = (5.28675)(—3.67956)(3.39281) = —66. (1.153)

1.2.3 Grad, div, curl, etc.

Thus far, we have mainly dealt with the algebra of vectors and tensors. Now let us consider
the calculus. For now, let us consider variables which are a function of the spatial vector ;.
We shall soon allow variation with time ¢ also. We will typically encounter quantities such
as

CC BY-NC-ND. 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

1.2. SOME NECESSARY MATHEMATICS 43

e ¢ (z;) — a scalar function of the position vector,
e v; (z;) = a vector function of the position vector, or

o Tj; (z;) — a tensor function of the position vector.

1.2.3.1 Gradient operator

The gradient operator, sometimes denoted by “grad,” is motivated as follows. Consider
¢(x;), which when written in full is

¢(z;) = ¢(z1, T2, T3). (1.154)

Taking a derivative using the chain rule gives

¢ O O
dp = —d —d ——dxs. 1.155
¢ 8:171 e * 81’2 2 + 01'3 3 ( )
Following Panton, we define a non-traditional, but useful further notation 9; for the partial
derivative

d
G 0
0 0 0 0 021 !
0, = = =v=|(ZL]|=(05], 1.156
or;  Ox; 1t 0T ez + 03 s 832 82 ( )
a_xg 3
so that the chain rule is actually
d¢ = 81¢ dl’l + 82(25 d.f(fg + 83¢ dl‘g, (1157)
which is written using our summation convention as
After commuting so as to juxtapose the i subscript, we have
In Gibbs notation, we say
dp = dx* - V¢ = dx’ - grad ¢. (1.160)

We can also take the transpose of both sides, recalling that the transpose of a scalar is the
scalar itself, to obtain

(dp)" = (dx"-Vg)", (1.161)
dp = (V)T -dx, (1.162)
dp = V%'¢-dx. (1.163)
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Here we expand VT as VI = (9;,0,,05). When 9; or V operates on a scalar, it is known as
the gradient operator. The gradient operator operating on a scalar function gives rise to a
vector function.

We next describe the gradient operator operating on a vector. For vectors in Cartesian
index and Gibbs notation, we have, following a similar analysi

dv; = dx;0v; = 0v; dxy,

dvl = dx’ .- vvT,
dv = (VvH)T.dx,
dv = (grad v)T - dx. (1.164)

Here the quantity 0;v; is the gradient of a vector, which is a tensor. So the gradient operator
operating on a vector raises its order by one. Note that the Gibbs notation with transposes
suggests properly that the gradient of a vector can be expanded as

o0 Oiv1 Oivg Oivs
VVT = 82 ( V1 Uy U3 ) = 821)1 82’112 02’113 . (1165)
83 831)1 83’02 83’03

Lastly we consider the gradient operator operating on a tensor. For tensors in Cartesian
index notation, we have, following a similar analysis

dli; = dxy0,T5; = 0Ty dwy,
(1.166)

Here the quantity 0,7T;; is a third order tensor. So the gradient operator operating on a
tensor raises its order by one as well. The Gibbs notation is not straightforward as it can
involve something akin to the transpose of a three-dimensional matrix.

1.2.3.2 Divergence operator

The contraction of the gradient operator on either a vector or a tensor is known as the
divergence, sometimes denoted by “div.” For the divergence of a vector, we have

0,-1),- = 81’111 + 02’112 + 03’113 = VT -v =div v. (1167)

The divergence of a vector is a scalar.
For the divergence of a second order tensor, we have

027—‘” == 01T1j + 82T2j + 03T3j == VT -T = le T. (1168)

15 A more common approach, not using the transpose notation, would be to say here for the Gibbs notation
that dv = dx-Vv. However, this is only works if we consider dv to be a row vector, as dx-Vv is a row vector.
All in all, while at times clumsy, the transpose notation allows a for great deal of clarity and consistency
with matrix algebra.
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The divergence operator operating on a tensor gives rise to a row vector. We will sometimes
have to transpose this row vector in order to arrive at a column vector, e.g. we will have
need for the column vector (VT . T)T. We note that, as with the vector inner product, most
texts assume the transpose operation is understood and write the divergence of a vector or
tensor simply as V-vor V- T.

1.2.3.3 Curl operator

The curl operator is the derivative analog to the cross product. We write it in the following
three ways:

wi = €10,
w = Vxuv, (1.169)
w = curl v.
Expanding for ¢ = 1,2, 3 gives
w1 = €12300U3 + €1320505 = Oov3 — 03112,
Wy = €2310301 + €21301v3 = O3v1 — O3,
w3y = 6312811)2 + 632182’01 = 81’02 — 82’01. (1170)

1.2.3.4 Laplacian operator

The Laplacian@ operator can operate on a scalar, vector, or tensor function. It is a simple
combination of first the gradient followed by the divergence. It yields a function of the same
order as that which it operates on. For its most common operation on a scalar, it is denoted
by as follows

0:0;i0 = V' -V ¢ = V¢ = div grad ¢. (1.171)

In viscous fluid flow, we will have occasion to have the Laplacian operate on vector:

0;,0;,v; = (VT -V VT)T = (Vsz)T = V%v = div grad v. (1.172)

1.2.3.5 Relevant theorems

We will use several theorems which are developed in vector calculus. Here we give the
simplest of motivations, and simply present them. The reader should consult a standard
mathematics text for detailed derivations.

16Pierre-Simon Laplace, 1749-1827, Normandy-born French astronomer of humble origin. Educated at
Caen, taught in Paris at Ecole Militaire.
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1.2.3.5.1 Fundamental theorem of calculus The fundamental theorem of calculus is
as follows
r=b r=b d¢
(@) do = / (%) dz = 6(b) — (a). (1.173)
It effectively says that to find the integral of a function f(x), which is the area under the
curve, it suffices to find a function ¢, whose derivative is f, and evaluate ¢ at each endpoint,
and take the difference to find the area under the curve.

1.2.3.5.2 Gauss’s theorem Gauss'd theorem is the analog of the fundamental theorem
of calculus extended to volume integrals. It applies to tensor functions of arbitrary order
and is as follows:

/32- (Tjk...) dv:/niTjk... ds (1.174)
R S

Here R is an arbitrary volume, dV is the element of volume, S is the surface that bounds
V', n; is the outward unit normal to .S, and T}y . is an arbitrary tensor function. The surface
integral is analogous to evaluating the function at the end points in the fundamental theorem
of calculus.

Note if we take Tj; . to be the scalar of unity (whose derivative must be zero), Gauss’s
theorem reduces to

/ni is = 0. (1.175)
S

That is the unit normal to the surface integrated over the surface, cancels to zero when the
entire surface is included.

We will use Gauss’s theorem extensively. It allows us to convert sometimes difficult
volume integrals into easier interpreted surface integrals. It is often useful to use this theorem
as a means of toggling back and forth from one form to another.

1.2.3.5.3 Stokes’ theorem Stokes theorem is as follows.
/nieijkﬁjvk dsS = % a;U; ds. (1176)
s c

Once again S is a bounding surface and n; is its outward unit normal. The integral with the
circle through it denotes a closed contour integral with respect to arc length s, and «; is the
unit tangent vector to the bounding curve C.

In Gibbs notation, it is written as

/nT-vadS:%aT-vds. (1.177)
S c

17Carl Friedrich Gauss, 1777-1855, Brunswick-born German mathematician, considered the founder of
modern mathematics. Worked in astronomy, physics, crystallography, optics, biostatistics, and mechanics.
Studied and taught at Gottingen.

18Sir George Gabriel Stokes, 1819-1903, Irish-born British physicist and mathematician, holder of the Lu-
casian chair of Mathematics at Cambridge University, developed, simultaneously with Navier, the governing
equations of fluid motion, in a form which was more robust than that of Navier.
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1.2.3.5.4 Kinetic energy divergence identity It is easy to show that a useful identity
involving the divergence of specific kinetic energy holds:

1
Uj&jvi = 82 (ivjvj) — eijkvjwk, (1178)
1
vI-V)v = V <§VT-V) —VXWw. (1.179)

This is easily proved by considering the right hand side of Eq. (II78]), expanding, and using

Egs. (LI69) and then (L54):

0; (%vjv]) — €jkVWE = ;00 — €jkVj EximO U, (1.180)
=wg
V;O0Vj — €kij€kimViO1Um, (1.181)
= 0;0;0; — (0:6jm — dim0;1) V;O U, (1.182)
= v;0,v; — v;0;v; +v;0,v;, (1.183)
=0
= v;0;v;, QED. (1.184)

1.2.3.5.5 Leibniz’s rule Leibniz’d! rule relates time derivatives of integral quantities
to a form which distinguishes changes which are happening within the boundaries to changes
due to fluxes through boundaries. It is a generalization of the more familiar control volume
approach which uses the Reynold transport theorem. Leibniz’s rule applied to an arbitrary
tensorial function is as follows:

4

Ry Ot s(t)

R(t) — arbitrary moving volume,

S(t) — bounding surface of the arbitrary moving volume,
e w; — velocity vector of points on the moving surface,

e 7; — unit normal to moving surface.

19Gottfried Wilhelm von Leibniz, 1646-1716, Leipzig-born German philosopher and mathematician. In-
vented calculus independent of Newton and employed a superior notation to that of Newton.

290sborne Reynolds, 1842-1912, Belfast-born British engineer and physicist, educated in mathematics at
Cambridge, first professor of engineering at Owens College, Manchester, did fundamental experimental work
in fluid mechanics and heat transfer.
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Say we have the very special case in which T} = 1; then Leibniz’s rule reduces to
d 0
dt R(#) R(#) (‘% S(t)
dV)
RS / nwy, dS. (1.187)

This simply says the total volume of the region, which we call Vg, changes in response to
net motion of the bounding surface.

1.2.3.5.6 Reynolds transport theorem Leibniz’s rule reduces to the Reynolds trans-
port theorem if we replace the tensor function 7}, = with a scalar function, say f. Further,
considering one-dimensional cases only, we can then say

d x=b(t) 8f i
0t |y T A= / L B 0.0 - G, (1.189)

As in the fundamental theorem of calculus, for the one-dimensional case, we do not have to
evaluate a surface integral; instead, we simply must consider the function at its endpoints.
Here db/dt and da/dt are the velocities of the bounding surface and analogous to wy. The
terms f(b(t),t) and f(a(t),t) are equivalent to evaluating Tjx. on S(t).

1.3 Kinematics

The previous section was in many ways a discussion of geometry or place. Here we will
consider kinematics, the study of motion in space. Here we will pay no regard to what
causes the motion. If we knew the position of every fluid particle as a function of time, then
we could in principle also describe the velocity and acceleration of each particle. We could
also make statements about how groups of particles translate, rotate, and deform. This is
the essence of kinematics.

Fluid motion is generally a highly non-linear event. In this section, we will develop tools,
using a local linear analysis, to break down the most complex fluid flows to a summation of
fundamental motions.

1.3.1 Lagrangian description

A Lagrangia description is similar to a classical description of motion in that each fluid
particle is effectively labeled and tracked in terms of its initial position z§ and time ¢. We
take the position vector of a particle r; to be

A

r = Ti(25,1). (1.189)

VR

21Joseph-Louis Lagrange (originally Giuseppe Luigi Lagrangia), 1736-1813, Italian born, Italian-French
mathematician. Worked on celestial mechanics and the three body problem. Worked in Berlin and Paris.
Part of the committee which formulated the metric system.
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The velocity v; of a particular particle is the time derivative of its position, holding z7 fixed:

or;
V; = =
ot

(1.190)

o
x9
J

The acceleration a; of a particular particle is the second time derivative of its position,
holding z{ fixed:
O

o2

a; (1.191)

o
x9
J

We can also write other variables as functions of time and initial position, for example, we
could have for pressure p(x?, t).

The Lagrangian description has important pedagogical value, but is only occasionally
used in practice, except maybe where it can be useful to illustrate a particular point. In
solid mechanics, it is often critically important to know the location of each solid element,
and it is the method of choice.

1.3.2 Eulerian description

It is more common in fluid mechanics to use the Eulerian description of fluid motion. In
this description, all variables are taken to be functions of time and local position, rather
than initial position. Here, we will take the local position to be given by the position vector
x; = r;. The transformation from Lagrangian coordinates to Eulerian coordinates is given
by

xr;, = ’I:Z'(ZIZ'O- t),
t = 1 (1.192)

1.3.3 Material derivatives

The material derivative is the derivative following a fluid particle. It is also known as the
substantial derivative or the total derivative. It is trivial in Lagrangian coordinates, since
by definition, a Lagrangian description tracks a fluid particle. It is not as straightforward in
the Eulerian viewpoint.

Consider a fluid property such as temperature or pressure, which we will call F' here,
which is function of position and time. We can characterize the position and time in either
an Eulerian or Lagrangian fashion. Let the Lagrangian representation be F' = Fy (%, t) and
the Eulerian representation be F' = Fg(x;,t). Now both formulations must give the same
result at the same time and position; applying our transformation between the two systems
thus yields

F = Fu(af,t) = Fp(x; = 75(a5,1),t = 1). (1.193)
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Now from basic calculus we have

or | . OF

dv; = —| dt + —=| da°. 1.194
S I R (1.194)
J
From basic calculus, we also have

8FL ~ 8FL
dF, = —| dt+ —| dx¢, 1.195
R P (1.195)

0Fg 0Fg
dFp = —| dt dx;. 1.196

Now, we must have dF = dF;, = dFg for the same fluid particle, so making substitutions
from above, we get
or;
t 8tA T

For the variation of F' of a particular particle, we hold zj fixed, so that dz7 = 0. Using also
the fact that t = t, so di = dt, and dividing by di, we get

dt + or

oF i
. 8:6?

~

ot

~  OFy,
dt
Y - ox° |.

s il

0Fg
8@-

F
dz® OFp

_ el L
j ot +

Adx?) . (1.197)

T t

oF;, OFy OFg| or;
= = = , 1.198
at Z‘;? at T azz t at x° ( )
and using the definition of fluid particle velocity, Eq. (II90), we get
oF L OF E OF E
— = — i ——| - 1.199
8t o 8t ;i ! 8$2 t ( )

T

Ignoring the operand F', F,, and Fg, we can write the derivative following a particle in the
following manner as an operator

9
ot

0 0
= —_— _'_Ui—

0
T. —_ —
5 3 oz, +v' -V

ot

D d
+vT . grad = i@ (1.200)

X

, ot
x5 t ax

We will generally use the following shorthand for the derivative following a particle:

d
— = 0. 1.201
p Oy + v;0; (1.201)

Here a second shorthand for the partial derivative with respect to time has been introduced:

9, = 0/,
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1.3.4 Streamlines

Streamlines are lines which are everywhere instantaneously parallel to velocity vectors. If a
differential vector dxj is parallel to a velocity vector v;, then the cross product of the two
vectors must be zero; hence for a streamline, we must have

€ijkVj dl’k = 0. (1202)
In Gibbs notation, we would say

v X dx = 0. (1.203)

Recalling that the cross product can be interpreted as a determinant, we get this condition
to reduce to
€1 €2 €3
U1 (%) V3 | = 0. (1204)
dl‘l dZL’Q dl‘g

Expanding the determinant gives
el(Ugdl'g — Ugdl’g) + eg(vgdl’l — 'Uldl’g) + eg(UleL’g — Ugdl’l) =0. (1205)

Since the basis vectors e, es, and es are linearly independent, the coefficient on each of
them must be zero, giving rise to

d d
'Ugdl’g = ’Ugdl’g, = ﬁ = ﬂ, (1206)
V3 (%)
d d
vsdr; = wvidrs, = ] = ﬁ, (1207)
U1 (R}
d d
'Uldl’g = ’Ugdl’l, = ﬂ = ﬂ (1208)
U2 U1
(1.209)
Combining, we get
doy _ dry _ drs (1.210)

(%1 V2 U3

At a fixed instant in time, t = t,, we set the above terms all equal to an arbitrary differential
parameter d7 to obtain

d d d
o - T - T = dr. (1.211)
vi(21, 22, x3;t =1,)  va(x1, 20, x3;t =1,)  vs(x1, X2, 23, =1,)

Here 7 should not be thought of as time, but just as a dummy parameter. Streamlines are
only defined at a fixed time. While they will generally look different at different times, in
the process of actually integrating to obtain them, time does not enter into the calculation.
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We then divide each equation by d7 and find the above equations are equivalent to a system
of differential equations of the autonomous form

d

= wlenanamt=t), ol =0)=u, (1.212)
T

d

= nlenanamt=t),  a(r=0) =, (1.213)
T

d

= wlenanamt=t),  as(r=0) =, (1.214)
T

After integration, which in general must be done numerically, we find

21(T5to, T15), (1.215)
T2(T5 o, T20), (1.216)
23(75 Lo, T30), (1.217)

where we let the parameter 7 vary over whatever domain we choose.

1.3.5 Pathlines

The pathlines are the locus of points traversed by a particular fluid particle. For an Eulerian
description of motion where the velocity field is known as a function of space and time
vj(x;,t), we can get the pathlines by integrating the following set of three non-autonomous
ordinary differential equations, with the associated initial conditions:

d
% = ’111(1'1,1’2,1’3, t), ZL’l(t = to) = X0, (1218)
d
% = ’Ug(!L’l,[L’g,[L’g, t), ZL’Q(t = to) = X290, (1219)
d
% = ’113(1'1,1’2,1’3, t), l’g(t = to) = T30- (1220)

In general these are non-linear equations, and often require full numerical solution, which
gives us

x1(t; 21,), (1.221)
[L’g(t; [L’go), (1222)
x3(t; x3,). (1.223)

1.3.6 Streaklines

A streakline is the locus of points that have passed through a particular point at some past
time t = t. Streaklines can be found by integrating a similar set of equations to those for
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pathlines.
d.ﬁlfl ~
% = Ul(l’l, T2, T3, t), l’l(t = t) = T1o, (1224)
d .
% = Uy(21,22, T3, 1), Lot = 1) = T, (1.225)
d .
% = Ug(l’l, T2, T3, t), l’g(t = t) = T30- (1226)
After integration, which is generally done numerically, we get
l’l(t;l'lo,f), (1227)
o(t; 220, 1), (1.228)
23 (t; T30, ). (1.229)

Then, if we fix time ¢ and the particular point in which we are interested (14, 22, 23,)7, We
get a parametric representation of a streakline

PN

1 (1), (1.230)
(1), (1.231)
w3(t). (1.232)

I
Example 1.8
If v = 221 +t, vo = x9 — 2t, find a) the streamline through the point (1,1)” at t = 1, b) the
pathline for the fluid particle which is at the point (1,1)T at t = 1, and ¢) the streakline through the
point (1,1)T at t = 1.

a) streamline

For the streamline we have the following set of differential equations,

dIl
- = 2z +t|,_,, x1(r=0)=1,
dIQ
pal xo — 2t|,_4, xz2(T=0)=1.

Here it is inconsequential where the parameter 7 has its origin, as long as some value of 7 corresponds
to a streamline through (1,1)7, so we have taken the origin for 7 = 0 to be the point (1,1)”. These
equations at ¢ = 1 are

d
di; = 2 +1, w(r=0)=1,
d
di: = 22-2, ay(r=0)=1.
Solving, we get
3
r = —627-—1,
2 2
r9 = —e’ +2.
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Solving for 7, we find

L (2 (s L
T—2n3$1 B .

So, eliminating 7 and writing z2(x1), we get the streamline to be

2 1
(E2:2— g (E1+§ .

b) pathline

For the pathline we have the following equations

d
% = 2I1+t, Il(tzl)zl,
d
% = I2—2t, Ig(tzl)zl
These have solution
T oow-ny_t 1
. 4° 2 1
Ty = =37t 42t42.

It is algebraically difficult to eliminate ¢ so as to write xo(z1) explicitly. However, the above certainly
gives a parametric representation of the pathline, which can be plotted in x1, zo space.

c) streakline

For the streakline we have the following equations

dx "
d—tl = 24t wm(t=1)=1,
d N
% = 1‘2—2t, ,Tg(t:t)zl.
These have solution
_ 5 + 2£ 2(t—£) t 1
nom Tyt 2w
Ty = —(1+20)e™" +2t42.

We evaluate the streakline at ¢ = 1 and get

4 4’
Ty = —(1420)e!7 4 4.

54 2t N3
o = 2 Zea-d

Once again, it is algebraically difficult to eliminate ¢ so as to write x2(x1) explicitly. However, the
above gives a parametric representation of the streakline, which can be plotted in z1, 2 space.

A plot of the streamline, pathline, and streakline for this problem is shown in Figure [[.8] Note
that at the point (1,1)7, all three intersect with the same slope. This can also be deduced from the
equations governing streamlines, pathlines, and streaklines.
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Figure 1.8: Streamline, pathlines, and streaklines for unsteady flow of example problem.

1.3.7 Kinematic decomposition of motion

In general the motion of a fluid is non-linear in nearly all respects. Certainly, it is common
for particle pathlines to be far from straight lines; however, this is not actually a hallmark
of non-linearity in that linear theories of fluid motion routinely predict pathlines with finite
curvature. More to the point, we cannot in general use the method of superposition to add
one flow to another to generate a third. One fundamental source of non-linearity is the
non-linear operator v;0;, which we will see appears in most of our governing equations.
However, the local behavior of fluids is nearly always dominated by linear effects. By
analyzing only the linear effects induced by small changes in velocity, which we will associate
with the velocity gradient, we will learn a great deal about the richness of fluid motion. In
the linear analysis, we will see that a fluid particle’s motion can be described as a summation
of a linear translation, rotation as a solid body, and straining of two types: extensional and
shear. Both types of straining can be thought of as deformation rates. We use the word
“straining” in contrast to “strain” to distinguish fluid and flexible solid behavior. Generally
it is the rate of change of strain (that is the “straining”) which has most relevance for a
fluid, while it is the actual strain that has the most relevance for a flexible solid. This is
because the stress in a flexible solid responds to strain, while the stress in a fluid responds to
a strain rate. Nevertheless, while strain itself is associated with equilibrium configurations
of a flexible solid, when its motion is decomposed, strain rate is relevant. In contrast, a rigid
solid can be described by only a sum of linear translation and rotation. A point mass only

CC BY-NC-ND. 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

56 CHAPTER 1. GOVERNING EQUATIONS

v; + dvl.

PI

Figure 1.9: Sketch of fluid particle P in motion with velocity v; and nearby neighbor particle
P’ with velocity v; + dv;.

translates; it cannot rotate or strain.

fluid motion = translation + rotation + gxtensional straining 4+ shear straining,
stra;;ing
flexible solid motion = translation + rotation + gxtensional straining + shear straining,
stra\i;ing
rigid solid motion = translation + rotation,
point mass motion = translation.

Let us consider in detail the configuration shown in Figure [L9. Here we have a fluid
particle at point P with coordinates z; and velocity v;. A small distance dr; = dx; away is
the fluid particle at point P’, with coordinates x; + dx;. This particle moves with velocity
v; + dv;. We can describe the difference in location by the product of a unit tangent vector
a; and a scalar differential distance magnitude ds: dr; = dr; = «; ds. Note that «a; is in
general not aligned with the velocity vector, and the differential distance ds is not associated
with the arc length along a particle path. Later in Sec. [L3.12] we will select an alignment
with the particle path, and thus choose a; = ay; and ds = ds, where «y; is the unit tangent
to the particle path and ds is the arc length.

1.3.7.1 Translation

We have the motion at P’ to be v; + dv;. Obviously, the first term v; represents translation.

1.3.7.2 Solid body rotation and straining

What remains is dv;, and we shall see that it is appropriate to characterize this term by both
a solid body rotation combined with straining.
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We have from the chain rule that

dv; = dx;0vj, (1.233)
dvl = dx'-vvT, (1.234)
dv = (V)" dx, (1.235)
dv = LT-dx. (1.236)

Here 0;v; = Vv = L is the velocity gradient tensor. We can break d;v; into a symmetric
and anti-symmetric part and say then

S—— S——
Shear and extensional straining Rotation

We also will find it useful to decompose the velocity gradient tensor L into a deformation
tensor, D:

D=D;; = 0uvj, (1.238)
a rotation tensor R:
R = Ri; = Ouv;). (1.239)
This yields
L=D+R. (1.240)
Thus,
dv; = dx;Dij +dx;Ri; = (a;Dij + o, R;;) ds, (1.241)
dv’ = dx"-D+dx"-R=(a"-D+a’ R)ds, (1.242)
dv. = D-dx+R"-dx=(D-a+R" a)ds. (1.243)
Let
dvj(»s) = dx; Oyvj) = o Oyvj) ds, (1.244)
v = xT.D=a’ D ds, (1.245)
dv® = D.dx=D-ads. (1.246)

We will see this is associated with straining, both by shear and extension. We will call the
symmetric tensor d;v;) = D the strain rate or deformation tensor.
Further, let

dv](-r) = dw; Oyvj = o; Oyvy ds, (1.247)
dv®' = ixT-R=a" -Rds, (1.248)
dv? = RT.dx=R"-a ds. (1.249)

We will see this is associated with rotation as a solid body, with d;v; = R as the rotation
tensor.
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1.3.7.2.1 Solid body rotation Let us examine dv](.r). First, we define the vorticity
vector wy, as the curl of the velocity field

W — €kij8ivj7 (1250)
w = Vxv. (1.251)

Let us now split the velocity gradient 0;v; into its symmetric and anti-symmetric parts and
recast the vorticity vector as
W = Ekija(ivj) +€kij8[ivj]- (1252)
=0
The first term on the right side is zero because it is the tensor inner product of an anti-
symmetric and symmetric tensor. In what remains, we see that half of the vorticity wy is
actually the dual vector, ), associated with the anti-symmetric 9jv;).

Wy = €;0v) =V XV, (1.253)
1 1 1
Qk = iwk = §ekij0[ivj] = §V X V. (1254)
Using Eq. (IL79) to invert Eq. (L254), we find
1
0] = €4 = o ki k- (1.255)
Thus we have
" 1
dv](- ) = dx; iekijwk, (1.256)
= €k (%) dx;, (1.257)
—— (%) dz;, (1.258)
1
= WX dr  andif Q= %, (1.259)
— Q x dr . (1.260)
——

Solid body rotation of one point about another

By introducing the above definition for €2, we see this term takes on the exact form for
the differential velocity due to solid body rotation of P’ about P from classical rigid body
kinematics. Hence, we give it the same interpretation.

1.3.7.2.2 Straining Next we consider the remaining term, which we will associate with
straining. First, let us further decompose this into what will be seen to be an extensional
(es) straining and a shear straining (ss):

' = ™ +dvl (1.261)
——
extension shear

dv® = v 4 v (1.262)
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1.3.7.2.2.1 Extensional straining Let us define the extensional stramlng to be the
component of straining in the direction of dz;. To do this, we need to project dv onto the
unit vector «;, then point the result in the direction of that same unit vector;

aof® = (@) (1.263)

projection of straining

Now using the definition of dvj(»s), Eq. (L244), we get

dvl(:s) — O{] (aza(zvj) ds) e, (1264)
—_———
:dvﬁs)
= (0uvjag) oy ds, (1.265)
dve®) = (" -D-a)ads. (1.266)

Now, since ;o is symmetric, we can be led to a useful result. Consider the series of
operations involving the velocity gradient, in general asymmetric, and a scalar quantity, ¢:

¢$ = o’ L -a, (1.267)
= o' - (D+R)-a, (1.268)
= ol - D-ata’ -R-aq, (1.269)
—0
= o' D a. (1.270)
Thus, we can recast Eq. (L260) as
dve?) = (" L-a)ads. (1.271)

1.3.7.2.2.2 Shear straining What straining that is not aligned with the axis con-
necting P and P’ must then be normal to that axis, and is easily visualized to represent a
shearing between the two points. Hence the shear straining is

™ = dvl — dv, (1.272)
= (8@1}2 — 0;0(;Up) ozkozj) ds, (1.273)
= (8(3212 — 0, O(pk) akdﬂaz) ds, (1.274)
= (80112 — ( pvk)ak) 5]1) oy ds, (1.275)
v = (D—-(a"-D-a)l) ads. (1.276)
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1.3.7.2.2.3 Principal axes of strain rate We recall from our earlier discussion that
the principal axes of stress are those axes for which the force associated with a given axis
points in the same direction as that axis. We can extend this idea to straining, but develop it
in a slightly different, but ultimately equivalent fashion based on notions from linear algebra.
We first recall that most?? arbitrary asymmetric square matrices L can be decomposed into
a diagonal form as follows:

L=P-A-P% (1.277)

Here P is a matrix of the same dimension as L which has in its columns the right eigenvectors
of L. When L is symmetric, it can be shown that its eigenvalues are guaranteed to be real
and its eigenvectors are guaranteed to be orthogonal. Further, since the eigenvectors can
always be scaled by a constant and remain eigenvectors, we can choose to scale them in such
a way that they are all normalized. In such a case in which the matrix P has orthonormal
columns, the matrix is defined as orthogonal (though orthonormal would be a more accurate
nomenclature). When P has been rendered orthogonal, we call it Q. So, when L is symmetric,
such as when L = D, the symmetric part of the velocity gradient, we also have the following
decomposition

D=Q-A-Q. (1.278)

Orthogonal matrices can be shown to have the remarkable property that their transpose is
equal to their inverse, and so we also have the even more useful

D=Q -A-Q. (1.279)

Geometrically Q is equivalent to a matrix of direction cosines; as we have seen before, its
transpose Q' is a rotation matrix which rotates but does not stretch a vector when it operates
on the vector.

Now let us consider the straining component of the velocity difference; taking the sym-

metric d;v;) = D, which we further assume to be a constant for this analysis, we rewrite
Eq. (I.240) using Gibbs notation as

(dv<s>)T — dxT.D, (1.280)
dv® = DT .ax, (1.281)
dv® = D.-dx, since D is symmetric. (1.282)
dv® = Q-A-QT-dx. (1.283)

223ome matrices, which often do not have enough linearly independent eigenvectors, cannot be diagonal-
ized; however, the argument can be extended through use of the singular value decomposition. The singular
value decomposition can also be used to effectively diagonalize asymmetric matrices; however, in that case
it can be shown there is no equivalent interpretation of the principal axes. Consequently, we will quickly
focus the discussion on symmetric matrices.

CC BY-NC-ND. 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

1.3. KINEMATICS 61

Now let us select what amounts to a special axes rotation via matrix multiplication by the
orthogonal matrix Q*:

QT dv® = QT-Q-A-QT - dx, (1.284)
Qr-dv® = Q'-Q-A-QT-dx, (1.285)
Q-dv® = A-QT.dx, (1.286)
d (QT . V(s)) = A-d (QT . x) since D and thus Q' are assumed constant. (1.287)

Now we recall from the definition of vectors that Q7 - v(®) = v/ ) and QT - x = x’. That is
these are the representations of the vectors in a specially rotated coordinate system, so we
have

dv'™ = A - dx'. (1.288)

Now since A is diagonal, we see that a perturbation in x’ confined to any one of the rotated
coordinate axes induces a change in velocity which lies in the same direction as that coordi-
nate axis. For instance on the 1’ axis, we have dv’ §8> = Ay1da’y. That is to say that in this
specially rotated frame, all straining is extensional; there is no shear straining.

1.3.8 Expansion rate

Consider a small material region of fluid, also called a particle of fluid. We define a material
region as a region enclosed by a surface across which there is no flur of mass. We shall
later see by invoking the mass conservation axiom for a non-relativistic system, that the
implication is that the mass of a material region is constant, but we need not yet consider
this. In general the volume containing this particle can increase or decrease. It is useful
to quantify the rate of this increase or decrease. Additionally, this will give a flavor of the
analysis to come for the conservation axioms.

Taking the both M R and R(t) to denote the same time-dependent finite material region
in space, we must have

Vur = / dv. (1.289)
R(t)
Using Leibniz’s rule, Eq. (I.I8H]), we take the time derivative of both sides and obtain
dv;
ME - / Q(1) dv +/ nyv; dS, (1.290)

= / nv; dS, (1.291)

= / Oiv; AV by Gauss’s theorem, (1.292)

= (0 UZ) Vg by the mean value theorem. (1.293)
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In the analysis above, we note that the velocity of S(t), in general w;, has been set to the
fluid velocity v; since we have a material region. We also recall from calculus the mean value
theorem which states that for any integral, a mean value can be defined, denoted by a *, as
for example fab f(z) dv = f.(b—a). As we shrink the size of the material volume to zero,
the mean value approaches the local value, so we get

1 dVyr
Vg di

lim LdVMR
Vir—0 Viyr  dt

= (Owi),, (1.294)

= Qw;=V!l.v=divv=trD. (1.295)

Equation (L.295)describes the relative expansion rate also known as the dilation rate of a
material fluid particle. A fluid particle for which 0;v; = 0 must have a relative expansion
rate of zero, and satisfies conditions to be an incompressible fluid.

1.3.9 Invariants of the strain rate tensor

The tensor associated with straining (also called the deformation rate tensor or strain rate
tensor) O(;vj) is symmetric. Consequently, it has three real eigenvalues, Agi), and an orienta-
tion for which the strain rate is aligned with the eigenvectors. As with stress, there are also
three principal invariants of strain rate, namely

Ié(l) = Ouviy = O = )\El) + )\g) + )‘ég)> (1.296)
1

1P = —(8uvyd,vy — 0uupdgun) = ADAD AP 1 APAD, 1.297

€ 2 @Y OG5 (@Y5)V(Y%) € € € € é é

I = epduvndavydavn = AN, (1.298)

)

The physical interpretation for [ E.(l is obvious in that it is equal to the relative rate of volume

. . . 2) . 2 3) .
change for a material element, %%. Aris discusses how I 6( ) is related to %% and I 6( ) is
L&V

related to TR

1.3.10 Invariants of the velocity gradient tensor

For completeness, the invariants of the more general velocity gradient tensor are included.
They are

I8 = 9w =20 428 1\8) (1.299)
I9) = %((am)(ajvj) — (007)(9701)) = AZAD, + AXAD, + A0, (1.300)
= % ((0:)(95v5) + O Fpvs) — v divi ) (1.301)
- ; ((am)(ajuj) + S~ a(wj)a(wj)) , (1.302)
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fg’) = €;ju010;020;030y, :A(vgx),)‘(vgx)/)‘gx)r (1.303)

v

1.3.11 Two-dimensional kinematics

Next, consider some important two dimensional cases, first for general two-dimensional flows,
and then for specific examples.

1.3.11.1 General two-dimensional flows

For two-dimensional motion, we have the velocity vector as (vy,ve,v3 = 0), and for the unit
tangent of the vector separating two nearby particles (a, ag, g = 0).

1.3.11.1.1 Rotation Recalling that dx; = «; ds, for rotation, we have

dUJ(»T) = 8[221]]de = aiﬁ[ivj] dS, (1304)
dv'” = (a10pv) + axdpvy) ds, (1.305)
dol” = | ay Bvy +adpuy | ds, (1.306)
=0
dvlr) = 0puyds, (1.307)
dl)zr) = Oéla[l’Ug] + Qo 8[21)2} dS, (1308)
——
=0
dvS”! = aydpuyds, (1.309)
rewriting in terms of the actual derivatives

. 1
dUl ) = 50&2 (82111 - 811)2) dS, (1310)

r 1
dU2 ) = 50&1 (01’112 — 821)1) ds. (1311)

Also for the vorticity vector, we get
W = eijk@-vj. (1312)

The only non-zero component is w3, which comes to

W3 = €311 81’01 + €312 81’02 —+ €321 82’01 -+ €322 821)2, thus, (1313)
=0 =1 =—1 =0
= 811)2 — 02’111. (1314)
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1.3.11.1.2 Extension

dv,(:s) =

dvles) _

dvzes) _

1.3.11.1.3 Shear

dUJ(»SS)

dvgss)

dvéss)

agoio0;vj) ds,

o (alalﬁ(lvl) + 10201 v2) + o101y + a2a28(21)2)) ds
oy (af01v1 + aran (B1va + Dav1) + a30205) ds, SO

o (a%@lvl + ajag (0109 + Oovq) + 04582112) ds,

s (70101 + ajas (0102 + Osvr) + A300,) ds.

(s) (es)

= (0uvj) — ajaa0goy) ds,
- (o (B )

a1 (70101 4 aras (O1vs + Oavr) + A30005) ) ds,
= (a202v2 + ay (M) —

s (70101 + aras (O1vs + Oavr) + A50002) ) ds.

1.3.11.1.4 Expansion

1dVv
VE = 81’01 + 82’02.

1.3.11.2 Relative motion along 1 axis

(1.322)

Let us consider in detail the configuration shown in Figure in which the particle sepa-
ration is along the 1 axis. Hence oy = 1, ap = 0, and a3 = 0.

e Rotation

o [Lixtension

'’ = 0,
r 1
d’Ué ) = 5 (811)2 — 02’111) ds = % ds.

d’U%es) = 01’111 dS,
ol = 0.
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>

Figure 1.10: Sketch of fluid particle P in motion with velocity v;(P) and nearby neighbor
particle P’ with velocity v;(P’).
e Shear

™ = 0, (1.327)
1
dvy”) = 2 (O1va + Gy ds = Ovy) ds. (1.328)

L o1dV
e Ezpansion: 35 = 0101 + Oyvs.

1.3.11.3 Relative motion along 2 axis

Let us consider in detail the configuration shown in Figure [[.T1l in which the particle sepa-
ration is aligned with the 2 axis. Hence a; =0, ap = 1, and a3 = 0.

e Rotation

dUlr) = 5 (02’111 — 01’112) ds = —? dS, (1329)
i = 0. (1.330)
o Fixtension
v\ = 0, (1.331)
doS = Oyuy ds. (1.332)
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T
1&2
v, (P)
Pl
ds
P Uj<P)

>
1

Figure 1.11: Sketch of fluid particle P in motion with velocity v;(P) and nearby neighbor
particle P’ with velocity v;(P’).

o Shear
dvlss) = % (Oav1 + 01v2) ds = Oyvgy ds, (1.333)
i = 0. (1.334)
e Fxpansion
%% = 0101 + Oa0s. (1.335)
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Figure 1.12: Sketch of uniform flow

1.3.11.4 Uniform flow

Consider the kinematics of a uniform two-dimensional flow in which

v = k‘l, Vg = k’g, V3 = 0, (1336)
as sketched in Figure [[.12
o Streamlines: d—:”ll = %, %1 = %, T = (ﬁ—;) z9 + C.
e Rotation: W3 = 81’02 - 821)1 = 81(]{31) - 82(]{?2) = 0.

o [iztension
— on I-axis: Oyv, = 0.
— on 2-axis: Ovy = 0.
e Shear for unrotated element: % (O + Gavy) = 0.
e Expansion: O\v1 + Oyvy = 0.
o Acceleration:

ddit1 = aovl + Ulalvl + 1)2821)1 =0+ klal(kfl) + k’g@g(k‘l)

dvy = 80212 + 12101’112 + 122821)2 =0 + k’lal(k‘g) + k’g@g(k‘g)

= 0.
pr = 0.

For this very simple flow, the streamlines are straight lines, there is no rotation, no
extension, no shear, no expansion, and no acceleration.
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> 3

B! e i

Figure 1.13: Sketch of pure rigid body rotation.

1.3.11.5 Pure rigid body rotation

Consider the kinematics of a two-dimensional flow in which
V1 = —k‘l’g, Vg = k‘l’l, V3 = O, (1337)
as sketched in Figure [L.13]

dry _ dao dry _ dxy

vg ! —kxo ~ kz1?

e Rotation: w3 = 01v9 — Oqvy = 01 (kx1) — Oo(—kxo) = 2k.

e Streamlines: = xr1dr) = —x2dmy, 33% + x% =C.

e [Latension

— on I-axis: Oyv, = 0.

— on 2-axis: Ovy = 0.
e Shear for unrotated element: § (9 (kxy) + 0o(—kxs) =k —k = 0.
e FExpansion: 01v1 + Oava = 0+ 0 = 0.

o Acceleration:

dstl = 80’01 + 1)181@1 + U282U1 =0- ]{71’281(—]{31’2) —+ ]flj&g(—]{?l’g) = —]{321’1.

dde = (90212 + 12101’112 + 122821)2 =0- k?l’gal(kl'l) + ]{?l’lag(/{?l’l) = —]{321'2.

In this flow, the velocity magnitude grows linearly with distance from the origin. This
is precisely how a rotating rigid body behaves. The streamlines are circles. The rotation is
positive for positive k, hence counterclockwise, there is no deformation in extension or shear,
and there is no expansion. The acceleration is pointed towards the origin.
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Figure 1.14: Sketch of extensional flow (1-D compressible)

1.3.11.6 Pure extensional motion (a compressible flow)

Consider the kinematics of a two-dimensional flow in which
V1 = ]{71’1, Vg = O, V3 = 0, (1338)
as sketched in Figure [L.14

dey _ dxs

vg (%) dﬂ?l = U1 dﬂ?g, 0= ]{3213'1 dﬂ?g, T = C

e Streamlines:
e Rotation: w3 = 01vg — Ohvy = 01(0) — Oa(kxy) = 0.
e [xtension

— on I-axis: Oyv, = k.

— on 2-axis: Ovy = 0.
e Shear for unrotated element: § (d1vs + dov1) = £ (01(0) + Do(kx1)) = 0.
e Expansion: 01v1 + Oavg = k.
o Acceleration:

dstl = 001 + 110101 + V200v; = 0 + k101 (kxy) + 00y (k1) = K ay.

dstz = O,V + 110103 + V0hvg = 0 + kx101(0) 4+ 002(0) = 0.

In this flow, the streamlines are straight lines, there is no fluid rotation, there is exten-
sion (stretching) deformation along the 1-axis, but no shear deformation along this axis.
The relative expansion rate is positive for positive k, indicating a compressible flow. The
acceleration is confined to the x; direction.
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Figure 1.15: Sketch of pure shearing flow

1.3.11.7 Pure shear straining

Consider the kinematics of a two-dimensional flow in which

v = k’!L’Q, Vg = k’!L’l, V3 = O, (1339)
as sketched in Figure [LL15]
ineg dri _ dza dey _ dxy — 2 _ 2
o Streamlines: =22, o = r1 dxy = x9 dxg, i =z5+C.

e Rotation: w3 = O1vg — Ohvy = 01 (kwy) — Oa(kwoy) =k — k= 0.
e Frtension

— on I-azis: O1v; = Oy (kx2)

0.
0.

— on 2-axis: Oyvy = Oo(kxy)

e Shear for unrotated element: % (O + Oavy) = % (01 (kxy) + Oa(kxy)) = k.
e FEzxpansion: Oyv; + Oavg = 0.

o Acceleration:

dstl = (90211 + 12101’111 + 122821)1 =0+ k?l’gal(kl'g) + ]{?l’lag(/{?l’g) = /{?21’1.

dditz = OpU3 + 11010y + V20909 = 0 + ko0 (kx1) + kx102(kzy) = K220,
In this flow, the streamlines are hyperbolas, there is no rotation, no axial extension along
the coordinate axes, positive shear deformation for an element aligned with the coordinate

axes, and no expansion. So, the pure shear deformation preserves volume. The fluid is
accelerating away from the origin.
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Figure 1.16: Sketch of Couette flow.

1.3.11.8 Couette flow: shear + rotation

Consider the kinematics of a two-dimensional flow in which

v = k’!L’Q, Vg = O, V3 = 0, (1340)
as sketched in Figure [L16l This is known as a Couetted® flow.
o Streamlines: dv—:”ll = d%, Z—i; = d%, 0 = kxy dxo, z9 = C.

e Rotation: w3 = 01vg — Ohvy = 01(0) — Oa(kxs) = —k.
o [Lixtension

— on 1-azis: Oyv; = 0y (kxy) = 0.
— on 2-azis: Deve = 02(0) = 0.

e Shear for unrotated element: % (O + Dovy) = % (01(0) + Oy (ko)) = g

e Expansion: O\v1 + Oyvy = 0.

o Acceleration:

dstl = 80’01 + 1)181@1 + U282U1 =0+ ]fl’g&l (]{ISL’Q) + 082(]{31’2) = 0.

2 = 9,03 + 010103 + V20305 = 0+ k28; (0) + 08,(0) = 0.

Here the streamlines are straight lines, and the flow is rotational (clockwise since w < 0 for
k > 0)! The constant volume rotation is combined with a constant volume shear deformation
for the element aligned with the coordinate axes. The fluid is not accelerating.

23Maurice Marie Alfred Couette), 1858-1943, French  fluid  mechanician, student  of
Joseph Valentin Boussinesq, and faculty member at Catholic University of Angers.
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\J

Figure 1.17: Sketch of ideal irrotational vortex.

1.3.11.9 Ideal point vortex: extension+shear

Consider the kinematics of a two-dimensional flow sketched in Figure [LI7

To T
v = —]{772 R Vg = ]{572 39 V3 = 0,
x5 + 73 1+ T3
e Streamlines: &L = dx2 kdm%Q =T dra —dn - dry 3 + a3
vio v g S v v

e Rotation: w3 = O1vy — Oovy = 04 (%gﬁﬁ) — 0 <_kx2:fx%> =0.

o [ixtension

— on I-amis: Oyvy = Oy ( kTmz) = Qk(xgi%)z-

— on 2-axis: Oy = O (k 2+w ) —2k—A%2

(3 +232)?
e Shear for unrotated element: 3 (dyvy + Dovy) = k%
1 2

e Expansion: O\v; + Oyvy = 0.

o Acceleration:

dvy __ _ k2x
d_tl = 80’01 —+ 1)181@1 + U282U1 = — (x%—i—xl%)z
dv k2x
d_z€2 = (90212 + 12101’112 + 1)2821)2 = _(:v%—l—;%)z'

(1.341)

=C.

The streamlines are circles and the fluid element does not rotate about its own axis! It does
rotate about the origin. It deforms by extension and shear in such a way that overall the

volume is constant.
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1.3.12 Kinematics as a dynamical system

Let us apply some standard notions from dynamical systems theory to fluid kinematics. Let
us imagine that we are given a time-independent flow field, where the fluid velocity is known
and is a function of position only. Then the motion of an individual fluid particle is governed
by the following autonomous system of non-linear ordinary differential equations:

dx
T=vxn), x(0) =X, (1.342)

Here, the initial position of the fluid particle is given by the constant vector X. The solution
of Eq. (IL342) can be expressed in general form

x = x(t; X), (1.343)

a function of time parameterized by the initial condition of the fluid particle. Such a solution
is certainly a pathline, streamline, and streakline. It is also known as a trajectory in the
dynamical systems literature.

Let us analyze Eq. (L342) in some more detail. From the chain rule, see Eq. (I.230]), we

have

dv = (VvhHT.dx, (1.344)
N—_——
LT
dv = LT.dx. (1.345)

This gives the acceleration vector as

dv dx

-~ — Lr.=z 1.34

dt dt’ (1.346)
= L7.v. (1.347)

[
Ezample 1.9

Study the following non-linear autonomous system:
dIl
E = ’1}1(1'1,1'271:3) =1+ r1T2T3, 1 (0) = O, (1348)
dIQ 2 3
- = va(x1, T2, T3) = T + X5 + 123, x2(0) =0, (1.349)
dIg
E = ’1}3(1'1,1'2,&[:3) =2 — 21 + Ta73, ,Tg(O) =0. (1350)

Numerical solution of this nonlinear system of ordinary differential equations yields x1(t), z2(t),
x3(t), which for this time-independent velocity field induces the particle pathlines, streamlines, and
streaklines. All are plotted in Fig. [[LI8l We could also apply the complete mathematical theory of
dynamic systems to understand the system better.
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Figure 1.18: Plot of (), x2(t), x3(t), along with the coincident pathline, streamline, and
streakline for a steady three dimensional fluid particle that commences at the origin.
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We can use Eq. (IL347) to calculate the acceleration vector field:

dﬂ vy vy vy m
ddt g$1 glﬂz glﬂs ddt
ava — Ov2  Ovz  OUz ara
dt - 91 Oz Ozs at | (1.351)
dus Qv vz Dug dag
dt dx, Oze Ozs dt
Tol3 Tr1x3 12 1 + T1X2T3
= 1423 2x9 + 37123 0 T+ T3+ 1 |, (1.352)
-1 T3 X2 2—x1 + 2273
2r1T9 — x%xg + I%.Ig + zox3 + 2171173333 + x%x%xg + xlxgzzr%
= 1+ 27179 + 32323 + 323 + by o + 32225 + 212073 + 117573 (1.353)

—1+4+ 229 — 2122 + T123 — T1T273 + 21:%1:3 + :zrlxgzzrg

If we know the kinematics of a fluid particle, we know everything about its motion, including its
acceleration. We shall soon discuss things like Newton’s laws of motion that relate accelerations to
force. If we know the acceleration, it is possible to induce what the force was that generated it by
simply multiplying the acceleration by the mass. Rarely is this the case however. It is more common
to know something about the forces and to use this to deduce what the motion is.

Now, we seek to analyze a particular pathline. Note that the velocity vector is tangent
to the fluid particle trajectory. Let us study a unit vector which happens to be tangent to
the velocity field:

= —. (1.354)

Next, use the chain rule to examine how the unit tangent vector evolves with time:

doy 1L dv v dv]
dov _ OV _ VAV 1.355
dt v dt |v]? dt ( )
We can scale Eq. (L347) by |v] to get (1/|v|)dv/dt = LT -v/|v| = LT - ;. Thus Eq. (I.355)
can be rewritten as

doy v d|v]

— = T .q- - 1.356
dt TR e (1.356)
1 d|v]|
= " o —a,———. 1.

Next consider the following series of operations starting with Eq. (I.347):
dv

i L™ - v, (1.358)
dv
vi.— = v LTy (1.359)
dt ’
d (vT.
%<V2V) = VLT, (1.360)
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2
% (%) = v LTy, (1.361)
d T T
|V|% (lv]) = v'-L" v, (1.362)
vl v
Tovy = Lo X (1.363)
|V\ dt V] V]
| i (| N = of LT a. (1.364)
Now substitute Eq. (L364) into Eq. (I357) to get
d
% = LT q,— (a? LT at) Q. (1.365)

As an aside, take the dot product of Eq. (L365) with oy to get

d
al - A af LT oy~ (af LT o) af (1.366)
dt —
=1
= o " ay—a LT ey, (1.367)
= 0. (1.368)
This must be an identity, because e - a; = 1, and its time derivative gives a - da/dt = 0.

Now recalling Eq. ([.240), and employmg aT RT . a; = 0, because of the antisymmetry

of R, and DT = D, because of the symmetry of D, Eq. (L365) can be rewritten as

dat

I L T
dt |
Let us consider how a volume stretches in a direction aligned with the velocity vector.

We first specialize the general differential arc length to that found along the particle path:
ds = ds. Now, recall from geometry that the square of the differential arc length must be

a Do) oy (1.369)

ds* = dx' - dx, (1.370)

where dx is also confined to the particle path. Consider now how this quantity changes with
time when we move with the particle:

d d

- T,

dt(ds) = = (dx" - dx) , (1.371)
= dx”’ d (dx) + d (dx) ' - dx (1.372)
B dt dt ’ '

dx dx\\"

pr— T . _— _— .
C () (o)) w9
= dx"-dv+dv' - dx, (1.374)
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= 2dx" - dv, (1.375)
= 2dx" - LT dx, (1.376)
2ds%(ds) = 2dx" - LT . dx, (1.377)
1d dx™ dx
——(ds) = — -LT.-—= 1.378
sa® = o ds (1.378)
Recall now that
\%
= — 1
dx
= & (1.380)
dt
dx
- == 1.381
Is ( )
So, Eq. (L378) can be rewritten as
1d
ga(ds) = o LT a (1.382)
d
- (Inds) = al D+R" -« (1.383)
= a -D-ay (1.384)
= D:oal. (1.385)

Note that this relative tangential stretching rate is closely related to the result of Eq. (L266])
for extensional strain rate. Specializing Eq. (L266) for a particle pathline, and combining,

we cal say

dv(es)

dv(es)
ds

dv(es)
ds

= (af Do)y ds, (1.386)
= (af -D-a)ay, (1.387)
= (af ‘D -ay)al - ay, (1.388)
=1
1d
= atT-D-at:££(ds), (1.389)
1 (d
= af-D-ay=-d (d—j> (1.390)
d
= atT-D-at:%, (1.391)
d
= D:oyal = %. (1.392)
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Here, we invoked Eq. (I.384) to obtain Eq. (L390). The quantity o -D-a; = D : ey}
is a measure of how the magnitude of the velocity changes with respect to arc length along
the particle path.

We can gain further insight into how velocity magnitude changes by a diagonal decom-
position of D = Q - A - QT, where Q is an orthogonal rotation matrix with the normalized
eigenvectors of D in its columns, and A is the diagonal matrix with the eigenvalues of D in
its diagonal. Thus

d
% = atT~Q~/;-QT-at, (1.393)
= (@ )" A Q) (1.394)
(1.395)

The operation QT - a; = a, generates a new rotated unit vector o, = (1, g2, Oésg)T. Thus
we can state

d
% = 0631)\1 + 0632)\2 + OK§3>\3, (1396)

1 = o +a2 +al. (1.397)

The rate of change of the velocity magnitude along a particle pathline can be understood
to be a weighted average of the eigenvalues of the deformation tensor D. In the very special
case in which oy is the i eigenvector of D, we simply get d|v|/ds = \;, where )\; is the
corresponding eigenvalue.

Note now that if we extend Eq. (I.297]) to differential material volumes, we could say the
relative expansion rate is

1 d
d
—(IndV) = trD. (1.399)

Now our differential volume can be formed by
dV = dA ds, (1.400)

where dA is the cross-sectional area normal to the flow direction. Thus

IndV = IndA+Inds, (1.401)

IndA = IndV —Inds, (1.402)

4 (IndA) = d (IndV) — d (Inds) (1.403)
dt dt dt ’ '

(1.404)
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Substitute from Eqs. (L384UT.399) to get the relative rate of change of the differential area
normal to the flow direction:

d
o (IndA) = trD—a! -D-a,. (1.405)

Note this relation, while not identical, is similar to the expression for shear strain rate,

Eq. (IL276). We can also use Eq. (IL.72) to rewrite Eq. (IL405]) as

d
o (Ind4A) = D:1-D:aaf, (1.406)
= D: (- ). (1.407)
Now the matrix | — aya!l has some surprising properties. It is singular and has rank two.

Because it is symmetric, it has a set of three orthogonal eigenvectors which can be normalized
to form an orthonormal set. Its three eigenvalues are 1, 1, and 0. Remarkably, the eigenvector
associated with the zero eigenvalue must be parallel to and can be selected as oy, the unit
tangent to the curve. Thus the other two eigenvectors can be thought of as unit normals
to the curve, which we label a,,; and «,>. Note that these eigenvectors are not unique;
however, a set can always be found. We can summarize the decomposition in the following
steps:

| -l = Q-A-QF, (1.408)
10 0 al, -

= o, Oy Oy 0 1 0 al, |, (1.409)
S 00 0 al ...

= apnal] +apal, (1.410)

Note that the two unit normals are orthogonal to each other, al; - a,, = 0. Thus, we have

d

- (IndA) = D: (amal; + anal,), (1.411)
= D:amal, +D: apal,, (1.412)
= ol D -a, +al, D a. (1.413)

Comparing to Eq. (L384]) which has one mode associated with ay available for stretching of
the one-dimensional arc length in the streamwise direction, there are two modes associated
with a1, o, available for stretching the two-dimensional area.

The form al; - D - at,; suggests it determines the relative normal stretching rate in the
direction of a,;; a similar rate exists for the other normal direction. One might imagine
that there exists a normal direction which yields extreme values for relative normal stretching
rates. It is easily shown this achieved by the following. First, define a rectangular matrix,
Q, whose columns are populated by a,,; and au,s:

~

Q=| ai o |- (1.414)
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Then project the 3 x 3 matrix D onto this basis to form the 2 x 2 matrix D associated with
stretching in the directions normal to the motion:

D=Q"-D-Q. (1.415)

The eigenvalues of D give the maximum and minimum values of the relative normal stretching
rates, and the eigenvectors give the associated directions of extremal normal stretching.

Looked at another way and motivated by standard results from differential geometry,
we can make special choices, o1 = oy, G2 = gy, Where o, is the so-called “principal
normal unit vector” and a.,;, is the so-called “bi-normal unit vector.” The following results
are described in more detail in many sources, e.g. Sen and Powers and Sen, p. 89. We have
the so-called “Frenet-Serret”Pq relations:

dat

K = ROy, (1416)
% — Koy — TOu, (1.417)
danb

= ray, (1.418)

Here & is the so-called “curvature,” of the curve and 7 is the so-called “torsion” of the curve.
One can, with effort show that x and 7 are given by

2
d2_x2}d_x‘2_ axT  d’x dx . d’x
dt? dt dt dt? a X a2
K = = 1.419
d_x3 ‘d_x‘g ’ ( )
dt dt
T
_ (2 x) L dix
dt dt? dt3
T = - (1.420)
‘dz_xmd_x‘?_ axT | d’x
dt? dt dt dt?

Note x and 7 are expressed here as functions of time. This certainly the case for a particle
moving along a path in time. But just as the intrinsic curvature of a mountain road is
independent of the speed of the vehicle traveling on the road, despite the traveling vehicle
experiencing a time-dependency of curvature, the curvature and torsion can be considered
more fundamentally to be functions of position only, given that the velocity field is known
as a function of position. Analysis reveals in fact that

\/(VT-L-LT-V)(VT-V)—(VT-LT-V)2
ko= TV (1.421)

One could also develop an expression for torsion which is explicitly dependent on position.
The expression is complicated and requires the use of third order tensors to capture the
higher order spatial variations.

24Jean Frédefic Frenet, 1816-1900, and [Joseph Alfred Serret, 1819-1885, French mathematicians.
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We can also use this intrinsic orthonormal basis to get

d

o (IndA) = D: (anpazp + anpogy) (1.422)
= D:ayoal, +D:amal,, (1.423)
= a), D oy, + o, D ay. (1.424)

1.4 Conservation axioms

A fundamental goal of this section is to take the verbal notions which embody the basic
axioms of non-relativistic continuum mechanics into usable mathematical expressions. First,
we must list those axioms. The axioms themselves are simply principles which have been
observed to have wide validity as long as the particle velocity is small relative to the speed
of light and length scales are sufficiently large to contain many molecules. Many of these
axioms can be applied to molecules as well. The axioms cannot be proven. They are simply
statements which have been useful in describing the universe.
A summary of the axioms in words is as follows

Mass conservation principle: The time rate of change of mass of a material region is
Z€ero.

Linear momenta principle: The time rate of change of the linear momenta of a material
region is equal to the sum of forces acting on the region. This is Euler’s generalization
of Newton’s second law of motion.

Angular momenta principle: The time rate of change of the angular momenta of a
material region is equal to the sum of the torques acting on the region. This was first
formulated by Euler.

Energy conservation principle: The time rate of change of energy within a material
region is equal to the rate that energy is received by heat and work interactions. This
is the first law of thermodynamics.

Entropy inequality: The time rate of change of entropy within a material region is
greater than or equal to the ratio of the rate of heat transferred to the region and the
absolute temperature of the region. This is the second law of thermodynamics.

Some secondary concepts related to these axioms are as follows

The local stress on one side of a surface is identically opposite that stress on the
opposite side.

Stress can be separated into thermodynamic and viscous stress.

Forces can be separated into surface and body forces.
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Figure 1.19:  Sketch of finite material region M R, infinitesimal mass element pdV, and
infinitesimal surface element d.S with unit normal n;, and general velocity w; equal to fluid
velocity v;.

e In the absence of body couples, the angular momenta principle reduces to a nearly
trivial statement.

e The energy equation can be separated into mechanical and thermal components.

Next we shall systematically convert these words above into mathematical form.

1.4.1 Mass

The mass conservation axiom is simple to state mathematically. It is
d 0 (1.425)
—m =0. :
7y M)

Here MR(t) stands for a material region which can evolve in time, and mysr() is the mass
in the material region. A relevant material region is sketched in Figure [L.T9 We can define
the mass of the material region based upon the local value of density:

So, the mass conservation axiom is

d pdV = 0. (1.427)
dt J g

Recalling Leibniz’s rule, Eq. (LI8G), 4 Jrwl] AV = [re 211 dV + Js@ niwi[ ] dS, we take
the arbitrary velocity w; = v; as we are considering a material region so we get

d
dt Jarre) MR Ot MS(t)
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Now we invoke Gauss’s theorem, Eq. (.I74) fR(t) O;[ ]dV = fs@) n;[ |dS, to convert a surface
integral to a volume integral to get the mass conservation axiom to read as

/ 9 gy + / Oi(pvi) dV =0, (1.429)
MR Ot MR(t)
dp
/ — + 0i(pv;) | dV =0. (1.430)
ME@ \ Ot

Now, in an important step, we realize that the only way for this integral, which has absolutely
arbitrary limits of integration, to always be zero, is for the integrand itself to always be zero.
Hence, we have

dp

which we will write in Cartesian index, Gibbs, and full notation in what we call conservative
or divergence form as

Dop + Dy(pvi) = 0, (1.432)
dp+ VL. (pv) = 0, (1.433)
80p + 81 (p’Ul) + 82(pv2) + 83(pv3) = 0. (1434)

There are several alternative forms for this axiom. Using the product rule, we can say also

00 + v,&- + ai'Ui = 0, 1.435
p P p (1.435)

material derivative of density

or, writing in what is called the non-conservative form,

dp
— 4+ pdv; = 0, 1.436
o T PO (1.436)
d
d—f 4y VT v = 0, (1.437)
(&,p + vlalp + Ugagp + Ugagp) + 1% (811)1 + 82’112 + 03’113) = 0. (1438)
So, we can also say
1d
2ap - _ Oiv; . (1.439)
pdt ~—
S~~~ relative rate of particle volume expansion

relative rate of density increase

Thus the relative rate of density increase of a fluid particle is the negative of its relative rate
of expansion, as expected. So, we also have

ldp 1 dVug
pdt n VMR dt ’

(1.440)

CC BY-NC-ND. 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

84 CHAPTER 1. GOVERNING EQUATIONS

Figure 1.20: Sketch of finite material region M R, infinitesimal linear momenta element
pv;dV . infinitesimal body force element pf;dV, and infinitesimal surface element dS with
unit normal n;, surface traction ¢; and general velocity w; equal to fluid velocity v;.

dVur dp
— = 1.441
a YRy, 0 (1.441)
d
- = 1.442
77 (PVarr) 0, (1.442)
d

We note that in a relativistic system, in which mass-energy is conserved, but not mass, that
we can have a material region, that is a region bounded by a surface across which there is no
flux of mass, for which the mass can indeed change, thus violating our non-relativistic mass
conservation axiom.

1.4.2 Linear momenta
1.4.2.1 Statement of the principle

The linear momenta conservation axiom is simple to state mathematically. It is

— pv; dV = / pfi dV+/ t; dS. (1.444)
dt Jaire) ) MR(t) Jars@)
rate of change (;fr linear momenta body‘gorcos surfaczrforcos

Again M R(t) stands for a material region which can evolve in time. A relevant material
region is sketched in Figure [[.20. The term f; represents a body force per unit mass. An
example of such a force would be the gravitational force acting on a body, which when scaled
by mass, yields g;. The term ¢; is a traction, which is a vector representing force per unit
area. A major challenge of this section will be to express the traction in terms of what is
known as the stress tensor.
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Consider first the left hand side, LH S, of the linear momenta principle

LHS = / 9,(pv;) dV —i—/ n;pv;v; dS, from Leibniz, (1.445)
MR(t)

MS(t)
= / (0o (pv;) + 0;(pvjv;)) dV, from Gauss. (1.446)
MR(t)
So, the linear momenta principle is
/ (0o(pv;) + 0;(pvjv;)) dV = / pfi dV —I—/ t; dS. (1.447)
MR(t) MR(t) MS(t)

These are all expressed in terms of volume integrals except for the term involving surface
forces.

1.4.2.2 Surface forces

The surface force per unit area is a vector we call the traction ¢;. It has the units of stress,
but it is not formally a stress, which is a tensor. The traction is a function of both position
x; and surface orientation ny: t; = t;(z;, ng).

We intend to demonstrate the following: The traction can be stated in terms of a stress
tensor T;; as written below:

t; = ndy,
t' = o T,
t = T'.n. (1.448)

The following excursions are necessary to show this.

e Show force on one side of surface equal and opposite to that on the opposite side

Let us apply the principle of linear momenta to the material region is sketched in Figure
[L2Tl Here we indicate the dependency of the traction on orientation by notation such
as t; (nf I ) This does not indicate multiplication, nor that ¢ is a dummy index here. In
Figure [L.21] the thin pillbox has width Al, circumference s, and a surface area for the
circular region of AS. Surface [ is a circular region; surface I is the opposite circular
region, and surface I11] is the cylindrical side.

We apply the mean value theorem to the linear momenta principle for this region and
get

(0o(pvi) + 0;(pujus))” (AS)(Al) =
(pf:)"(AS)(AL) + 2 (n)AS + t:(n™AS + t:(n ) s(Al). (1.449)

7

Now we let Al — 0, holding for now s and AS fixed to obtain
0= (t:(n)) +t;(n!")) AS (1.450)
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Al

Figure 1.21: Sketch of pillbox element for stress analysis.

Now letting AS — 0, so that the mean value approaches the local value, and taking

nf = —nH = n;, we get a useful result

t(n) = —t;(—n). (1.451)

At an infinitesimal length scale, the traction on one side of a surface is equal an opposite
that on the other. That is, there is a local force balance. This applies even if there is
velocity and acceleration of the material on a macroscale. On the microscale, surface
forces dominate inertia and body forces. This is a useful general principle to remember.
It the fundamental reason why microorganisms have very different propulsion systems
that macro-organisms: they are fighting different forces.

Study stress on arbitrary plane and relate to stress on coordinate planes

Now let us consider a rectangular parallelepiped aligned with the Cartesian axes which
has been sliced at an oblique angle to form a tetrahedron. We will apply the linear
momenta principle to this geometry and make a statement about the existence of a
stress tensor. The described material region is sketched in Figure [.22l Let AL be a
characteristic length scale of the tetrahedron. Also let four unit normals n; exist, one
for each surface. They will be —n;, —no, —ng for the surfaces associated with each
coordinate direction. They are negative because the outer normal points opposite to
the direction of the axes. Let n; be the normal associated with the oblique face. Let
AS denote the surface area of each face.

Now the volume of the tetrahedron must be of order L3 and the surface area of order
L?. Thus applying the mean value theorem to the linear momenta principle, we obtain
the form

(inertia) x (AL)® = (body forces) x (AL)? + (surface forces) x (AL)?.  (1.452)
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Figure 1.22: Sketch of tetrahedral element for stress analysis on an arbitrary plane.

As before, for small volumes, AL — 0, the linear momenta principle reduces to
Z surface forces = 0. (1.453)
Applying this to the configuration of Figure [[22] we get
0=t (n;)AS + t;(—n1)ASy + 7 (—n2) AS; + t; (—n3) ASs. (1.454)
But we know that t;(n;) = —t;(—n;), so
t7(ni) AS = t7(n1)ASy + t](n2) ASy + t7 (ng) ASs. (1.455)
Now it is not a difficult geometry problem to show that n;AS = AS;, so we get

t;k (TL,) = nlt;‘(nl) + ngt;‘(ng) + ngt;‘(ng). (1457)
Now we can consider terms like ¢; is obviously a vector, and the indicator, for example
(nq), tells us with which surface the vector is associated. This is precisely what a tensor
does, and in fact we can say

ti (nl) = anu + nngi + nngi. (1458)

CC BY-NC-ND. 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

88

CHAPTER 1. GOVERNING EQUATIONS

In shorthand, we can say the same thing with
t; = anjZ-, or equivalently tj = niﬂj, QED (1459)

Here T;; is the component of stress in the j direction associated with the surface whose
normal is in the ¢ direction.

Consider pressure and the viscous stress tensor

Pressure is a familiar concept from thermodynamics and fluid statics. It is often
tempting and sometimes correct to think of the pressure as the force per unit area
normal to a surface and the force tangential to a surface being somehow related to
frictional forces. We shall see that in general, this view is too simplistic.

First recall from thermodynamics that what we will call p, the thermodynamic pressure,
is for a simple compressible substance a function of at most two intensive thermody-
namic variables, say p = f(p, e), where e is the specific internal energy. Also recall
that the thermodynamic pressure must be a normal stress, as thermodynamics con-
siders formally only materials at rest, and viscous stresses are associated with moving
fluids.

To distinguish between thermodynamic stresses and other stresses, let us define the
viscous stress tensor 7;; as follows

Recall that T;; is the total stress tensor. We obviously also have

Note with this definition that pressure is positive in compression, while 7;; and 7;; are
positive in tension. Let us also define the mechanical pressure, p'™, as the negative of
the average normal surface stress

1
p™ = 1T, = =3 (T + T + ). (1.462)

Wl

The often invoked Stokes’ assumption, which remains a subject of widespread mis-
understanding 150 years after it was first made, is often adopted for lack of a good
alternative in answer to a question which will be addressed later in this chapter. It
asserts that the thermodynamic pressure is equal to the mechanical pressure:
my _ 1

p=p = _gTii- (1.463)
Presumably a pressure measuring device in a moving flow field would actually measure
the mechanical pressure, and not necessarily the thermodynamic pressure, so it is im-
portant to have this issue clarified for proper reconciliation of theory and measurement.
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It will be seen that Stokes’ assumption gives some minor aesthetic pleasure in certain
limits, but it is not well-established, and is more a convenience than a requirement
for most materials. It is the case that various incarnations of more fundamental ki-
netic theory under the assumption of a dilute gas composed of inert hard spheres give
rise to the conclusion that Stokes’ assumption is valid. At moderate densities, these
hard sphere kinetic theory models predict that Stokes’ assumption is invalid. However,
none of the common kinetic theory models is able to predict results from experiments,
which nevertheless also give indication, albeit indirect, that Stokes’ assumption is in-
valid. Kinetic theories and experiments which consider polyatomic molecules, which
can suffer vibrational and rotational effects as well, show further deviation from Stokes’
assumption. It is often plausibly argued that these so-called non-equilibrium effects,
that is molecular vibration and rotation, which are only important in high speed flow
applications in which the flow velocity is on the order of the fluid sound speed, are the
mechanisms which cause Stokes” assumption to be violated. Because they only are im-
portant in high speed applications, they are difficult to measure, though measurement
of the decay of acoustic waves has provided some data. For liquids, there is little to no
theory, and the limited data indicates that Stokes’ assumption is invalid.

Now contracting Eq. (L461]), we get
Tyi = —pdii + Tii- (1.464)

Using the fact that 6; = 3 and inserting Eq. (L463) in Eq. (IL464), we find for a fluid
that obeys Stokes’ assumption that

1
T, = gTii(B)‘l'Tih (1.465)

That is to say, the trace of the viscous stress tensor is zero. Moreover, for a fluid which
obeys Stokes’ assumption we can interpret the viscous stress as the deviation from the
mean stress; that is, the viscous stress is a deviatoric stress:

1
T, =— ngkéij + Tij , (valid only if Stokes’ assumption holds)
3 = ——

total stress deviatoric stress

mean stress

(1.467)
If Stokes’ assumption does not hold, then a portion of 7;; will also contribute to the
mean stress; that is, the viscous stress is not then entirely deviatoric.

Finally, let us note what the traction vector is when the fluid is static. For a static
fluid, there is no viscous stress, so 7;; = 0, and we have

Ti; = —pdij, static fluid. (1.468)
We get the traction vector on any surface with normal n; by
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Changing indices, we see t; = —pn;, that is the traction vector must be oriented in the
same direction as the surface normal; all stresses are normal to any arbitrarily oriented
surface.

1.4.2.3 Final form of linear momenta equation

We are now prepared to write the linear momenta equation in final form. Substituting
our expression for the traction vector, Eq. (L459) into the linear momenta expression, Eq.

(447), we get

/ (0o (pv;) + 0;(pvju;)) dV = / pfi dV —I—/ n;T;; dS. (1.470)
MR(t) MR(?)

MS(t)

Using Gauss’s theorem, Eq. (LI74)), to convert the surface integral into a volume integral,
and combining all under one integral sign, we get

/ (Dol i) + 0y (pvgui) — pfi — O;T3) dV = 0. (1.471)
MR(t)

Making the same argument as before regarding arbitrary material volumes, this must then
require that the integrand be zero (we actually must require all variables be continuous to
make this work), so we obtain

8O(pvi) + (9]- (p'Uj'Ui) — sz — @Tﬂ = 0. (1472)

Using then T}; = —pd;; + 7;;, we get in Cartesian index, Gibb, and full notation

9o(pvi) + 0j(pvjvi) = pfi— 9ip + 0, (1.473)

( V) + (VT (owD) = pf—Vp+ (VT -7)", (1.474)

O0o(pv1) + 01 (pvlvl) —l— O (pUg’Ul) + 0s(pvsv1) = pfi —O1p+ 01711 + OaTo1 + 05731, (1.475)
8 (p ) + 81 (p'Ul'UQ) + 82 (p’UQUQ) + 83(/)1)31)2) = pfz — 821) + 817’12 + 827’22 + 837'32, (1476)
0o(pv3) + 01(pv1vs) + Oa(pv2vs) + Os5(pvsvs) = pfs — Osp + 01713 + O2Taz + O3733. (1.477)

The form above is known as the linear momenta principle cast in conservative or divergence
form. It is the first choice of forms for many numerical simulations, as discretizations of this
form of the equation naturally preserve the correct values of global linear momenta, up to
roundoff error.

However, there is a reduced, non-conservative form which makes some analysis and phys-
ical interpretation easier. Let us use the product rule to expand the linear momenta prin-
ciple, then rearrange it, and use mass conservation and the definition of material derivative

25Here the transpose notation is particularly cumbersome and unfamiliar, though necessary for full con-
sistency. One will more commonly see this equation written simply as %(pv) +V-(pvv)=pf —Vp+V-T.
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4

0

Figure 1.23:  Sketch of particle of mass m velocity v rotating about an axis centered at
point O, with radial distance vector r.

to rewrite the expression:

p&O’UZ' + viaop + Uiaj (pvj) + pvjajvi = p_]cZ — 82']) + 8j7ji, (1478)
P(Oov; + v;05v;) +vi( Dop+0i(pv;) ) = pfi— Oip+ 0;yi, (1.479)
~—_———
=0 by mass conservation
P (80%’ + Ujajvi) = pfZ — 82‘]) + 8j7ji, (1480)
N————
_dv;
T dt
dUZ'
pﬁ = pfl — 82']) + 8j7ji, (1481)

dv

T
P = pf—Vp+(VT~T) ,

1.482

p(@ovg —+ U181U2 -+ ’02821)2 + ’03831)2)
p(@ovg + 121811)3 + ’112821)3 + ’113831)3)

(1.482)
p(@ovl + U181U1 + ’02821)1 + ’03831)1) = pf1 — 81p + 817'11 + 827'21 + 837'31(1.483)
(1.484)
(1.485)

pf2 - agp + 817'12 + 827'22 + 837'32 1484
pfs — Osp + 01713 + OaToz + 03733(1.485

So, we see that particles accelerate due to body forces and unbalanced surface forces. If the
surface forces are non-zero but uniform, they will have no gradient or divergence, and hence
not contribute to accelerating a particle.

1.4.3 Angular momenta

It is often easy to overlook the angular momenta principle, and its consequence is so simple
that, it is often just asserted without proof. In fact in classical rigid body mechanics, it
is redundant with the linear momenta principle. It is, however, an independent axiom for
continuous deformable media.

Let us first recall some notions from classical rigid body mechanics, while referring to the
sketch of Figure [L.23] We have the angular momenta vector L for the particle of Figure [.23]

L=rx (mv). (1.486)
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Any force F which acts on m with lever arm r induces a torque T which is

T=rxF. (1.487)
Now let us apply these notions for an infinitesimal fluid particle with differential mass pdV .

Angular momenta = r x (p dV)v = pe;rivp dV, (1.488)
Torque of body force = r x f(p dV) = pe;jirjfi dV, (1.489)

Torque of surface force = r xt dS = €;,r;t; dS,
= rx (n'-T)dS = ejurin, T dS,(1.490)
Angular momenta from surface couples = n’ -H dS = n,H,; dS. (1.491)

Now the principle, which in words says the time rate of change of angular momenta of a
material region is equal to the sum of external couples (or torques) on the system becomes
mathematically,

d
v PEijkT Uk dV = / peijkrjfk dV + / (Eijkrjinpk + nkaZ) ds . (1492)
flt MR()  JMR@ Jus )

Apply Leibn?; then Gauss apply%auss

We apply Leibniz’s and Gauss’s theorem to the indicated terms and let the volume of the
material region shrink to zero now. First with Leibniz, we get

/ Oopéijirivi AV +/ €ijkPTVENpUp dS =
MR(t) MS(t)

/ ,OEijijfk dV + / (e’ijk:/rjinpk; + nkal) ds. (1493)
MR(t) MS(t)

Next with Gauss we get

/ Oop€ij7 Vi AV +/ €10y (prjvgv,) dV =
MR(t) MR(t)

/ peijkrjfk dV —|—/ Eijkﬁp(Tijk) dV —|—/ 8kaZ dV (1494)
MR(t) MR(t) MR(t)

As the region is arbitrary, the integrand formed by placing all terms under the same integral
must be zero, which yields

€ijk (Oo(prive) + Op(prjvpvr) — prjfe — Op(riTyr)) = Ok Hyi. (1.495)

Using the product rule to expand some of the derivatives, we get

€ijk | 7i06(pUk) + puk Oorj +1;0,(pvpvr) + pupvy Opry —1ipfie — 10y Lok — Lok Oprj | = Ok Hyi
—~ — —

=0 S S
(1.496)

CC BY-NC-ND. 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

1.4. CONSERVATION AXIOMS 93

Applying the simplifications indicated above and rearranging, we get

€ijkT; (Oo(p0k) + Op(pvpvr) = pfi = OpTyk) = OkHyi — peijrvj oy + €ijiTn. (1.497)

=0 by linear momenta

So, we can say,

Ol = eji(pvjoe —Tir) = € | pojur =T — Ty | (1.498)
~—~ —— = ~—~
anti—sym. sym. sym. anti—sym.

We have utilized the fact that the tensor inner product of any anti-symmetric tensor with
any symmetric tensor must be zero. Now, if we have the case where there are no externally
imposed angular momenta fields, such as could be the case when electromagnetic forces are
important, we have the common condition of Hy; = 0, and the angular momenta principle
reduces to the simple statement that

That is, the anti-symmetric part of the stress tensor must be zero. Hence, the stress tensor,
absent any body or surface couples, must be symmetric, and we get in Cartesian index and
Gibbs notation:

Ty = Ty, (1.501)
T = TN (1.502)

1.4.4 Energy

We recall the first law of thermodynamics, which states the time rate of change of a material
region’s internal and kinetic energy is equal to the rate of heat transferred to the material
region less the rate of work done by the material region. Mathematically, this is stated as

dE  dQ dW
e s (1.503)

In this case (though this is not uniformly enforced in these notes), the upper case letters
denote extensive thermodynamic properties. For example, E is total energy, inclusive of
internal and kinetic, with SI units of J. We could have included potential energy in E, but
will instead absorb it into the work term W. Let us consider each term in the first law of
thermodynamics in detail and then write the equation in final form.
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1.4.4.1 Total energy term

For a fluid particle, the differential amount of total energy is

1
dE = P (6-'- §Uj1)j> dV, (1504)
1
= p dVv e+ §Ujvj . (1505)

mass
specific internal +kinetic energy

1.4.4.2 Work term

Recall that work is done when a force acts through a distance, and a work rate arises when
a force acts through a distance at a particular rate in time (hence, a velocity is involved).
Recall also that it is the dot product (inner product) of the force vector with the position or
velocity that gives the true work or work rate. In shorthand, we could say

dW = dx'-F, (1.506)
AW dx”
= = %~F:vT~F. (1.507)

Here W has the SI units of J, and F has the SI units of N. We contrast this with our
expression for body force per unit mass f, which has ST units of N/kg = m/s?. Now for the
materials we consider, we must describe work done by two types of forces: 1) body, and 2)
surface.

o Work rate done by a body force

Work rate done by force on fluid = (p dV)(f;)vi, (1.508)
Work rate done by fluid = —puv;f; dV. (1.509)

o Work rate done by a surface force

Work rate done by force on fluid = (¢; dS)v; = ((n;1};) dS)v;,  (1.510)
Work rate done by fluid = —n;T}v; dS. (1.511)

1.4.4.3 Heat transfer term

The only thing confusing about the heat transfer rate is the sign convention. We recall that
heat transfer to a body is associated with an increase in that body’s energy. Now following
the scenario sketched in the material region of Figure [[.24] we define the heat flux vector ¢;
as a vector which points in the direction of thermal energy flow which has units of energy
per area per time; in SI this would be W/m?. So, we have

heat transfer rate from body through dS = n;q; dS, (1.512)
heat transfer rate to body through dS = —n;q; dS. (1.513)
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f

7

pdV

ds
4q;

n;

Figure 1.24:  Sketch of finite material region M R, infinitesimal mass element pdV, and
infinitesimal surface element dS with unit normal n;, and heat flux vector ;.

1.4.4.4 Conservative form of the energy equation

Putting the words of the first law into equation form, we get

d 1
dt Jarre) 2 MS(t) MS(t) MER(#)

Skipping the details of an identical application of Leibniz’s and Gauss’s theorems, and shrink-
ing the volume to approach zero, we obtain the differential equation of energy in conservative
or divergence form (in first Cartesian index then Gibbs notation):

80 <p <€ + %Ujvj)) —i—@z <p’UZ (6 + %%‘%‘)) =

rate of change of total energy advection of total energy
- &-qi + 8¢(ﬂjvj) + Pszz y (1515)
~~~ —— ~—~

diffusive heat flux  surface force work rate  body force work rate
0 1 1
5% (p <6+§VT-V)) +vT. (pv <6—|—§VT-V)> =
VT q+ VT (T -v)+pvl-f. (1.516)

Note that this is a scalar equation as there are no free indices.
We can segregate the work done by the surface forces into that done by pressure forces
and that done by viscous forces by rewriting this in terms of p and 7;; as follows

(o(eeion)) (o) -

_8 qi — pvz + az TZJU]) + pvzfzu (1517)
%(p(e—l—%vT-v))—l—VT-( (e—l— —vT v))
V. q-VT-(pv)+ VT (1-v)+pvl -f. (1.518)
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1.4.4.5 Secondary forms of the energy equation

While the energy equation just derived is perfectly valid for all continuous materials, it
is common to see other forms. They will be described here. The first, the mechanical
energy equation, actually has no foundation in the first law of thermodynamics; instead, it
is entirely a consequence of the linear momenta principle. It is the type of energy that is
often considered in classical Newtonian particle mechanics, a world in which energy is either
potential or kinetic but not thermal. We include it here because it is closely related to other
forms of energy.

1.4.4.5.1 Mechanical energy equation The mechanical energy equation, a pure con-
sequence of the linear momenta principle, is obtained by taking the dot product (inner
product) of the velocity vector with the linear momenta principle:

v’ . linear momenta.

In detail, we get

pa Y - pvlﬁ UJ) - pUJfJ Uj Jp + (8 TZ])UJ7 (1519)
Vj .
< ] ]) < ) - pvﬁfﬂ Uj Jp + (8 TZ])UJ7 (1520)
]23 mass 80 UJ ,78 (p/UZ) = O (1521)

We add Egs. (IL520) and (L521]) and use the product rule to get

V0, VU,
Dy (p%) + 0; (pvi%> = pv;f; —v;0;p + (05T v;. (1.522)
T T
% <pv 5 V) + v, <pVV 5 V) = pv f—vT - Vp+ (V'-7)-v. (1.523)

The term pv;v;/2 represents the volume averaged kinetic energy, with SI units J/m®. Note
that the mechanical energy equation, Eq. (L522]), predicts the kinetic energy increases due
to three effects:

e fluid motion in the direction of a body force,

e fluid motion in the direction of decreasing pressure, or

e fluid motion in the direction of increasing viscous stress.

Note that body forces themselves affect mechanical energy, while it is imbalances in surface
forces which affect mechanical energy.
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1.4.4.5.2 Thermal energy equation If we take the conservative form of the energy
equation (L5IT) and subtract from it the mechanical energy equation (L522), we get an
equation for the evolution of thermal energy:

0O(pe) + 0, (p'UZB) = —anZ — p&vl + Tijai'l}j, (1524)

%(pe) + VT (pve) = —VI'.q—pV' - v+7:Vv. (1.525)

Here pe is the volume averaged internal energy with ST units J/m?. Note that the thermal
energy equation ([L524)) predicts thermal energy (or internal energy) increases due to

e negative gradients in heat flux (more heat enters than leaves),

e pressure force accompanied by a mean negative volumetric deformation (that is, a
uniform compression; note that d;v; is the relative expansion rate), or

e viscous force associated with a deformation?d (we’ll worry about the sign later).

Note that in contrast to mechanical energy, thermal energy changes do not require surface
force imbalances; instead they require kinematic deformation. Moreover, body forces have
no influence on thermal energy. The work done by a body force is partitioned entirely to the
mechanical energy of a body.

1.4.4.5.3 Non-conservative energy equation We can obtain the commonly used non-

conservative form of the energy equation, also known as the energy equation following a fluid

particle, by the following operations. First expand the thermal energy equation (.524)):
p@oe + e@op + pviaie + e@z(pvl) = —0;q; — p@ivi + Tijaﬂ)j. (1526)

Then regroup and notice terms common from the mass conservation equation:

p&@oe + viaiel—i-e (Oop + &-(pvi)z = —0,q; — pO;v; + 7;;0,v;, (1.527)
é =0 b;r,mass
dt
so we get
de
PE = —0iq; — pOiv; + 1;;0;0;, (1.528)
d
pd—j = Vi.q—pVT -v+7:Vv. (1.529)

26For a general fluid, this includes a mean volumetric deformation as well as a deviatoric deformation. If
the fluid satisfies Stokes’ assumption, it is only the deviatoric deformation that induces a change in internal
energy in the presence of viscous stress.
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We can get an equation which is reminiscent of elementary thermodynamics, valid for
small volumes V' by multiplying Eq. (L528) by V and using Eq. (295 to replace d;v; by its
known value in terms of the relative expansion rate to obtain

de av
The only term not usually found in elementary thermodynamics texts is the third on the

right hand side, which is a viscous work term.

1.4.4.5.4 Energy equation in terms of enthalpy Often the energy equation is cast
in terms of enthalpy. This is generally valid, but especially useful in constant pressure
environments. Recall from elementary thermodynamics the specific enthalpy A is defined as

h:e+§. (1.531)

Now starting with the energy equation following a particle (L528]), we can use one form
of the mass equation, Eq. (L439), to eliminate the relative expansion rate 0;v; in favor of
density derivatives to get

de _ pdp

P 0iq +pdt—|—7'javj (1.532)
Rearranging, we get
de pdp
p (& - Ea) = —0;q; + Ti;0,v;. (1.533)
Now differentiating Eq. (L531]), we find
D 1
dh de pdp 1dp
— = — =t —— 1.535
i At A pdt (1.535)
de pdp dh 1dp
—— = = — = —— 1.
dt  p?dt dt  pdt’ (1.536)
de pdp dh dp
g e AL 1.
Pat — pat — Tat T dt (1.537)

So, using Eq. (L537) to eliminate de/dt in Eq. (I.533)) in favor of dh/dt, the energy equation
in terms of enthalpy becomes

dh  d
dh  d
P = —dzt’ v g4 VT (1.539)
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1.4.4.5.5 Energy equation in terms of entropy By using standard relations from
thermodynamics, we can write the energy equation in terms of entropy. It is important to
note that this is just an algebraic substitution. The physical principle which this equation
will represent is still energy conservation.

Recall the Gibbs equation from thermodynamics, which serves to define entropy s:

T ds = de + p dv. (1.540)

Here T is the absolute temperature, and ¢ is the specific volume, 0 = V/m = 1/p. In terms
of p, the Gibbs equation is

p
T ds = de — e dp. (1.541)

Taking the material derivative of Eq. (IL541) , which is operationally equivalent to dividing
by dt, and solving for de/dt,we get

de Tds p dp

dt  ~dt  prdt
This is still essentially a thermodynamic definition of s. Now use Eq. (I.542) in the non-
conservative energy equation (L528) to get an alternate expression for the first law:

(1.542)

d d
pTd—j + gd—f = —&-qi - p&ﬂ)i + Tijﬁﬂ)j. (1543)
Recalling Eq. (439), —0;v; = (1/p)(dp/dt), we have
d
ds 1 1

Using the fact that from the quotient rule we have 9;(¢;/T) = (1/T)0:q;i — (q:/T*)OiT, we
can then say

ds Qi 1 1
ds q 1 1
v = VU (g) e VT T (1.547)

From this statement, we can conclude from the first law of thermodynamics that the entropy
of a fluid particle changes due to heat transfer and to deformation in the presence of viscous
stress. We will make a more precise statement about entropy changes after we introduce the
second law of thermodynamics.

The energy equation in terms of entropy can be written in conservative or divergence
form by adding the product of s and the mass equation, sd,p + s0;(pv;) = 0, to Eq. (L540])
to obtain

N1 1
80(p8) —+ 8Z(pvls) = —8Z- (%) — ﬁqﬁlT -+ TTijﬁﬂ)j, (1548)
0 1 1
5 (ps) + VT - (pvs) = —VT. (%) — ﬁqT VT + 7T vvl. (1.549)
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1.4.5 Entropy inequality

Let us use a non-rigorous method to suggest a form of the entropy inequality which is
consistent with classical thermodynamics. Recall the mathematical statement of the entropy
inequality from classical thermodynamics:

dQ

ds > =% (1.550)

Here S is the extensive entropy, with SI units J/K, and @ is the heat energy into a system
with SI units of J. Notice that entropy can go up or down in a process, depending on the
heat transferred. If the process is adiabatic, dQ) = 0, and the entropy can either remain fixed
or rise. Now for our continuous material we have

dsS = psdV, (1.551)

Here we have used s for the specific entropy, which has SI units J/kg/K. We have also
changed, for obvious reasons, the notation for our element of surface area, now dA, rather
than the previous dS. Notice we must be careful with our sign convention. When the
heat flux vector is aligned with the outward normal, heat leaves the system. Since we want
positive d@ to represent heat into a system, we need the negative sign.

The second law becomes then

ps dV > —q?n dA dt. (1.553)

Now integrate over the finite geometry: on the left side this is a volume integral and the
right side this is an area integral.

/ ps dV > (/ & dA) dt. (1.554)
MR(t) MS(t) T

Differentiating with respect to time and then applying our typical machinery to the
second law gives rise to

qi
s ps dV > / _diaa, 1.555
dt Jyre msw T ( )
/ o(ps) dV —I—/ psvin; dA > / —%nz dA, (1.556)
MR(t) MS(t) mswy T
| @ oty av = [ o (%) av (1.557)
M R(t) MR(t) T

/ (Do) + Oy(psvy)) AV = / - (q—) dV+/ I dV, (1.558)
MER(#) MER(#) T MER(#)

where irreversibility I > 0,

B,(ps) + Bs(psv;) = —0, (%)H (1.559)
ds _ qi
P = =0, <T>+I. (1.560)
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This is the second law. Now if we subtract from this the first law written in terms of entropy,
Eq. (I540), we get the result

1 1
)
As an aside, we have defined the commonly used viscous dissipation function ® as
b = Tijaﬂ)j. (1562)

For symmetric stress tensors, we also have ® = 7;; J;v;). Now since I > 0, we can view the

entirety of the second law as the following constraint, sometimes called the weak form of the
Clausius-Duhent?d inequality:

1 1
—ﬁ%@'TﬂLTﬁjain > 0, (1.563)
1 1
—ﬁqT~VT—|—TT:VVT > 0, (1.564)
1 1
—gd VT + 7l > 0. (1.565)

Recalling that 7;; is symmetric by the angular momenta principle for no external body
couples, and, consequently, that its tensor inner product with the velocity gradient only has
a contribution from the symmetric part of the velocity gradient (that is, the deformation
rate or strain rate tensor), the entropy inequality reduces slightly to

1 1
—ﬁqZ'aiT+T7'ija(in) > 0, (1.566)
T
. 1 Vvl + (VvT)
4 VT‘FTT < 5 > 0, (1.567)
1 1
~=d" VI +27:D > 0, (1.568)

We shall see in upcoming sections that we will be able to specify ¢; and 7;; in such a fashion
that is both consistent with experiment and satisfies the entropy inequality.

The more restrictive (and in some cases, overly restrictive) strong form of the Clausius-
Duhem inequality requires each term to be greater than or equal to zero. For our system
the strong form, realizing that the absolute temperature T" > 0, is

P

2"Rudolf Clausius, 1822-1888, Prussian-born German mathematical physicist, key figure in making ther-
modynamics a science, author of well-known statement of the second law of thermodynamics, taught at
Zirich Polytechnikum, University of Wiirzburg, and University of Bonn.

28Pierre Maurice Marie Duhem), 1861-1916, French physicist, mathematician, and philosopher, taught at
Lille, Rennes, and the University of Bordeaux.
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> > 0. (1.570)

VT (VD)
—ql - VT >0, T: ( ( )

It is straightforward to show that terms which generate entropy due to viscous work
also dissipate mechanical energy. This can be cleanly demonstrated by considering the
mechanisms which cause mechanical energy the change within a finite fixed control volume
V. First consider a restatement of the mechanical energy equation, Eq. (L520) in terms of

the material derivative of specific kinetic energy:
d [vjv;
pa (%) = p’Ujfj — ’Uj&j(p) + Ujaﬂ'ij. (1571)

Now use the product rule to restate the pressure and viscous work terms so as to achieve

d rv;v;
e (%) = pvjfi = 05(vjp) + pOjv; + Bilmijv;) — 100y - (1.572)
=9 >0

So, here we see what induces local changes in mechanical energy. We see that body forces,
pressure forces and viscous forces in general can induce the mechanical energy to rise or fall.
However that part of the viscous stresses which is associated with the viscous dissipation,
®, is guaranteed to induce a local decrease in mechanical energy.

To study global changes in mechanical energy, we consider the conservative form of the
mechanical energy equation, Eq. (L522]), here written in the same way which takes advantage
of application of the product rule to the pressure and viscous terms:

vjvj

ViU
Do (PT) +0; (Pvi%) = ijfj - aj(vjp) + Pajvj + 51’(7'1'3'%') - Tijaivj- (1573)

Now integrate over the fixed control volume, so that

/ 9, (p%) v + / ) (pvi%) v = / pu,f; dV — / 0;(v;p) dV + / pdsv; dV
\% \% 14 \% \%
+/ ai(TijUj) dV—/Tij&-vj dV (1574)
\% \%

Applying Leibniz’s rule and Gauss’s law, we get

—/ p% av + / nlpw% as = / pvjfj dv — / n;v;p s + / pﬁj’Uj dVv
ot Jy 2 s 2 % s %

+ / ni(TijUj) dS - / Tijaﬂ)j dV. (1575)
S v
Now on the surface of the fixed volume, the velocity is zero, so we get
0 VU5
= P—— dV = pUjfj av + p@ﬂ)j dav — Tijai'l}j dv. (1576)
ot Jy' 2 1% Vv Vs~

positive
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Now the strong form of the second law requires that 7;;0;v; = 73;0;v5) > 0. So, we see for
a finite fixed volume of fluid that a body force and pressure force in conjunction with local
volume changes can cause the global mechanical energy to either grow or decay, the viscous
stress always induces a decay of global mechanical energy; in other words it is a dissipative
effect.

1.4.6 Summary of axioms in differential form

Here we pause to summarize the mathematical form of our axioms. We give the Cartesian
index, Gibbs, and the full non-orthogonal index notation. All details of development of
the non-orthogonal index notation are omitted, and the reader is referred to Aris for a full
development. We will first present the conservative form and then the non-conservative form.

1.4.6.1 Conservative form

1.4.6.1.1 Cartesian index form

Oop + Oi(pv;) = 0, (1.577)
Oo(pvi) + 05 (pvjvi) = pfi — Op+ 0;7js, (1.578)
Tij = Tji (1.579)
1 1
80 (p (6 + §Uj1)j>) + 8Z (pvl <6 -+ 5%’%‘)) = —0;q; — 8i(pvi) + 8i(n-jvj)
+pui fi, (1.580)
4
0,(ps) + Bi(psvi) > —0; (f) . (1.581)
1.4.6.1.2 Gibbs form

% + VT (pv) = 0, (1.582)

0 T 7\T T T
E(pv) + (V' - (pvv')) = pf=Vp+ (V' -7) , (1.583)
r = 71, (1.584)

0 1 1
a1 <p<€+§VT’V>> +vT. <pv <e+§vT-v>> = —VT-q—VT-(pv)

+VT . (r-v)+pvl £, (1.585)

VT (psv) = VT (). (1.586)
1.4.6.1.3 Non-orthogonal index form Here we introduce, following Aris and many
others, some standard notation from tensor analysis. In this notation, both sub- and su-
perscripts are needed to distinguish between what are known as covariant and contravari-
ant vectors, which are really different mathematical representations of the same quan-
tity, just cast onto different basis vectors. In brief, we have the metric tensor g;; =
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gii%, where ¢F is a Cartesian coordinate and 2’ is a non-Cartesian coordinate. We

also have ¢ = 2e™"elPig, g, /g = det gf;. The ChristoffePd symbols are given by

' = 1 gmF (%g:gf + %‘;"j — gf;g . We note also that few texts give a proper exposition of the
conservatlve form of the equations in non-orthogonal coordinates. Here we have extended
the development of Vinokur™ to include the effects of momentum and energy diffusion. This
extension has been guided by general notions found in standard works such as Aris as well

as Liseikin.

0 0
E(x/ﬁpﬂﬁ(\fpvk) = 0, (1.587)
0 AW s ;
5(@/)@ 8xj)+@(\/§pv ’“&C) = Vorf ai
k
<fpg’ &w)

()

(1.588)
D (e o)) s (s e o)) =
—k (v pv*)

0 >
+57 (V9 90’7 ‘)

+v/g pgiv’ f, - (1.589)

2( s)—i—i( suh) > _ 2 ¢ (1.590)
ot v9r oxk Vg psv) 2 oxk \/§T '

1.4.6.2 Non-conservative form

1.4.6.2.1 Cartesian index form

dp
o _ o 1591
g po;v (1.591)
dUZ'
pﬁ = pfi—&-p+8j7'ji, (1592)
Tij = Tjis (1.593)
d
po = =0t — pOwi + Tydhuy, (1.594)

29Elwin Bruno Christoffel, 1829-1900, German mathematician and physicist.
30Vinokur, M., 1974, “Conservation Equations of Gasdynamics,” Journal of Computational Physics, 14(2):
105-125.
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ds qi
p = =0, (T) (1.595)
1.4.6.2.2 Gibbs form
d
d—f = VT, (1.596)
d
pd—\tf — pf—Vp+ (VT-7)", (1.597)
r o= T (1.598)
d
pd—: = V. q—pVT vaT: W, (1.599)
ds q
por 2 —VT-@). (1.600)

1.4.6.2.3 Non-orthogonal index form These have not been checked carefully!

dp  ;0p _  p O i
5 TVeE = N (Vg v'), (1.601)
o’ (O il _ i i Op 1 0 ij i _jk
(G (o)) = o' =95+ G (V7). o)

0
de  ;0e\ 10 N i
p(_t_l_vaxi) - Jgox (Vg ') (Vg ')

OVt ,
+ g™ (8; + F;-lvl) ; (1.603)

Js  ,;0s 1 0 q
- v > - = . .
g <8t +” 8xi> = TG00 (ﬁ T) (1.604)

1.4.6.3 Physical interpretations

Each term in the governing axioms represents a physical mechanism. This approach is
emphasized in the classical text by Bird, Stewart, and Lightfoot on transport processes.
In general, the equations which are partial differential equations can be represented in the
following form:

local change = advection + diffusion + source. (1.605)

Here we consider advection and diffusion to be types of transport phenomena. If we have a
fixed volume of material, a property of that material, such as its thermal energy, can change
because an outside flow sweeps energy in from outside. That is advection. It can change
because random molecular motions allow slow leakage to the outside or leakage in from the
outside. That is diffusion. Or the material can undergo intrinsic changes inside, such as
viscous work, which converts kinetic energy into thermal energy.
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Let us write the Gibbs form of the non-conservative equations of mass, linear momentum,
and energy in a slightly different way to illustrate these mechanisms:

9]

8_/; = local change in mass
—v.Vp advection of mass
+0 diffusion of mass

—pV7T . v, volume expansion source (1.606)

pa = local change in linear momenta

—p (VT . V) v advection of linear momenta

+ (V" T)T : diffusion of linear momenta (1.607)
+pf body force source of linear momenta

—Vp pressure force source of linear momenta
p— = local change in thermal energy

ot

—pvl - Ve advection of thermal energy
-VvT.q diffusion of thermal energy
—pVT. v pressure work thermal energy source

47 Vv viscous work thermal energy source. (1.608)

Briefly considering the second law, we note that the irreversibility [ is solely associated
with diffusion of linear momenta and diffusion of energy. This makes sense in that diffusion
is associated with random molecular motions and thus disorder. Convection is associated
with an ordered motion of matter in that we retain knowledge of the position of the matter.
Pressure volume work is a reversible work and does not contribute to entropy changes. A
portion of the heat transfer can be considered to be reversible. All of the work done by the
viscous forces is irreversible work.

1.4.7 Complete system of equations?

The beauty of these axioms is that they are valid for any material which can be modeled
as a continuum under the influence of the forces we have mentioned. Specifically, they are
valid for both solid and fluid mechanics, which is remarkable.

While the axioms are complete, the equations are not! Note that we have twenty-three
unknowns here p(1),v;(3), fi(3),p(1), 7;(9),e(1),¢:(3),T(1),s(1), and only eight equations
(one mass, three linear momenta, three independent angular momenta, one energy). We
cannot really count the second law as an equation, as it is an inequality. Whatever result we
get must be consistent with it. Whatever the case we are short a number of equations. We will
see in a later section how we use constitutive equations, equations founded in empiricism,
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which in some sense model sub-continuum effects that we have ignored, to complete our
system.

Before we go onto this, however, we will in the next section discuss integral “control
volume” forms of the governing equations.

1.4.8 Integral forms

e Our governing equations are formulated based upon laws which apply to a material
element.

e We are not often interested in an actual material element but in some other fixed of
moving region in space.

e Rules for such systems can by formulated with Leibniz’s rule in conjunction with the
differential forms of our axioms.
Let us first apply Leibniz’s rule (ILI8F]) to an arbitrary function f over a time dependent
arbitrary region AR(t):

d of
fdv = / AV + / naw f dS. 1.609
dt AR(t) ot AS(1) ( )

Recall that w; is the velocity of the arbltrary surface, not necessarily the particle velocity.

1.4.8.1 Mass
Rewriting the mass equation as
0op = —0;(pv;), (1.610)
Now let’s use this, and let f = p in Leibniz’s rule to get
d
— pdV = / O,p dV + / n;w;p dS, (1.611)
dt Jarw) AR(t) AS(1)
d
— pdV = / (—0;(pv;)) dV +/ nw;p dsS, (1.612)
dt J are) AR(t) AS(1)
with Gauss (1.613)
d
pdV = / n;p(w; — v;) dS. (1.614)
dt AR(t) AS(1)

Now consider three special cases.

1.4.8.1.1 Fixed region We take w; = 0.

d
pdV = —/ n;pv; dS, (1.615)
dt Jarg AS(2)
d
dt J are) AS(t)
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Figure 1.25: Sketch of volume with water and air being filled with water.

1.4.8.1.2 Material region Here we take w; = v;.

d

- pdV =0. (1.617)
dt Jare

1.4.8.1.3 Moving solid enclosure with holes Say the region considered is a solid
enclosure with holes through with fluid can enter and exit. The our arbitrary surface AS(t)
can be specified as

AS(t) = A1) area of entrances and exits (1.618)
+A,(t) solid moving surface with w; = v; (1.619)
+A fixed solid surface with w; = v; = 0. (1.620)
Then we get
dt J ar) Ac(t)

|
Ezample 1.10
Consider the volume sketched in Figure[[L25l Water enters a circular hole of diameter Dy = 1”7 with
velocity v; = 3 ft/s. Water enters another circular hole of diameter Dy = 3” with velocity vy = 2 ft/s.
The cross sectional area of the cylindrical tank is A = 2 ft2. The tank has height H. Water at density
Pw €xists in the tank at height h(t). Air at density p, fills the remainder of the tank. Find the rate of
dh

rise of the water .
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Consider two control volumes
e Vi: the fixed region enclosing the entire tank, and
e V5(t): the material region attached to the air.

First, let us write mass conservation for the material region 2:

d
L pedv = o, 1.622
i’ (1.622)
d (2
— JAdz = 0. 1.623
0t Jy (1.623)
Mass conservation for V; is
d
), pdV + . pvin; dS = 0. (1.624)
1 e
Now break up V; and write A, explicitly
d h(t) d H
— pwA dz + — paAdz = —/ Pwlin; dS — Pwin; dS, (1.625)
dt Jo dt Jue A Aq
=0
d e
7 pwA dz = puui Al + pavAsg, (1.626)
0
- %(MD% + v D2), (1.627)
IO .
prE/O dz = %(le%—i—ng%), (1.628)
dh T
2 2
T ft 1 ft 3
T ft ft
= oo = = 0057 —. (1.631)

1.4.8.2 Linear momenta

Let us perform the same exercise for the linear momenta equation. First, in a strictly
mathematical step, apply Leibniz’s rule to linear momenta, pv;:

d

— pv; AV = / Oo(pu;) dV +/ njw,;pv; dS. (1.632)
dt J ar) AR(t) AS(t)

CC BY-NC-ND. 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

110 CHAPTER 1. GOVERNING EQUATIONS

Now invoke the physical linear momenta axiom. Here the axiom gives us an expression for
Oo(pv;). We will also convert volume integrals to surface integrals via Gauss’s theorem to
get

d

— pv; dV = —/ (pn;(vj — wj)v; +np — n;7;5) dS +/ pfi dV. (1.633)
dt Jarg) AS(1) A

R(t)

Now momentum flux terms only have values at entrances and exits (at solid surfaces we get
v; = w;, SO We can say

d

dt J argw) Ac(t) AS(1) AS(1) AR(1)
(1.634)
Note that the surface forces are evaluated along all surfaces, not just entrances and exits.

1.4.8.3 Energy
Applying the same analysis to the energy equation, we obtain

d 1 1
— p (e + —vjvj) av. = —/ pni(v; — w;) (e + —vjvj) ds
dt J argw) 2 AS(#) 2

- / n;q; dS
AR(t)

— / (nlvlp — niTZ‘j’Uj) dS
AS(t)

AR(t)

1.4.8.4 General expression

If we have a governing equation from a physical principle which is of form

0o fj + 0i(vifj) = 0ig; + hy, (1.636)
then we can say for an arbitrary volume that
d
flt AR(1) ) AS(t) Jas  Jarw )
Chang:of fj ﬁuX:)rf fj CHCCtT)f g; effect‘:)f hj

1.5 Constitutive equations

We now return to the problem of completing our set of equations. We recall we have too
many unknowns and not enough equations. Constitutive equations are additional equations
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which are not as fundamental as the previously developed axioms. They can be rather
ad hoc relations which in some sense model the sub-continuum nano-structure. In some
cases, for example, the sub-continuum kinetic theory of gases, we can formally show that
when the sub-continuum is formally averaged, that we obtain commonly used constitutive
equations. In most cases however, constitutive equations simply represent curve fits to basic
experimental results, which can vary widely from material to material. As is briefly discussed
below, constitutive equations are not completely arbitrary. Whatever is proposed must allow
our final equations to be invariant under Galilean®] transformations and rotations as well as
satisfy the entropy inequality.

For example, we might hope to develop a constitutive equation for the heat flux vector
q;- Being naive, we might in general expect it to be a function of a large number of variables:

¢ = qi(p,p, T, vi, Tij, fise,s,...). (1.638)

The principles of continuum mechanics will rule out some possibilities, but still allow a broad
range of forms.

1.5.1 Frame and material indifference

Our choice of a constitutive law must be invariant under a Galilean transformation (frame
invariance) a rotation (material indifference). Say for example, we propose that the heat
flux vector is proportional to the velocity vector

q; = av;, trial constitutive relation. (1.639)

If we changed frames such that velocities in the moving frame were u; = v; — V', we would
have ¢; = a(u; + V). With this constitutive law, we find a physical quantity is dependent
on the frame velocity, which we observe to be non-physical; hence we rule out this trial
constitutive relation.

A commonly used constitutive law for stress in a one-dimensional experiment is

1o = b(01v2)* (D1uz)’, (1.640)

where u, is the displacement of particle. While this may fit one-dimensional data well, it is
in no way clear how one could simply extend this to write an expression for 7;;, and many
propositions will fail to satisfy material indifference.

1.5.2 Second law restrictions and Onsager relations

The entropy inequality from the second law of thermodynamics provides additional restric-
tions on the form of constitutive equations. Recall the second law (equivalently, the weak

31Galileo Galilei, 1564-1642, Pisa-born Italian astronomer, physicist, and developer of experimental meth-
ods, first employed a pendulum to keep time, builder and user of telescopes used to validate the Copernican
view of the universe, developer of the principle of inertia and relative motion.
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form of the Clausius-Duhem inequality, Eq. (L560])) tells us that

1 1
_ﬁ%’aiT + TTija(in) > 0. (1.641)

We would like to find forms of ¢; and 7;; which are consistent with the above weak form of
the entropy inequality.

1.5.2.1 Weak form of the Clausius-Duhem inequality

The weak form suggests that we may want to consider both ¢; and 7;; to be functions

involving the temperature gradient 0;1" and the deformation tensor djv;).

1.5.2.1.1 Non-physical motivating example To see that this is actually too general
of an assumption, it suffices to consider a one-dimensional limit. In the one-dimensional
limit, the weak form of the entropy inequality, Eq. (.560), reduces to

g+ T > 0. (1.642)
Xz

q
(-4 12 (4) 20 (L6t

Note that a factor of u/u was introduced to the viscous stress term. This allows for a
necessary dimensional consistency in that ¢/7" has the same units as Tu/T. Let us then
hypothesize a linear relationship exists between the generalized fluxes ¢/T and Tu/T and

the generalized driving gradients —%g—z and %%:
q 10T 10u
— = (Op|—=—=— Cro—— 1.644
T 11( T@x)+ 2w oz ( )
TU 10T 10u
R - = 1.64
T 021< T@x)+c22u8x’ (1.645)

(1.646)
In matrix form this becomes
q C C _la_T)
T | = 1 12 T.0x | 1.647
(4)= (e e) (F (1617

We then substitute this hypothesized relationship into the entropy inequality to obtain

(—L2L Lou) Cu Ch T >0 (1.648)
T Oz u O 6’21 6’22 10u - ’

u O
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We next segregate the matrix Cj; into a symmetric and anti-symmetric part to get
Lor 18 Cll Ci24+Co 0 Ci12—Co _ 19T
U
(_T% E%)((M 02 )‘F(M (2) )) ( lTa_Qw) >0. (1.649)
2 22 2 u Ox

Distributing the multiplication, we find

(1.650)

The second term is identically zero for all values of temperature and velocity gradients. So
what remains is the inequality involving only a symmetric matrix:

19T 19 Cy  Getln — 10T
(_T% Za_g) ( C21+C12 C? ) ( lTigx ) 2 0. (1651)
2 22 u Ox

Now in a well known result from linear algebra, a necessary and sufficient condition for
satisfying the above inequality is that the new coefficient matrix be positive semi-definite.
Further, the matrix will be positive semi-definite if it has positive semi-definite eigenvalues.
The eigenvalues of the new coefficient matrix can be shown to be

A= % ((C + o) £ (G — Co)? 1 (G 1 Car)? ) (1.652)

Since the terms inside the radical are positive semi-definite, the eigenvalues must be real.
This is a consequence of the parent matrix being symmetric. Now we require two positive
semi-definite eigenvalues. First, if C7; + Cy < 0, we obviously have at least one negative
eigenvalue, so we demand that C; + Co > 0. We then must have

Oy + Coy > /(C11 — C2)2 + (Chg + Ca)2. (1.653)
This gives rise to
(C1y + Ca9)? > (C1y — Ca9)* + (Chg + O, (1.654)
Expanding and simplifying, one gets
Chy + Cor \?
CnCo > (%) . (1.655)
Now the right side is positive semi-definite, so the left side must be also. Thus
C11Cy% > 0. (1.656)
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The only way for the sum and product of C; and Cy to be positive semi-definite is to
demand that C7; > 0 and Cy > 0. Thus we arrive at the final set of conditions to satisfy
the second law:

Cy > 0, (1.657)
Coy > 0, (1.658)

2
C1Coy > (%) . (1.659)

Now an important school of thought, founded by Onsage in twentieth century thermo-
dynamics takes an extra step and makes the further assertion that the original matrix Cj;
itself must be symmetric. That is C'jy = (5. This remarkable assertion is independent of the
second law, and is, for other scenarios, consistent with experimental results. Consequently,
the second law in combination with Onsager’s independent demand, requires that

Cnu > 0, (1.660)
Cypn > 0, (1.661)
Ciz < VCiiCo. (1.662)

All this said, we must dismiss our hypothesis in this specific case on other physical
grounds, namely that such a hypothesis results in an infinite shear stress for a fluid at
rest! Note that in the special case in which 07 /dxz = 0, our hypothesis predicts 7 =
Cos(T/u?)(Ou/dz). Obviously this is inconsistent with any observation and so we reject this
hypothesis. Additionally, this assumed form is not frame invariant because of the velocity
dependency. So, why did we go to the trouble to do the above? First, we now have confidence
that we should not expect to find heat flux to depend on deformation. Second, it illustrates
some general techniques in continuum mechanics. Moreover, the techniques we used have
actually been applied to other more complex phenomena which are physical, and of great
practical importance.

1.5.2.1.2 Real physical effects. That such a matrix such as we studied in the previous
section was asserted to be symmetric is a manifestation of what is known as a general
Onsager relation, developed by Onsager in 1931 with a statistical mechanics basis for more
general systems and for which he was awarded a Nobel Prize in chemistry in 1968. These
actually describe a surprising variety of physical phenomena, and are described in detail
many texts, including Fung and Woods. A well-known example is the Peltier] effect in
which conduction of both heat and electrical charge is influenced by gradients of charge and
temperature. This forms the basis of the operation of a thermocouple. Other relations exist
are the Soret effect in which diffusive mass fluxes are induced by temperature gradients, the

32Lars Onsager, 1903-1976, Norwegian-born American physical chemist, earned Ph.D. and taught at Yale,
developed a systematic theory for irreversible chemical processes.
33Jean Charles Athanase Peltier, 1785-1845, French clockmaker, retired at 30 to study science.
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Dufour effect in which a diffusive energy flux is induced by a species concentration gradient,
the HalP effect for coupled electrical and magnetic effects (which explains the operation
of an electric motor), the Seebackd effect in which electromotive forces are induced by
different conducting elements at different temperatures, the ThomsorPd effect in which heat
is transferred when electric current flows in a conductor in which there is a temperature
gradient, and the principle of detailed balance for multi-species chemical reactions.

1.5.2.2 Strong form of the Clausius-Duhem inequality

A less general way to satisfy the second law is to take the sufficient (but not necessary!)
condition that each individual term in the entropy inequality to be greater than or equal to
Zero:

1
1

Once again, this is called the strong form of the entropy inequality (or the strong form of
the Clausius-Duhem inequality), and is potentially overly restrictive.

1.5.3 Fourier’s law

Let us examine the restriction on ¢; from the strong form of the entropy inequality to infer
the common constitutive relation known as Fourier’s lawP] The portion of the strong form
of the entropy inequality with which we are concerned here is

1

Now one way to guarantee this inequality is satisfied is to specify the constitutive relation
for the heat flux vector as

¢ =—ko,T,  with k>0 (1.666)

This is the well known Fourier’s Law for an isotropic material, where k is the thermal
conductivity. It has the proper behavior under Galilean transformations and rotations; more

34Edwin Herbert Hall, 1855-1938, Maine-born American physicist, educated at Johns Hopkins University
where he discovered the Hall effect while working on his dissertation, taught at Harvard.

33Thomas Johann Seebeckl 1770-1831, German medical doctor who studied at Berlin and Géttingen.

36William Thomson (Lord Kelvin), 1824-1907, Belfast-born British mathematician and physicist, grad-
uated and taught at Glasgow University, key figure in all of 19th century engineering science including
mathematics, thermodynamics, and electrodynamics.

37Jean Baptiste Joseph Fourier, 1768-1830, French mathematician and Egyptologist who studied the trans-
fer of heat and the representation of mathematical functions by infinite series summations of other functions.
Son of a tailor.
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importantly, it is consistent with macro-scale experiments for isotropic materials, and can be
justified from an underlying micro-scale theory. Substitution of Fourier’s law for an isotropic
material into the entropy inequality yields

1
ﬁk(aiT)(&-T) >0, (1.667)
which for k£ > 0 is a true statement. Note the second law allows other forms as well. The
expression ¢; = —k((0,T)(0,1))0;T is consistent with the second law. It does not match
experiments well for most materials however.

Following Duhamel@ we can also generalize Fourier’s law for an anisotropic material.
Let us only consider anisotropic materials for which the conductivity in any given direction
is a constant. For such materials, the thermal conductivity is a tensor £;;, and Fourier’s law

generalizes to
¢ = —kijO;T. (1.668)

This effectively states that for a fixed temperature gradient, the heat flux depends on the
orientation. This is characteristic of anisotropic substances such as layered materials. Sub-
stitution of the generalized Fourier’s law into the entropy inequality (for 7,; = 0) gives now

Lk (0,7)(0T) >0, (1.669)
SOTh,(OT) >0, (1.670)
%(VT)T-K-VT > 0. (1.671)

Now 1/T? > 0, so we must have (9;,T)k;;(0;T) > 0 for all possible values of VT. Now any
possible anti-symmetric portion of k;; cannot contribute to the inequality. We can see this
by expanding k;; in the entropy inequality to get

1 1
o;T (k‘(ij) + k‘[ij}) 8]-T > 0, (1.673)
(0 T)kij(0;T) + (0T )k (0;T) > 0, (1.674)
~——
=0
(0:T)kuj(0;,T) > 0. (1.675)

The anti-symmetric part of k;; makes no contribution to the entropy generation because
it involves the tensor inner product of a symmetric tensor with an anti-symmetric tensor,
which is identically zero.

Next, we again use the well-known result from linear algebra that the entropy inequality
is satisfied if k() is a positive semi-definite tensor. This will be the case if all the eigenvalues

38Jean Marie Constant Duhamel, 1797-1872, highly regarded mathematics teacher at Ecole Polytechnique
in Paris who applied mathematics to problems in heat transfer, mechanics, and acoustics.
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of k(; are non-negative. That this is sufficient to satisfy the entropy inequality is made

plausible if we consider 9;T" to be an eigenvector, so that kg;0;T = \d;;0;1 giving rise to
an entropy inequality of

(0; TN (0;T")

AaT)(9.T)

0, (1.676)

>
> (1.677)

The inequality holds for all 9;T as long as A > 0.

Further now, when we consider the contribution of the heat flux vector to the energy
equation, we see any possible anti-symmetric portion of the conductivity tensor will be
inconsequential as well. This is seen by the following analysis, which considers only relevant
terms in the energy equation

de

pgp = Ot (1.678)

= 0 (k0 T) + ..., (1.679)

= ki;j0;0;T + ..., (1.680)

= (k) + kyg) 0:0;T + ..., (1.681)

= kuj0i0;T + kiij0;0;T + . . ., (1.682)
——

= kup0i0;T +.... (1.683)

So, it seems any possible anti-symmetric portion of k;; will have no consequence as far
as the first or second laws are concerned. However, an anti-symmetric portion of k;; would
induce a heat flux orthogonal to the direction of the temperature gradient. In a remarkable
confirmation of Onsager’s principle, experimental measurements on anisotropic crystalline
materials demonstrate that there is no component of heat flux orthogonal to the temperature
gradient, and thus, the conductivity matrix £;; in fact has zero anti-symmetric part, and thus
is symmetric, k;; = kj;. For our particular case with a tensorial conductivity, the competing
effects are the heat fluxes in three directions, caused by temperature gradients in three
directions:

q1 ki ki kg oT
G2 | =—| ka1 koo ko 0T | . (1.684)
q3 k31 kso  kas 0T

The symmetry condition, Onsager’s principle, requires that ko = ko1, ki3 = k31, and ko3 =
kso. So, the experimentally verified Onsager principle further holds that the heat flux for an
anisotropic material is given by

q1 ki ki kg oT
@ | =— | k12 koo ks 0T | . (1.685)
q3 kiz  kos  kss 0T

Now it is well known that the conductivity matrix k;; will be positive semi-definite if all
its eigenvalues are non-negative. The eigenvalues will be guaranteed real upon adopting
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Onsager symmetry. The characteristic polynomial for the eigenvalues is given by

N IVN + 1PN -1 =, (1.686)
where the invariants of the conductivity tensor k;;, are given by the standard
I = ky=trK, (1.687)
1 _
L = 5(/%7%‘ — kijkji) = (det K) (tr K1), (1.688)

In a standard result from linear algebra, one can show that if all three invariants are positive
semi-definite, then the eigenvalues are all positive semi-definite, and as a result, the matrix
itself is positive semi-definite. Hence, in order for k;; to be positive semi-definite we demand
that

iV o> o, (1.690)
I > o, (1.691)
¥ > o, (1.692)

which is equivalent to demanding that

ki1 + koo + k33 > 0, (1.693)
Kirkoo + ki1kss + kookss — kiy — ks — k33 > 0, (1.694)
ki3(ki2kos — kookis) + kos(kiokiz — k11kas) + kss(kirkas — kiok1z) > 0. (1.695)
If det K # 0, the conditions reduce to
K > 0, (1.696)
tr K1 > 0, (1.697)
detK > 0. (1.698)

Now by considering ;T = (1,0,0)”, and demanding (9;T)k;;(0,T) > 0, we conclude that
ki1 > 0. Similarly, by considering 6,7 = (0,1,0)T and 0,7 = (0,0,1)T, we conclude that
koo > 0 and k33 > 0, respectively. Thus tr K > 0 is automatically satisfied. In equation
form, we then have

kn > 0, (1.699)

ks > 0, (1.700)

ks > 0, (1.701)

iikay + kiikss + kaokss — K3y — ki3 — k33 > 0, (1.702)

ki3(ki2kos — kookis) + kos(kiokiz — k11kas) + kss(kirkas — kiokiz) > 0. (1.703)

While by no means a proof, numerical experimentation gives strong indication that the
remaining conditions can be satisfied if, loosely stated, ki1, koo, k3z >> |k12|, |kasl, |k13]. That
is, for positive semi-definiteness,
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e cach diagonal element must be positive semi-definite,
e off-diagonal terms can be positive or negative, and

e diagonal terms must have amplitudes which are, loosely speaking, larger than the
amplitudes of off-diagonal terms.

|
Ezample 1.11
Let us consider heat conduction in the limit of two dimensions and a constant anisotropic conduc-
tivity tensor, without imposing Onsager’s conditions.

) _ _ (Fkun ki T
<q2)— (kzl k22)(52T>' (1.704)

Let us take then

The second law demands that

ki1 k12 oT
(T 0.T) <k21 k22) ((%T >0. (1.705)
This is expanded as
k11 ki2+ko1 0 k12 —ko1 T

(alT a2T) (( k?21'5k12 kz2 + k?21;k312 (2) 62T 2 O. (1.706)

As before, the anti-symmetric portion makes no contribution to the left hand side, giving rise to

k11 ki2+ko1 T

(81T 82T) ( k21;k12 kZQ 82T 2 0. (1707)

And, demanding that the eigenvalues of the symmetric part of the conductivity tensor be positive gives
rise to the conditions, identical to that of an earlier analysis, that

ki > 0, (1.708)
koo > 0, (1.709)
kuksy > (k” ;r k21>2 (1.710)
The energy equation becomes
p% = —0i¢i+..., (1.711)
= (0 &)(Ei 22) (g;§)+ (1.712)
= (0 &) (iiggiiggﬁ) +.., (1.713)
= k110101T + (k12 + k21)0102T + koo0202T + . . ., (1.714)
= ku%+(k12+k21)%+k222%+.... (1.715)

One sees that the energy evolution depends only on the symmetric part of the conductivity tensor.
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Imposition of Onsager’s relations gives simply k12 = ko1, giving rise to second law restrictions of

ki1 > 0, (1.716)
koo > 0, (L.717)
kiikoo > ki, (1.718)
and an energy equation of
de 0*T o*r 0*T
— =ki1—5 +2kio——— + koo—5+.... 1.719
pdt 1 oz? + 2k 0x1012 + ez z3 + ( )

|
Ezample 1.12
Consider the ramifications of a heat flux vector in violation of Onsager’s principle: flux in which
the anisotropic conductivity is purely anti-symmetric. For simplicity consider an incompressible solid
with constant specific heat c. For the heat flux, we take

(Z;) T (g _Oﬁ) (%?) (1.720)

This holds that heat flux in the 1 direction is induced only by temperature gradients in the 2 direction
and heat flux in the 2 direction is induced only by temperature gradients in the 1 direction.

The second law demands that

(T 0,T) (2 _Oﬁ) (gﬁ) >0, (1.721)
(T 9T) (%%‘?;U >0, (1.722)
—B(OT)(9:T) + B(0:T)(0=T) = 0, (1.723)
0> 0. (1.724)

So, the second law holds.
For the incompressible solid with constant heat capacity, the velocity field is zero, and the energy
equation reduces to the simple

Py = —0:¢i- (1.725)
Imposing our unusual expression for heat flux, we get
or 0 -8\ [(oT

PCE = (01 O9) <ﬂ 0 > <32T) , (1.726)

_ —Bo.T
= (01 ) < 5O,T ) : (1.727)
—B010:T + 010, (1.728)
0. (1.729)
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So, this unusual heat flux vector is one which induces no change in temperature. In terms of the first law
of thermodynamics, a net energy flux into a control volume in the 1 direction is exactly counterbalanced
by an net energy flux out of the same control volume in the 2 direction. Thus the first law holds as
well.

Let us consider a temperature distribution for this unusual material. And let us consider it to apply
to the domain z € [0,1], y € [0,1], t € [0, 00]. Take

T(Il,xg,t) = X3. (1730)
Obviously this satisfies the first law as % = 0. Let us check the heat flux.

@ = poT =0, (1.731)
q2 = —BalT =0. (1732)
Now the lower boundary at o = 0 has T = 0. The upper boundary has zo = 1 so T'= 1. And this
constant temperature gradient in the 2 direction is inducing a constant heat flux in the 1 direction,

q1 = —fB. The energy flux that enters at 1 = 0 departs at 1 = 1, maintaining energy conservation.
One can consider an equivalent problem in cylindrical coordinates. Taking

x1 = rcosb, X9 = rsind, (1.733)

0y _(# #) (%
— T T T
()= (3 &) (%) Ly
T2 T2

01\  [cosf —%
d2)  \sing <=

So, transforming ¢; = 80;T, and g2 = —p01T gives

: s 60 oT
n) = (T ) (%) (17560
- sin 6 oT : :
( q2 —cosf) = 5
Standard trigonometry gives

gr\ [ cosf sinf Q1
<q9> o (—sin@ cos6‘) <q2>' (1.737)

rotation matrix

and applying the chain rule,

one finds

> . (1.735)

RESE

Applying the rotation matrix to both sides gives then

cosf sinf\ (q1) _ cosf  sinf sing sl /2L
(—sin6‘ cos6‘) (qg) N B(—sin@ cos6‘) (—0056‘ % %_g ’ (1.738)
q o 1 oL
y) = o) & 1.739
<Q9) ﬁ(—l O)<%—g)’ ( )
or simply
oT
ar = gﬁ (1.740)
oT
W% ==PF5" (1.741)
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Now the steady state temperature distribution in the annular region 1/2 < r < 1, T' = r, describes
a domain with an inner boundary held at 7' = 1/2 and an outer boundary held at 7' = 1. Such a
temperature distribution would induce a heat flux in the 6 direction only, so that ¢, = 0 and g9 = —f.
That is, the heat goes round and round the domain, but never enters or exits at any boundary.

Now such a flux is counterintuitive precisely because it has never been observed or measured. It is
for this reason that we can adopt Onsager’s hypothesis and demand that, independent of the first and
second laws of thermodynamics,

p =0, (1.742)

and the conductivity tenser is purely symmetric.

1.5.4 Stress-strain rate relation for a Newtonian fluid

We now seek to satisfy the second part of the strong form of the entropy inequality, namely
(and recalling that 7' > 0)
—
)

This form suggests that we seek a constitutive equation for the viscous stress tensor T;
which is a function of the deformation tensor d;v;). Fortunately, such a form exists, which
moreover agrees with macro-scale experiments and micro-scale theories. Here we will focus
on the simplest of such theories, for what is known as a Newtonian fluid, a fluid which
is isotropic and whose viscous stress varies linearly with strain rate. In general, this is a
discipline unto itself known as rheology.

1.5.4.1 Underlying experiments

We can pull a flat plate over a fluid and measure the force necessary to maintain a specified
velocity. This situation and some expected results are sketched in Figure [.2600 We observe
that

e At the upper and lower plate surfaces, the fluid has the same velocity of each plate.
This is called the no slip condition.

e The faster the velocity V of the upper plate is, the higher the force necessary to pull
the plate is. The increase can be linear or non-linear.

e When experiments are carried out with different plate area and different gap width, a
single universal curve results when F'/A is plotted against V/h.

e The velocity profile is linear with increasing ws.
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Figure 1.26: Sketch of simple Couette flow experiment with measurements of stress versus
strain rate.
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Figure 1.27: Variation of viscous stress with strain rate for typical fluids.

In a way similar on a molecular scale to energy diffusion, this experiment is describing
a diffusion of momentum from the pulled plate into the fluid below it. The constitutive
equation we develop for viscous stress, when combined with the governing axioms, will
model momentum diffusion.

We can associate F'/A with a shear stress: 7y, recalling stress on the 2 face in the 1
direction. We can associate V/h with a velocity gradient, here 0yv;. We note that considering
the velocity gradient is essentially equivalent to considering the deformation gradient, as far
as the second law is concerned, and so we will be loose here in our use of the term. We define
the coefficient of viscosity p for this configuration as

T iscous stress
= TR . (1.744)
Oy strain rate

The viscosity is the analog of Young’s@ modulus in solid mechanics, which is the ratio
of stress to strain. In general p is a thermodynamic property of a material. It is often
a strong function of temperature, but can vary with pressure as well. A Newtonian fluid
has a viscosity which does not depend on strain rate (but could depend on temperature and
pressure). A non-Newtonian fluid has a viscosity which is strain rate dependent (and possible
temperature and pressure). Some typical behavior is sketched in Figure We shall focus
here on fluids whose viscosity is not a function of strain rate. Much of our development will
be valid for temperature and pressure dependent viscosity, while most actual examples will
consider only constant viscosity.

39Thomas Young, 1773-1829, English physician and physicist whose experiments in interferometry revived
the wave theory of light, Egyptologist who helped decipher the Rosetta stone, worked on surface tension in
fluids, gave the word “energy” scientific significance, and developed Young’s modulus in elasticity.
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1.5.4.2 Analysis for isotropic Newtonian fluid

Here we shall outline the method described by Whitaker (p. 139-145) to describe the viscous
stress as a function of strain rate for an isotropic fluid with constant viscosity. An isotropic
fluid has no directional dependencies when subjected to a force. A fluid composed of aligned

long chain polymers is an example of a fluid that is most likely not isotropic. Following
Whitaker, we

e postulate that stress is a function of deformation rate (strain rate) only

Tij = fij(a(kvl)). (1745)

Written out in more detail, we have postulated a relationship of the form

1 = f11(9av1), Opv2), O3vs), (1v2), O2v3), O3v1y9(2v1), O3v2), I1vs)),  (1.746)
T2 = f12(5(1U1)7 8(21)2), 8(3”3), 8(1112)7 6(2113), 6(31)1)8(21)1), 8(3”2), 8(1113)), (1.747)
: (1.748)
733 = f33(91v1), O2v2), O3v3), O(1v2), O(2v3), O3v1yO(2v1), O3v2), O1vs)).  (1.749)
e require that 7;; = 0 if J;v;) = 0, hence, no strain rate, no stress.
e require that stress is linearly related to strain rate:
Tij = Aijkla(kvl)- (1.750)

This is the imposition of the assumption of a Newtonian fluid. Here C’ijkl is a fourth
order tensor. Thus we have in matrix form

11 Cinn Cuz2e Cuss Ciiz Cuzs Cust Cuar Cuse Cus davr)
T22 Ca11 Cozza Cozzz Coziz Cozaz Chazi Caoor Oz Caois O(2v2)
T33 Cssin O3z Csgzs Csziz Csgas Cszzr Cszar Csgza Czig I(3v3)
Ti2 Cizin Ciaz2 Ciazz Ciziz Cizez Ciazi Cioon Chiaze Chais d1v2)
T3 | = | Casin Chzaz Cagzs Coziz Cogas Cazzi Chsar Cogze Casis I (2v3)
31 Csii1 Csi22 Csizz Csii2 Cs123 Caizt Oz Caizz Clanis I (3v1)
21 Coinn Coizz Caizs Conz Coizs Oz Coiozr Coizz Couns I2v1)
T32 Cso11 Cs222 Cs233 Cs212 C3223 Ca31 Czoo1 Cza32 Claois I (302)
13 Cisin Cizzz Cigzs Ciziz Cigzs Ciszst Cisar Cigzz Chsig 551073%1)

There are 3* = 81 unknown coefficients C’ijkl. We found one of them in our simple
experiment in which we found

To1 = Tiz = POy = M(28(1U2))-

Hence in this special case 6'1212 = 2/.

40Thus we are not allowing viscous stress to be a function of the rigid body rotation rate. While it seems
intuitive that rigid body rotation should not induce viscous stress, Batchelor mentions that there is no
rigorous proof for this; hence, we describe our statement as a postulate.
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Now we could do eighty-one separate experiments, or we could take advantage of the
assumption that the fluid has no directional dependency. We will take the following approach.
Observer A conducts an experiment to measure the stress tensor in reference frame A. The
observer begins with the “viscosity matrix” C’ijkl. The experiment is conducted by varying
strain rate and measuring stress. With complete knowledge A feels confident this knowledge
could be used to predict the stress in rotated frame A'.

Consider observer A" who is oriented to frame A’. Oblivious to observer A, A" conducts
the same experiment to measure what for her or him is 7;; The value that A’ measures must
be the same that A predicts in order for the system to be isotropic. This places restrictions
on the viscosity matrix C’ijkl. We intend to show that if the fluid is isotropic only two of the
eighty-one coefficients are distinct and non-zero.

We first use symmetry properties of the stress and strain rate tensor to reduce to thirty-six
unknown coefficients. We note that in actuality there are only six independent components
of stress and six independent components of deformation since both are symmetric tensors.
Consequently, we can write our linear stress-strain rate relation as

11 Citn Cuze Cusy Cinz +Cuai Crigz +Cigz Cugt + Chas davry
T22 Ca11 Ca2e Corsz Cogiz + Cozo1 Cozos + Coaza Caogi + Caois I(2v2)
733 | _ | Css11 Cssaz Csszz Cszio +Cszor Cssaz + Cszza szt + Cais I(3v3)
Ti2 Ci2ir Ciaze Ciazz Ciziz + Cioa1 Cizez + Ciazz Chogn + Chais I(1v2)
23 Cosini Chzzz Cagzs Chziz + Cogar Casaz + Cosza Cogsar + Casig I (2v3)
731 Cs111 C3122 Cs1zz3 Cs1i2 + Cs121 Cs123 + C3132 Cs131 + Cs113 a(gv(li 52)

Now adopting Whitaker’s notation for simplification, we define the above matrix of C’s as
a new matrix of C’s. Here, now C itself is not a tensor, while C is a tensor. We take
equivalently then

11 Cn Ci Ci3 Cy Ci5 Cis 5’(1?11)

T22 Cy O Oy Co Cos Oy 5’(2?12)

733 | _ C31 Csp Csz O3y Cs5 Csg 0(3213) (1 753)
T12 Cn Cp Ci Cy Ci Oy a(1 V2) ' '

T23 Cs1 Csa Csz Csy Cyxs Cse 5’(203)

731 Cs1 Cs2 Cez Cos Cos Ces 5’(3?11)

Next, recalling that for tensorial quantities

7 = Ol Th, (1.754)

v

8&-1);) = £ki£lj8(kvl), (1755)

let us subject our fluid to a battery of rotations and see what can be concluded by enforcing
material indifference.

e 180° rotation about x3 axis

For this rotation, sketched in Figure [.28 we have direction cosines
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A

M Ty

Figure 1.28: Rotation of 180° about x3 axis.

bp=-1 Llip=0 /ti3=0
Kki = 621 - O 622 - —1 623 == O . (1756)
63120 63220 633:1

Applying the transformation rules to each term in the shear stress tensor, we get

, 2
1 = lalntg = (—1)°11 = 71,

( (1.757)
Too = LlraliaTh = ( ( )
Ty = LlrslisTio = ( ( )
Ty = lalpmy = (1)1 = T2, (1.760)
Toy = lralisTi = (—1)(1)7o3 = —7o3, ( )

( (1.762)

T = Ul = (1)(=1)731 = —731.

Likewise we find that

vy = duvy, (1.763)
Dothy = Dva), (1.764)
(V3 = Ova), (1.765)
vy = Ouvy), (1.766)
gty = —Ovs), (1.767)
(V) —0(301) (1.768)

Now our observer A’ who is in the rotated system would say, for instance that
T{l = Cuaglvi) —+ 0128221];) —+ Clgaggvé)CM&Zl’Ué) + CmaEQUé)) + 0168231)1), (1769)
while our observer A who used tensor algebra to predict 71, would say

T{l = Cnaél’ui) + 0128221);) + 0138E3Ué)0148211)é) - 0158E2Ué) — 016823’01), (1770)
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Since we want both predictions to be the same, we must require that
Ci5 = Ci = 0. (1.771)

In matrix form, our observer A would predict for the rotated frame that

T Cii Cip Cig Cuu Cis Cig A
T Ca1 Oy Oy Cos Oy Oy 0;21);)
Tis _ Cs1 Csp O3z Oy Cs5 Csg 0(3%) (1.772)
P Cun Cyp Ci3 Cu Cys Cu vy | :
—Ta3 Cs1 Csy Csg Csy Css Csg —8§2 vg)
—T3 Ce1 Cs2 Csz Ces Cos Cep —9(3v1

To retain material difference between the predictions of our two observers, we thus
require that C15 = C1g = Cos = Cgs = U35 = Uz = Uys = Cys = C51 = Cyy = O3 =
Csy = Cg = Cgo = Cg3 = Cgy = 0. This eliminates 16 coefficients and gives our
viscosity matrix the form

Cn Cip Ciz Cuy
Cy Cop (s Coy
C31 Csp (s Csy
Cn Cyp Ci3 Cu 0 0
0 0 0 0 Cs5 U
0 0 0 0 Cg Ces

o O O
o O O

(1.773)

with only 20 independent coefficients.

e 180° rotation about x, axis
This rotation is sketched in Figure [I.29]

Leaving out the details of the previous section, this rotation has a set of direction

cosines of
1 0 0
li=10 -1 0 |. (1.774)
0o 0 -1
Application of this rotation leads to the conclusion that the viscosity matrix must be
of the form
Cor Cp Cy 0 0 0
0 0 0 Cu O 0 (1.775)
0 0 0 0 Cs55 O

0 0 0 0 0 Ces

with only 12 independent coefficients.
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T3

2 / Ty

Figure 1.29: Rotation of 180° about x; axis.

T3

T

Figure 1.30: Rotation of 90° about x; axis.

e 180° rotation about x5 axis

One is tempted to perform this rotation as well, but nothing new is learned from it!

e 90° rotation about x1 axis
This rotation is sketched in Figure [L30l This rotation has a set of direction cosines of
1 0
0 1

Application of this rotation leads to the conclusion that the viscosity matrix must be
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T34

)

Figure 1.31: Rotation of 90° about x3 axis.

of the form
Cyp Cp Cp 0 0 0
Co1 Oy Cy 0 0 0
Uy Cy Cxpn 0 0 0
0 0 0 Cy O 0 (1.777)
0 0 0 0 Cs5 0
0 0 0 0 0 Cgs
with only 8 independent coefficients.
e 90° rotation about x3 axis
This rotation is sketched in Figure [[.311
This rotation has a set of direction cosines of
0 1 0
0 0 1
Application of this rotation leads to the conclusion that the viscosity matrix must be
of the form
Cyp Cp Cp 0 0 0
Cp Cpp Cip 0 0 0
Cip Cpp Cip 0 0 0
0 0 0 Cy O 0 (1.779)
0 0 0 0 Cy O
0 0 0 0 0 Cu

with only 3 independent coefficients.

e 90° rotation about xo axis

We learn nothing from this rotation.
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Figure 1.32: Rotation of 45° about x3 axis.

e 45° rotation about x5 axis

This rotation is sketched in Figure [[.32l
This rotation has a set of direction cosines of
V2/2 —V/2/2 0

Gi= | Vv2/2 Vv2/2 0]. (1.780)
0 0 1

After a lot of algebra, application of this rotation lead to the conclusion that the
viscosity matrix must be of the form

Cu+ Cho Cio Cio 0 0 0
Ch2 Cu + Cio Cio 0 0 0
Cia Cia Cyu+Cp 0 0 0
0 0 0 Cy 0 0 (1'781)
0 0 0 0 Cyu O
0 0 0 0 0 Cu

with only 2 independent coefficients.

Try as we might, we cannot reduce this any further with more rotations. It can be proved

more rigorously, as shown in most books on tensor analysis, that this is the furthest reduction
that can be made. So, for an isotropic Newtonian fluid, we can expect two independent
coefficients to parameterize the relation between strain rate and viscous stress. The relation
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between stress and strain rate can be expressed in detail as

T = 0448(11)1) + Cg (8(1111) + 8(21)2) + 8(31)3)) ) (1.782)
Ty = (40202 + Cha (8(1111) + Oy + 0(31)3)) ; (1.783)
33 = (40303 + Cha (8(1111) + O(2v2) + 8(31)3)) , (1.784)
T2 = Cudavy, (1.785)
To3 = CuaOvs), (1.786)
T3 = Culguy). (1.787)

Using traditional notation, we take
o (Cyy = 2u, where p is the first coefficient of viscosity, and
e (15 = A, where )\ is the second coefficient of viscosity.

e A similar analysis in solid mechanics leads one to conclude for an isotropic material
in which the stress tensor is linearly related to the strain (rather than the strain rate)
gives rise to two independent coefficients, the elastic modulus and the shear modulus.
In solids, these both can be measured, and they are independent.

In terms of our original fourth order tensor, we can write the linear relationship 7;; =

~

C’,-jklﬁ(ivj) as

ot 2+ A A0 0 0 0 0 0\ /vy
722 A 2,& +A A 0 0 0 0 0 0 6(2212)
T33 by A 2u+XA 0 0 0 0 0 0[] dzvs
Ti2 0 0 0 2 0 0 0 0 0 O1vg)
o3 | = 0 0 0 0 20 0 0 0 0 dav3) (1.788)
T31 0 0 0 0 0 20 0 0 0 |]dzw
721 0 0 0 0 0 0 2/L 0 0 (9(2211)
T32 0 0 0 0 0 0 0 2,u 0 (9(32)2)
713 0 0 0 0 0 0 0 0 2,& 6(1213)

We note that because of the symmetry of d;v;) that the above representation is not unique in
that the following, as well as other linear combinations, is an identically equivalent statement:

T11 2+ A A A 0 000 0 O vy
To9 A 2+ A A 0 000 0 O D202)
T33 A A 2u+X 0 0 0 0 0 O J(3v3)
T12 0 0 0 g 0 0 p 0 O 91v9)
Tos | = 0 0 0 0O 0w 0 0 p O J(2v3) (1.789)
T31 0 0 0 0 0 p 0 0 u d(zvy)
721 0 0 0 1% 0 0 1% 0 O 8(21)1)
T39 0 0 0 0O po 0 0 u O 0309
T13 0 0 0 0 0 1% 0 0 1% 8(1’03)
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In shorthand Cartesian index and Gibbs notation, the viscous stress tensor is given by

Tij = 200305 + A0kvkdyj, (1.790)
T T\T
T o= 2 (Vv +2(VV ) )+A(VT-V)|. (1.791)

By performing minor algebraic manipulations, the viscous stress tensor can be cast in
a way which elucidates more of the physics of how strain rate influences stress. It is easily
verified by direct expansion that the viscous stress tensor can be written as

Op¥ 1
v A - ~ -
N mean strain rate N deviatoric strain rate
mean vis::(r)us stress deviatoric \:i,scous stress
v’ v+ (W71
T = (2u+3)\) 3V|+2u< M +2( v) —§VT~VI). (1.793)

Here it is seen that a mean strain rate, really a volumetric change, induces a mean viscous
stress, as long as A # —(2/3)p. If either A\ = —(2/3)u or Opv = 0, all viscous stress is
deviatoric. Further, for p # 0, a deviatoric strain rate induces a deviatoric viscous stress.
We can form the mean viscous stress by contracting the viscous stress tensor:

1 2

Note that the mean viscous stress is a scalar, and is thus independent of orientation; it is
directly proportional to the first invariant of the viscous stress tensor. Obviously the mean

viscous stress is zero if A = —(2/3)u. Now the total stress tensor is given by
Tij = —pdij + 2p0uvj) + AOkvroij, (1.795)
v 4+ (VyT)T
T - —p|—|—2,u< M +2( v) )+)\(VT-V)I. (1.796)

We notice the stress tensor has three components, 1) a uniform diagonal tensor with the
hydrostatic pressure, 2) a tensor which is directly proportional to the strain rate tensor, and
3) a uniform diagonal tensor which is proportional to the first invariant of the strain rate
tensor: [ E-(l) = tr (Ouvk)) = Okvy. Consequently, the stress tensor can be written as

T; = (—p + )\Ié(l)> o+ 2pdqvy (1.797)
~ — _ N——
isotropic linear in strain rate

(1.798)

Vvl + (VVT)T)
5 :

T = (—p+AI§”> |+ 2u (
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Recalling that d;; = | as well as I é(l) are invariant under a rotation of coordinate axes, we
deduce that the stress is related linearly to the strain rate. Moreover when the axes are
rotated to be aligned with the principal axes of strain rate, the stress is purely normal stress
and takes on its principal value.

Let us next consider two typical elements to aid in interpreting the relation between
viscous stress and strain rate for a general Newtonian fluid.

1.5.4.2.1 Diagonal component Consider a typical diagonal component of the viscous
stress tensor, say 7ii:

811)1 + 82’02 + 83’03

1
1= | 2u+3X) ( ) +2p | O1vy — 5(81111 + Oy 4 O3v3) | .(1.799)

3 g
\ - "
trai deviatoric strain rate
mean strain rate eviatoric s P
~ - Vv

'

mean viscous stress deviatoric viscous stress

Note that if we choose our axes to be the principal axes of the strain-rate tensor, then
these terms will appear on the diagonal of the stress tensor and there will be no off-diagonal
elements. Thus the fundamental physics of the stress-strain relationship are completely
embodied in a natural way in the above expression.

1.5.4.2.2 Off-diagonal component If we are not aligned with the principal axes, then
off-diagonal terms will be non-zero. A typical off-diagonal component of the viscous stress
tensor, say T2, has the following form:

T2 = 2/J, 8(1U2)+)\8kvk (512 y (1800)
=0

2#0(11)2), (1801)

= M(81U2+82U1). (1802)

Note this is associated with shear deformation for elements aligned with the 1 and 2 axes,
and that it is independent of the value of A\, which is only associated with the mean strain
rate.

1.5.4.3 Stokes’ assumption

It is a straightforward matter to measure u. It is not at all straightforward to measure
A.  As discussed earlier, Stokes in the mid-nineteenth century suggested to require that
the mechanical pressure (that is the average normal stress) be equal to the thermodynamic
pressure. We have seen that the consequence of this is Eq. (L466): 7; = 0. If we enforce
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this on our expression for 7;;, we get

T =0 = 200405 + AOkvi0s;, (1.803)
= 2u0;v; + 3Nk, (1.804)
2110;v; + 3N0;v;, (1.805)
= (2u+ 3X\)0;. (1.806)
Since in general 0;v; # 0, Stokes’ assumption implies that
)= —%u- (1.807)

So, a Newtonian fluid satisfying Stokes’ assumption has the following constitutive equation
for viscous stress

1
Tij = 2H (6‘@-?1]-) - gé’kvk@j), (1.808)

(. J/
~~

deviatoric strain rate
o
Vv
deviatoric viscous stress

2u<(vv +2(VV ) )—%(VT-VN). (1.809)

T =

Note that incompressible flows have 0;v; = 0; thus, A plays no role in determining the viscous
stress in such flows. For the fluid that obeys Stokes” assumption, the viscous stress is entirely
deviatoric and is induced only by a deviatoric strain rate.

1.5.4.4 Second law restrictions

Recall that in order that the constitutive equation for viscous stress be consistent with second
law of thermodynamics, that it is sufficient (but perhaps overly restrictive) to require that

1

Invoking our constitutive equation for viscous stress, and realizing that the absolute tem-
perature T' > 0, we have then that

This reduces to the sum of two squares:

We then seek restrictions on p and A such that this is true. Obviously requiring ¢ > 0 and
A > 0 guarantees satisfaction of the second law. However, Stokes’ assumption of A = —g,u
does not meet this criterion, and so we are motivated to check more carefully to see if we
actually need to be that restrictive.
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1.5.4.4.1 One dimensional systems Let us first check the criterion for a strictly one-
dimensional system. For such a system, our second law restriction reduces to

210 v 0 vy + Ao v 0101 > 0, (1.813)
(2u + X))o vy > 0, (1.814)

2U+N > 0, (1.815)

A > -2 (1.816)

Obviously if 4 > 0 and A\ = —%u, the entropy inequality is satisfied. We also could satisfy
the inequality for negative p with sufficiently large positive A.

1.5.4.4.2 Two dimensional systems Extending this to a two dimensional system is
more complicated. For such systems, expansion of our second law condition gives

2,[18(11]1)8(11]1) + 2/18(1112)8(11)2) + 2/18(21)1)8(21)1) + 2,[18(21)2)8(21]2)
—|—)\ (8(1'111) + 8(2'112)) (8(11)1) + 0(21)2)) Z 0. (1817)

Taking advantage of symmetry of the deformation tensor, we can say

2#8(11)1)0(1'[11) + 4#8(1'[12)8(1'[12) + 2#0(2'[12)8(21)2) -+ A (8(11)1) + 0(21)2)) (0(11)1) + 8(2'112)) Z 0.
(1.818)
Expanding the product and regrouping gives

(2,U + )\)8(11)1)0(11)1) + 4#0(11)2)0(11)2) + (2,U + )\)8(2’112)8(21)2) + 2)\0(11)1)0(21)2) Z 0. (1819)

In matrix form, we can write this inequality in the form known from linear algebra as a
quadratic form:

P = (0(1'111) 0(2'112) 0(1'112) ) A (2,U + )\) 0 8(2'112) 2 0. (1820)
0 0 dp )\ Oavy)

As we have discussed before, the condition that this hold for all values of the deformation
is that the symmetric part of the coefficient matrix have eigenvalues which are greater than
or equal to zero. In fact, here the coefficient matrix is purely symmetric. Let us find the
eigenvalues x of the coefficient matrix. The eigenvalues are found by evaluating the following
equation

u+A) —k A 0
A 2u+A) —k 0 = 0. (1.821)
0 0 4 — K

We get the characteristic polynomial
(4p— k) (2u+ A —K)> = X)) =0. (1.822)

CC BY-NC-ND. 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

1.5. CONSTITUTIVE EQUATIONS 137

This has roots

S (1.823)
= 2, (1.824)
— 2u+N). (1.825)

For the two-dimensional system, we see now formally that we must satisfy both

0, (1.826)

W
A —p. (1.827)

(AVARAYS

This is more restrictive than for the one-dimensional system, but we see that a fluid obeying
Stokes’ assumption A = —% 1 still satisfies this inequality.

1.5.4.4.3 Three dimensional systems For a full three dimensional variation, the en-
tropy inequality (2u0;vj) + AOpurdij)(0uvjy) > 0, when expanded, is equivalent to the fol-
lowing quadratic form

A+ 2}1, A A 0 0 0 6(1’01)
A A+ 2}1, A 0 0 0 6(2’02)
. A A A+2 0 0 0 B3v3
@ — (8(11}1) 8(21)2) 8(3113) 8(11)2) 8(21}3) 8(3111) ) 0 0 0 4# 0 0 6E1’02; 2 0
0 0 0 0 4p O d(2v3)
0 0 0 0 0 4p A1)

(1.828)
Again this must hold for arbitrary values of the deformation, so we must require that the
eigenvalues k of the interior matrix be greater than or equal to zero to satisfy the entropy
inequality. It is easy to show that the six eigenvalues for the interior matrix are

Kk = 2, (1.829)
Kk = 2u, (1.830)
k = 4pu, (1.831)
k = 4dpu, (1.832)
Kk = 4pu, (1.833)
Kk = 3X+2u. (1.834)

Two of the eigenvalues are degenerate, but this is not a particular problem. We need now
that k > 0, so the entropy inequality requires that

w > 0, (1.835)
2
A > —gh- (1.836)
Obviously a fluid which satisfies Stokes’ assumption does not violate the entropy inequality,
but it does give rise to a minimum level of satisfaction. This does not mean the fluid is

isentropic! It simply means one of the six eigenvalues is zero.
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Now using standard techniques from linear algebra for quadratic forms, the entropy
inequality can, after much effort, be manipulated into the form

2
® = 1 ((Qnvn) = Davy)” + (Bvs) = Dsv)” + (Davs) — Bavn)?)
3

+41((0avz)* + (92vs)* + (vy)*) = 0. (1.837)

2
+ ()\ + —,u) (8(1’01) + 8(21)2) + 8(31)3))2

Obviously, this is a sum of perfect squares, and holds for all values of the strain rate tensor.
It can be verified by direct expansion that this term is identical to the strong form of the
entropy inequality for viscous stress. It can further be verified by direct expansion that the
entropy inequality can also be written more compactly as

1 1 2
o = 2,Ll, (8(11))) - gakvkéw) (8(11))) - gamvméw) + ()\ + g/i) (8¢’U¢)(8j1)j) Z 0(1838)

~~ ~~ (mean strain rate)?
deviatoric strain rate deviatoric strain rate

So, we see that for a Newtonian fluid that the increase in entropy due to viscous dissipation is
attributable to two effects: deviatoric strain rate and mean strain rate. The terms involving
both are perfect squares, so as long as ¢ > 0 and A > —%u, the second law is not violated
by viscous effects.

We can also write the strong form of the entropy inequality for a Newtonian fluid
(2010v5) + AOkvrbi;)(Ovj)) = 0, in terms of the principal invariants of strain rate. Leaving
out details, which can be verified by direct expansion of all terms, we find the following form

2 2 2 2
o =2 (5 (19) - 219) + <)\ + gﬂ) (Ié(l)) >0, (1.839)

Because this is in terms of the invariants, we are assured that it is independent of the
orientation of the coordinate system.

It is, however, not obvious that this form is positive semi-definite. We can use the
definitions of the invariants of strain rate to rewrite the inequality as

1 2
In terms of the eigenvalues of the strain rate tensor, k1, k2, and k3, this becomes

1 2
d =2 (/—ﬂ% + K3+ K2 — 3 (K1 + Ko + /{3)2) + ()\ + §M) (k1 + Ko+ k3)2 >0, (1.841)

This then reduces to a positive semi-definite form:

2 2
o = glu ((l{l — H2)2 -+ (Iil - H3)2 + (HQ - I€3)2) + ()\ + g/i) (Iil + Ko + I€3)2 Z 0. (1842)
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Since the eigenvalues are invariant under rotation, this form is invariant.

We summarize by noting relations between mean and deviatoric stress and strain rates
for Newtonian fluids. The influence of each on each has been seen or is easily shown to be
as follows:

e A mean strain rate will induce a time rate of change in the mean thermodynamic stress
via traditional thermodynamic relationd"] and will induce an additional mean viscous
stress for fluids that do not obey Stokes’ assumption.

e A deviatoric strain rate will not directly induce a mean stress.
e A deviatoric strain rate will directly induce a deviatoric stress.

e A mean strain rate will induce entropy production only for a fluid that does not obey
Stokes” assumption.

e A deviatoric strain rate will always induce entropy production in a viscous fluid.

1.5.5 Equations of state

Thermodynamic equations of state provide algebraic relations between variables such as
pressure, temperature, energy, and entropy. They do not involve velocity. They are formally
valid for materials at rest. As long as the times scales of equilibration of the thermodynamic
variables are much faster than the finest time scales of fluid dynamics, it is a valid assumption
to use an ordinary equations of state. Such assumptions can be violated in very high speed
flows in which vibrational and rotational modes of oscillation become excited. They may
also be invalid in highly rarefied flows such as might occur in the upper atmosphere.

Typically, we will require two types of equations, a thermal equation of state which gives
the pressure as a function of two independent thermodynamic variables, e.g.

p=pp,T), (1.843)

and a caloric equation of state which gives the internal energy as a function of two indepen-

dent thermodynamic variables, e.g.
e=e(p,T). (1.844)

There are additional conditions regarding internal consistency of the equations of state; that
is, just any stray functional forms will not do.
We outline here a method for generating equations of state with internal consistency based
on satisfying the entropy inequality. First let us define a new thermodynamic variable, a,
the Helmholt4' free energy:
a=e—Ts. (1.845)

4le g. for an isothermal ideal gas dp/dt = RT(dp/dt) = —pRT O;v;

42ermann von Helmholtz, 1821-1894, Potsdam-born German physicist and philosopher, descendant of
William Penn, the founder of Pennsylvania, empiricist and refuter of the notion that scientific conclusions
could be drawn from philosophical ideas, graduated from medical school, wrote convincingly on the science
and physiology of music, developed theories of vortex motion as well as thermodynamics and electrodynamics.
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We can take the material time derivative of Eq. (L843) to get

da  de ds dT

=T s 1.846

at —dt ot dt (1.846)
It is shown in thermodynamics texts that there are a set of natural, “canonical,” variables
for describing a which are T" and p. That is, we take a = a(T), p). Taking the time derivative

of this form of a and using the chain rule tells us another form for da/dt:

d dr d
da _ Oa) dT" Oal dp (1.847)
. or|,dt  Op|pdt
Now we also have the energy equation and entropy inequality:
de
PE = —0i¢; — pOyv; + 73005, (1.848)
ds 4q;
¢S o (—) . 1.849
Pat = T (1.849)

Using Eq. (L846]) to eliminate de/dt in favor of da/dt in the energy equation, Eq. (L.84]),
gives a modified energy equation:

%—I-T%jtsd—T
P\ae ™ T

Next, we use Eq. (L847) to eliminate da/dt in Eq. (L850) to get

Oa| dT  Oa| dp ds ar
p(andt+apTdt+ dt+sdt> Ui = PO+ T O (1.851)
Now in this modified energy equation, we solve for p ds/dt to get
ds 1 P 1 p Oa| dT"  p Oa| dp psdTl
—:——8”-——8“- —282 P = | —V — = —_— = = . 1.852
Par = T T O O L or| o T T aplyde T )

Substituting this version of the energy conservation equation into the second law, Eq. (IL.849)),
gives
1

P 1
_Taiqi - Taﬂ)i + TTijaz"Uj -

dl'  p Oa

, dt T 90p

dp  psdl qi
LB s 5 (Z). (.
rdt T dt = 9 (T) (1.853)

p da
T oT

Rearranging and using the mass conservation relation to eliminate d;v;, we get

G P 1dp 1 p Oa| dT p Oa| dp psdl
_trtygp_ 2 __2F Py~ TSR tdtadl I il B A s .

0T~ T ( dt> T T T g Jdt T oplpdt Tdt ~ 0, (1854)
qi pdp Oa| dT Odal| dp dr
p— ZT — 17U Uy — g - — — - — — Z 5 1.
7T+ g T a0 Por|,at ol et Tt 0, (1.855)
qi 1dp 5 0a dT Ja
T8 +7'j8v]—|—pdt <p p 9l P s+an 0. (1.856)
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Now in our discussion of the strong form of the energy inequality, we have already found forms
for ¢; and 7;; for which the terms involving these phenomena are positive semi-definite. We
can guarantee the remaining two terms are consistent with the second law, and are associated
with reversible processes by requiring that

oa
2
5l (1.857)
oa
= —— . 1.
s 9T |, (1.858)
For example, if we take the non-obvious, but experimentally defensible choice for a of
T
a=c,(T"—T,) —c¢,Tln (T) + RTIn (pﬂ) : (1.859)
then we get for pressure
0 RT
p=p 22 = (—) — pRT. (1.860)
p|r p

The above equation for pressure a thermal equation of state for an ideal gas, and R is known
as the gas constant. It is the ratio of the universal gas constant and the molecular mass of

the particular gas.
Solving for entropy s, we get
T
= ¢, In (T) — Rln (ﬁ) . (1.861)
P o pO
e=a+Ts=c,(T—1T,). (1.862)

da
- ar
We call the above equation for energy a caloric equation of state for calorically perfect gas.
It is calorically perfect because the specific heat at constant volume ¢, is assumed a true
constant here. In general for ideal gases, it can be shown to be at most a function of
temperature.

S =

Then, we get for e

1.6 Boundary and interface conditions

At fluid solid interfaces, it is observed in the continuum regime that the fluid sticks to the
solid boundary, so that we can safely take the fluid and solid velocities to be identical at the
interface. This is called the no slip condition. As one approaches the molecular level, this
breaks down.

At the interface of two distinct, immiscible fluids, one requires that stress be continuous
across the interface, that the energy flux be continuous across the interface. Density need
not be continuous in the absence of mass diffusion. Were mass diffusion present, the fluids
would not be immiscible, and density would be a continuous variable. Additionally the effect
of surface tension may need to be accounted for. We shall not consider surface tension in
this course, but many texts give a complete treatment.
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1.7 Complete set of compressible Navier-Stokes equa-
tions

Here we pause once more to write a complete set of equations, the compressible Navier
-Stokes equations, written here for a fluid which satisfies Stokes’ assumption, but for which
the viscosity i (as well as thermal conductivity k) may be variable. They are given in a form
similar to that done in an earlier section.

1.7.0.1 Conservative form
1.7.0.1.1 Cartesian index form

Oop + Oi(pv;) = 0, (1.863)
do(pui) + 0j(pvjvi) = pfi—0;

+8j <2,u <8(32}2) - é(‘)kvm],)) s (1.864)
1
Oo|p|e+ ViV

1
+0; (Pvi <€ + §Ujvj>> = pvifi — 0i(pvi) + 0;(kO;T)

+0; <2,u <6(Z-vj) — %8}{0/45@') Uj) ) (1.865)
= pp,T), (1.866)
e = e(p,T), (1.867)
po= ulpT), (1.868)
ko= k(p,T). (1.869)
1.7.0.1.2 Gibbs form
%JFVT-(;)V) = 0, (1.870)

%(pV)Jr(VT-(pVVT))T = pf —Vp

(o (37 )
(e 1)

43Claude Louis Marie Henri Navier, 1785-1836, Dijon-born French civil engineer and mathematician, stud-
ied under Fourier, taught applied mechanics at Ecole des Ponts et Chaussées, replaced Cauchy| as professor
at Ecole Polytechnique, specialist in road and bridge building, did not fully understand shear stress in a fluid
and used faulty logic in arriving at his equations.

vl £ =V (pv) + VT - (EVT)
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1.7.0.2 Non-conservative form

1.7.0.2.1 Cartesian index form

1.7.0.2.2 Gibbs form

dp
dt
dv
Pat
de
Pt
p

e

I
k

We take p,

dp
dt
dv;
Pt
de
P
p

e
I
k

—pvT.v,

[ ]

> =

_pﬁivh
1
pfi — Oip + 0, <2u <8(jvi) — gﬁkvk%)) )

1
_paﬂ)i + 82(]{382T) + 2/J, (8(,1)]) — gakvkéw) 82'1]]',

p(p,T),

2

ot =5 (77 (o (T Lor )

—pVT v+ VT (kVT) + 24

<VVT + (VvvhT
2

1
3

(vt v)|> Vvl

and k to be thermodynamic properties of temperature and density. In practice,

both dependencies are often weak, especially the dependency of p and k on density. We
also assume we know the form of the external body force per unit mass f;. We also no
longer formally require the angular momentum principle, as it has been absorbed into our
constitutive equation for viscous stress. We also need not write the second law, as we can
guarantee its satisfaction as long as © > 0,k > 0.
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In summary, we have nine unknowns, p,v; (3), p, e, T, pu, and k, and nine equations,
mass, linear momenta (3), energy, thermal state, caloric state, and thermodynamic relations
for viscosity and thermal conductivity. When coupled with initial, interface, and boundary
conditions, all dependent variables can, in principle, be expressed as functions of position x;
and time ¢, and this knowledge utilized to design devices of practical importance.

1.8 Incompressible Navier-Stokes equations with con-
stant properties

If we make the assumption, which can be justified in the limit when fluid particle velocities
are small relative to the velocity of sound waves in the fluid, that density changes following
a particle are negligible (that is % — 0), the Navier-Stokes equations simplify considerably.
Note that this does not imply the density is constant everywhere in the flow. Our assump-
tion allows for stratified flows, for which the density of individual particles still can remain
constant. We shall also assume viscosity u, and thermal conductivity k are constants, though
this is not necessary.
Let us examine the mass, linear momenta, and energy equations in this limit.

1.8.1 Mass
Expanding the mass equation
0op + Oi(pv;) =0, (1.891)
we get
O0op + v;0;p +p0iv; = 0. (1.892)
d
= —0

We are assuming the first two terms in the above expression, which form dp/dt, go to zero;
hence the mass equation becomes pd;v; = 0. Since p > 0, we can say

Drvn = 0. (1.893)

So, for an incompressible fluid, the relative expansion rate for a fluid particle is zero.

1.8.2 Linear momenta

Let us first consider the viscous term:

8j 2u 8(j’Ui) - 52']‘ s (1894)

Wl

8kvk
y
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9; (u (Oyv; + 9jv3)) , (1.896)
since p is constant here (1.897)
1 (00105 + 0;0;vi) (1.898)
1% 82 8]"0]‘ +8j8j’02‘ y (1899)
=0

Everything else in the linear momenta equation is unchanged; hence we get

p@ovi + ,ovjajvi = sz — 0,p + ;L@j@jv,-. (1901)

Note that in the incompressible constant viscosity limit, the mass and linear momenta equa-
tions form a complete set of four equations in four unknowns: p,v;. We will see that in this
limit the energy equation is coupled to mass, and linear momenta, but it is only a one-way
coupling.

1.8.3 Energy

Let us also choose our material to be a liquid, for which the specific heat at constant pres-
sure, ¢, is nearly identical to the specific heat at constant volume ¢, as long as the ratio
Ta}/kr/p/c, << 1. Here ay, is the coefficient of isobaric expansion, and r is the coefficient
of isothermal compressibility. As long as the liquid is well away from the vaporization point,
this is a good assumption for most materials. We will thus take for the liquid ¢, = ¢, = c.
For an incompressible gas there are some subtleties to this analysis, involving the low Mach
number limit which makes the results not obvious. We will not address that problem in this
course; many texts do, but many also shove the problem under the rug! For a compress-
ible gas there are no such problems. For an incompressible liquid whose specific heat is a
constant, we have e = ¢T' + e,. The compressible energy equation in full generality is

de
Pt
Imposing our constitutive equations and assumption of incompressibility onto this, we get

= —poiv; — 0;q;i + T;;0;v;. (1.902)

d 1
p% (CT —+ 60) = —p 82'%' —82(—]{382T) + 2/J/ 8(Z'Uj) — g 8kvk 52']' &-vj, (1903)
=0 =0
drT
N | N~ ———
sym. sym. antisym.
)
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For incompressible flows with constant properties, the viscous dissipation function ® reduces
to

It is a scalar function and obviously positive for > 0 since it is a tensor inner product of a
tensor with itself.

1.8.4 Summary of incompressible constant property equations

The incompressible constant property equations for a liquid are summarized below in Gibbs
notation:

vi.v = 0, (1.908)
dv 9
Py = pf — Vp+ uVov, (1.909)
T
pcil—t = kV°T + . (1.910)

For an ideal gas, it turns out that we should replace c in the above equation by c¢,. The
alternative, ¢, would seem to be the proper choice, but careful analysis in the limit of low
Mach number shows this to be incorrect.

1.8.5 Limits for one-dimensional diffusion

Note for a static fluid (v; = 0), we have d/dt = 0/0t and ® = 0; hence the energy equation

can be written in a familiar form

%—f =aV*T. (1.911)

Here oo = k/(pc) is defined as the thermal diffusivity. For one dimensional cases where all
variation is in the z, direction, we get

2
o _ oL (1.912)
ot 0x3
Compare this to the momentum equation for a very specific form of the velocity field, namely,
vi(z;) = v1(x2,t). When we also have no pressure gradient and no body force, the linear
momenta principle reduces to
8’(]1 . 821]1

Here v = p/p is the momentum diffusivity. This equation has an identical form to that for
one-dimensional energy diffusion. In fact the physical mechanism governing both, random

molecular collisions, is the same.
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1.9 Dimensionless compressible Navier-Stokes equations

Here we discuss how to scale the Navier-Stokes equations into a set of dimensionless equa-
tions. Panton gives a general background for scaling. White’s Viscous Flow has a detailed
discussion of the dimensionless form of the Navier-Stokes equations.

Consider the Navier-Stokes equations for a calorically perfect ideal gas which has Newto-
nian behavior, satisfies Stokes’ assumption, and has constant viscosity, thermal conductivity,
and specific heat:

Oop + 0i(pv;) = 0, (1.914)
9o(pvi) + 9j(pvjvi) = pfi—0;
+Naj (2 (60% - %&gvkéﬁ)) y (1.915)

0, (p (e + %vjvj)> + 0; (pvi (e + %vjvj)> = pvifi — 0i(pv;) + k0;0;,T

+ud; (2 <8(ﬂ)j) - %&cvk&j) ’Uj) , (1.916)
= pRT, (1.917)
e = T +e. (1.918)

Here R is the gas constant for the particular gas we are considering, which is the ratio of the
universal gas constant R and the gas’s molecular mass M: R = R/ M. Also é is a constant.

Now solutions to the above equations, which may be of the form, for example, of
p(x1, x9, 3, t), are necessarily parameterized by the constants from constitutive laws such as
Co, R, p, k, f;, in addition to parameters from initial and boundary conditions. That is our
solutions will really be of the form

p(x17x27x37t;cv7R7/~l’7k7fi7'")’ (1919)

It is desirable for many reasons to reduce the number of parametric dependencies of these
solutions. Some of these reasons include

e identification of groups of terms that truly govern the features of the flow,
e efficiency of presentation of results, and
e cfficiency of design of experiments.

The Navier-Stokes equations (and nearly all sets of physically motivated equations) can be
reduced in complexity by considering scaled versions of the same equations.

For a given problem, the proper scales are non-unique, though some choices will be more
helpful than others. One generally uses the following rules of thumb in choosing scales:

e reduce variables so that their scaled value is near unity,
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Figure 1.33: Figure of known flow from infinity approaching body with characteristic length
L.

e demonstrate that certain physical mechanisms may be negligible relative to other phys-
ical mechanisms, and

e simplify initial and boundary conditions.

In forming dimensionless equations, one must usually look for
e characteristic length scale L, and

e characteristic time scale t..

Often an ambient velocity or sound speed exists which can be used to form either a length
or time scale, for example

e given v,, L — t. = UL

)
e given v,,t. — L = v,t..

If for example our physical problem involves the flow over a body of length L (and whose
other dimensions are of the same order as L), and free-stream conditions are known to
be p = po, v;i = (v,,0,0)7, p = p,, as sketched in Figure [[L33] Knowledge of free-stream
pressure and density fixes all other free-stream thermodynamic variables, e.g. e, T, via the
thermodynamic relations. For this problem, let the * subscript represent a dimensionless
variable. Define the following scaled dependent variables:

% oR 0
p=L =2 =Y =Pl o =P (1.920)
Po Do Vo Do Do
Define the following scaled independent variables:
ZT; Vo
“i = —, t, = —t. 1.921
i = 7 7 (1.921)
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With these definitions, the operators must also be scaled, that is,
_ 0 _dt. 9 v 0 _ v,
ot dtot, Lot. L
L
Oso = — 0.
Vo
o= 019 1,5,
0yi = LO;. (1.922)
1.9.1 Mass
Let us make these substitutions into the mass equation:
0op + Oi(pv;) = 0, (1.923)
o 1
F0uolpop:) + T0ui(popevav) = 0, (1.924)
B (o + Dupiv)) = 0, (1.925)
Owops + O0si(psvsi) = 0. (1.926)

The mass equation is unchanged in form when we transform to a dimensionless version.

1.9.2 Linear momenta

We have a similar analysis for the linear momenta equation.

9o(pvy)
+aj(ﬂ“j“z’) = pfi—0Oip

1
—l—,uﬁj <2 (0(]1),) — gak'l}kaﬂ)) ,
1

1
+z&k) (/)o/)*UoU*onU*i) = pop*fi - Za*i(pop*)

%a*o (povop* 'U*i)

(1.927)

2 1
+%8*j (z (8(*]'1)0’0*@') — B—La*kvov*kéji)) y (1928)

2
p(fo Dso(Pivsi)
2
Pol, Po
"—T&kj(p*v*jv*i) = pop*fi_ f&kl(p*)
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o 1
fZL Do
Oro(Pxsi) + Ouj(pevajVsi) = 2 P ?5*2'(29*)
2 1
+W%3*j (8(*]-1;*,-) - ga*kv*kéji> : (1.930)

With this scaling, we have generated three distinct dimensionless groups of terms which
drive the linear momenta equation:

f ZL Po %
) ) and .
vg PoV2 PoVo L

(1.931)

These groups are closely related to the following groups of terms, which have the associated
interpretations indicated:

e Froude number Fri With the body force per unit mass f; = ¢gg;, where g > 0 is the
gravitational acceleration magnitude and ¢; is a unit vector pointing in the direction
of gravitational acceleration,

v2 flow kinetic energy

Fri= 2 = — - . (1.932)
g gravitational potential energy

o Mach number MO With the Mach number M, defined as the ratio of the ambient
velocity to the ambient sound speed, and recalling that for a calorically perfect ideal
gas that the square of the ambient sound speed, a2 is a? = 7%2’ where ~ is the ratio of

specific heats v = 2 = (1 + R}/c,), we have

A = vy _ v? _ PoV2 _ v? _ flow kinetic energy (1.933)
a2 7*;’—2 Ypo  YRT, thermal energy '
Here we have taken T, = p,/po/R.
e Reynolds number Re: We have
o OL o 2 d 1
Re = PoVoL _ povy _ dynamic pressure (1.934)

1 P viscous stress

44William Froude, 1810-1879, English engineer and naval architect, Oxford educated.

43Ernst Mach|, 1838-1926, Viennese physicist and philosopher who worked in optics, mechanics, and wave
dynamics, received doctorate at University of Vienna and taught mathematics at University of Graz and
physics at Charles University of Prague, developed fundamental ideas of inertia which influenced Einstein.
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With these definitions, we get
1. 11
a*o(p*v*i) _'_ a*] (/)*U*gv*z) - mgzp* - ;ﬁg&*z(p*)
2 1

The relative magnitudes of F'r, M,, and Re play a crucial role in determining which physical
mechanisms are most influential in changing the fluid’s linear momenta.

1.9.3 Energy

The analysis is of the exact same form, but more tedious, for the energy equation.

80 (p <€ + %%’%’)) + & (p'UZ (6 + %vjvj)) = k@,@,T — Oz(pvl)
1
+u8l (2 (8(,1)]) — §0kvk5,j) Uj)

+pui fi, (1.936)

Vo Do 1
fa*o (pop* (p Ex + 2 Ov*jv*j))

1 Do 1 k Po
+Z&-* <pop*vovi* <p ex + 2000*]11*3)) = LQ&H&MPOR .
1
_za*i(pop*vov*i>
2 1
"‘%8*@ (z (a(*ivov*j) - ga*kvov*kéij) Uov*j)
+PoPxVoVsi [ (1.937)

PoVo Do Lyv?
—Oso | s | €4 + =204V
e o ()

Polo Do Lyvs k po 1
+ I EO*Z (p*'l}*z (6* + 5@'[1@1},@)) = L2 po a*za*zT

- Z% a*z (P* U*i)

2 v? 1
a Oa*z ((0(*,1)*]) - ga*kv*k52j> U*j)

+povofip*v*i, (1.938)

1 yv?
a*o (p* <6* + §7p U*]U*9)>
Po
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1 yv? k
+0.i (p*'U*z’ (6* + 5@”%”%)) = LRpyv, 04iO0si T

2uv? L 1 1
L
i (1.939)

Po

Now examining the dimensionless groups, we see that

k k 1 k 1 1
] = F __ 7 _ (1.940)
LRpov0 cp R Lpovo UCp Cp — Cp poUoL  Pry —1Re
Here we have a new dimensionless group, the Prandt{ number, Pr, where
Pr = pep % _ momentum' diff'us'ivity _v (1.941)
k Py energy diffusivity o
We also see that
fil gLy w3 gL, U ;
Po Po 2 9= —53i5 (1.942)
Po ,}/Po ,}/Po Yo F
2
TY%
i YM?2, (1.943)
Po
2uv? L1 21 yv? 1 9
= — = =2—~yM:. 1.944
L% pove b2 povoLybe Re o ( )
So, the dimensionless energy equation becomes
[
8*0 P* €« + §7MO U*jv*j
1 v 11
+a*z (P*U*z (6* + §7M5U*jv*j>> - 1 P’I“R a*za*zT
a*z (p*v*z)
MO 1
R —%0,i ((a(*zv*]) - gﬁ*kv*kéw) ’U*j)
M
g Jip Ui (1.945)

49Ludwig Prandtl, 1875-1953, German mechanician and father of aerodynamics, primarily worked at Uni-
versity of Gottingen, discoverer of the boundary layer, pioneer of dirigibles, and advocate of monoplanes.
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1.9.4 Thermal state equation

PoPx = POP*R ( Po ) T*, (1946)
P
ps = piT. (1.947)

1.9.5 Caloric state equation

pO pO N
—ey = Gy T, + e, 1.948
Po (poR) ( )

Co Pof

. = =1, , 1.949
e = + ) ( )

1 Pof
e, = —1T,.+ 1.950
Y= 1 Po ( )

unimportant

For completeness, we retain the term ’;%é. It actually plays no role in this non-reactive flow
since energy only enters via its derivatives. When flows with chemical reactions are modeled,
this term may be important.

1.9.6 Upstream conditions

Scaling the upstream conditions, we get
pe =1, Py =1, v, = (1,0,0)7. (1.951)
With this we then get secondary relationships

1 o€
7_1 Do

(1.952)

1.9.7 Reduction in parameters

We lastly note that our original system had the following ten independent parameters:
Pos Pos Cu, R7 L7 Vo, M, ]{7, fi7 é (1953)

Our scaled system however has only siz independent parameters:

A~

Re, Pr, M,, Fr, ~, Pot (1.954)

o

Note we have lost no information, nor made any approximations, and we have a system with
fewer dependencies.
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1.10 First integrals of linear momentum

Under special circumstances, we can integrate the linear momentum principle to obtain a
simplified equation. We will consider two cases here, what is known as Bernoulli’$* equation
and Crocco’s™ equation. In a later chapter on rotational flows, we will also consider the
Helmholtz equation and Kelvin’s theorem, which are also first integrals in special cases.

1.10.1 Bernoulli’s equation

What we commonly call Bernoulli’s equation is really a first integral of the linear momenta
principle. Under different assumptions, we can get different flavors of Bernoulli’s equation.
A first integral of the linear momenta principle exists under the following conditions:

e viscous stresses are negligible relative to other terms, 7;; ~ 0,
e the fluid is barotropic, p = p(p) or p = p(p).

e body forces are conservative, so we can write f; = —0;¢, where ¢ is a known potential
function, and

e cither

— the flow is irrotational, wy = €;;0;v; = 0, or
— the flow is steady, d, = 0.

First consider a version of the general linear momenta equation in non-conservative form,

Eq. (I480) scaled by p:
1 1
Oov; + v;05v; = _; ip+ fi + ;ajTji- (1.955)

Now use our vector identity, Eq. (LITS), to rewrite the advective term, and impose our
assumptions above to arrive at

1 1 ~
Dovi + 0; <§Uﬂ’j) — CijkUjWrk = _;aip — ;0. (1.956)

Now let us define, just for this particular analysis, a new function Y. We will take T to
be a function of pressure p, and thus implicitly, a function of x; and ¢t. For the barotropic
fluid, we define T as

p(x4,t) N
T(p(est) = / 4 (1.957)
D

. p)

4"Daniel Bernoulli, 1700-1782, Dutch-born Swiss mathematician of the prolific and mathematical Bernoulli
family, son of .Johann Bernoulli, studied at Heidelberg, Strasbourg, and Basel, receiving M.D. degree, served
in St. Petersburg and lectured at the University of Basel, put forth his fluid mechanical principle in the 1738
Hydrodynamica, in competition with his father’s 1738 Hydraulica.

48Luigi Crocco, 1909-1986, Sicilian-born, Italian applied mathematician and theoretical aerodynamicist
and rocket engineer, taught at University of Rome, Princeton, and Paris.
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Note that in the special case of incompressible flow that T = p/p. Recalling Leibniz’s rule,

d [o=b of da
— = — 1.
il Jwo Jéza@> W w5 000),0) % (at), ), (1.958)
we let 0/0z; play the role of d/dt to get
p(x,t) A p(z4,t)
0 T:i/ dp ___ L o 1 ap°+/ 0 < i )dﬁ. (1.959)
Ox; Ox; J,, p(d)  pp(z:, ))aﬁﬂz p(Po) O Po dz; \ p(p)

=0 =0
As p, is constant, and the integrand has no explicit dependency on x;, we get

OT 1 dp

S — 1.960
o, ool 1) O, (1.960)

So, our linear momenta principle reduces to
8 U + 8 ( Uj’U]) — € jEVjWE = —8ZT - 8Z<ZA> (1961)

Consider now some special cases:

1.10.1.1 Irrotational case

If the fluid is irrotational, we have wy = €10v,, = 0. Consequently, we can write the
velocity vector as the gradient of a potential function ¢, known as the velocity potential:

Om® = Upy. (1.962)
Note that if the velocity takes this form, then the vorticity is
Wi = €kmAIOm . (1.963)

Since €g,, is anti-symmetric and 0,0, is symmetric, their tensor inner product must be zero;
hence, such a flow is irrotational: wp = €4,,0,0,,¢ = 0. So, the linear momenta principle,

Eq. (I96T), reduces to

0.00+0,(50,0000)) = -aT -0 (1.964)
,(o¢+ (0;9)( j¢>+T+¢3) = 0, (1.965)
0o + = (m)( 0;0)+T+¢ = f(t). (1.966)

Here f(t) is an arbitrary function of time, which can be chosen to match conditions in a
given problem.
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1.10.1.2 Steady case

1.10.1.2.1 Streamline integration Here we take 9, = 0, but wy # 0. Rearranging the
steady version of the linear momenta equation, Eq. (IL961]), we get

1 o

0; <§Uﬂ/j) + 0T+ 090 = €pvjwy, (1.967)
1 .
&- (ivjvj + T + ¢) = € kU;WE. (1968)
Taking the inner product of both sides with v;, we get
1 .
vi&- (ivjvj + T + ¢) = Vi€ V;We, (1969)
= € kUV; W, (1970)
=0

= 0. (1.971)

The term on the right hand side is zero because it is the tensor inner product of a symmetric
and anti-symmetric tensor.

For a local coordinate system which has component s aligned with the velocity vector v;,
and the other two directions n, and b, mutually orthogonal, we have v; = (v, 0,0)T. Our
linear momenta principle then reduces to

Al
(vs,0,0) | On]] | =0. (1.972)
O]
Forming this dot product yields
0 (1 ~
For vy # 0, we get that
1 .
5030+ T+¢=C(n,b). (1.974)

On a particular streamline, the function C'(n,b) will be a constant.

1.10.1.2.2 Lamb surfaces We can extend the idea of integration along a streamline to
describe what are known as Lamb surface@ by again considering the steady, inviscid linear
momentum principle with conservative body forces, Eq. (L968)):

1 R
0; <§vjvj + 7T+ <Z>) = €ijkVjWh- (1.975)

49Sir Horace Lamb), 1849-1934, English fluid mechanician, first studied at Owens College Manchester fol-
lowed by mathematics at Cambridge, taught at Adelaide, Australia, then returned to the University of
Manchester, prolific writer of textbooks.
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Now taking the quantity B to be
1 .
B= 50U+ T+ ¢, (1.976)
the linear momentum principle, Eq. (L968), becomes
&B = €jkV;Wk (1977)

Now the vector €;;,v;wy is orthogonal to both velocity v; and vorticity wy because of the
nature of the cross product. Also the vector 9;B is orthogonal to a surface on which B
is constant. Consequently, the surface on which B is constant must be tangent to both
the velocity and vorticity vectors. Surfaces of constant B thus are composed of families of
streamlines on which the Bernoulli constant has the same value. In addition they contain
families of vortex lines. These are the Lamb surfaces of the flow, named after Sir Horace
Lamb, the British fluid mechanician of the late 19th and early 20th century.

1.10.1.3 Irrotational, steady, incompressible case

In this case, we recover the form most commonly used (and misused) of Bernoulli’s equation,
namely,
1 .

5 Ui +T+o¢=C. (1.978)
The constant is truly constant throughout the flow field. With T = p/p here and quS = g,z
(with g, > 0, and rising z corresponding to rising distance from the earth’s surface, we get
f = —V¢ = —g.k) for a constant gravitational field, and v the magnitude of the velocity
vector, we get

1
St + % + g2 =C. (1.979)

1.10.2 Crocco’s theorem

It is common, especially in texts on compressible flow, to present what is known as Crocco’s
theorem. The many different versions presented in many standard texts are non-uniform and
often of unclear validity. Its utility is confined mainly to providing an alternative way of
expressing the linear momentum principle which provides some insight into the factors which
influence fluid motion. In special cases, it can be integrated to form a more useful relation-
ship, similar to Bernoulli’s equation, between fundamental fluid variables. The heredity of
this theorem is not always clear, though, as we shall see it is nothing more than a combina-
tion of the linear momentum principle coupled with some definitions from thermodynamics.
Its derivation is often confined to inviscid flows. Here we will first present a result valid
for general viscous flows for the evolution of stagnation enthalpy, which is closely related to
Crocco’s theorem. Next we will show how one of the restrictions can be relaxed so as to
obtain what we call the extended Crocco’s theorem. We then show how this reduces to a
form which is similar to a form presented in many texts.
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1.10.2.1 Stagnation enthalpy variation

First again consider the general linear momenta equation, Eq. (L.955]):
1 1
Oov; + vj0jv; = —=0ip + fi + —=0;Tj;. (1.980)
p p

Now, as before in the development of Bernoulli’s equation, use our vector identity, Eq. (LI7S),
to rewrite the advective term, but retain the viscous terms to get

1 1 1
60%- + 0, (521]'1)]') — Eijkvjwk = —;Qp + fz + ;8]-7‘]-2-. (1981)
Taking the dot product with v;, and rearranging, we get

1 1 1 1
80 (5’02'1)@') + ’Uiai (ivjvj) = Gijkvivj WE — —Uﬁip + Uifi —+ _UiﬁjTji- (1982)
N—— p P

Again, since €;;;, is anti-symmetric and v;v; is symmetric, their tensor inner product is zero,
so we get

2 2
Now recall the Gibbs relation from thermodynamics, Eq. (L541):

1 1 1 1
80 (—’Uﬂ)i) + ’Uiai (—’U]'Uj) = —;Uiaip + Uifi + ;UiajTji. (1983)

p
T ds = de — 2 dp. (1.984)

Also recall the definition of enthalpy A, Eq. (L53T):

h=e+L. (1.985)

p

Differentiating the equation for enthalpy, we recover Eq. (L534):
1 p
dh = de + = dp— L dp. (1.986)
p p
Eliminating de in favor of dh in the Gibbs equation gives
1
T ds = dh — — dp. (1.987)
)

If we choose to apply this relation to the motion following a fluid particle, we can say then

that
ds dh ldp

- 1.
dt — dt  pdt (1.988)
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Expanding, we get

1
T(&oS -+ ’UiaiS) = 80}7, + ’Ulalh — ;(80]9 -+ vlalp) (1989)
Rearranging, we get
1 1
T(&)S + ’UiaiS) — (&)h + ’Ulﬁlh) + ;80]) = —;viaip. (1990)

We then use the above identity to eliminate the pressure gradient term from the linear
momentum equation in favor of enthalpy, entropy, and unsteady pressure terms:

1 1 1 1
80 (5’02"02') +’UZ'82' (ivjvj) = T(803+vi8is) — (80h+vlalh) + ;&)p—i-vifi + ;UiﬁjTji- (1991)

Rearranging slightly, noting that v;v; = v;v;, and assuming the body force is conservative so
that f; = —0;¢, we get

1 A 1 A 1 1
0, <h + SUils + gb) + v;0; (h + Ui + gb) =T (0,8 + v;0;8) + ;&,p + ;'UiajTji. (1.992)

Note that here we have made the common assumption that the body force potential ¢ is
independent of time, which allows us to absorb it within the time derivative. If we define,
as is common, the total enthalpy h, as

1 ~
ho =h+ ijvj + @, (1.993)
we can then state
1 1

80h0 -+ ’Uiaiho =T (808 + ’02'82'8) + ;80]9 + ;UiﬁjTjia (1994)

dh, ds 10p 1 , T N\T

S Al Wt ST A . 1.

7 dt+p8t +pv (V"-7) (1.995)

We can use the first law of thermodynamics written in terms of entropy, Eq. (L543),
plds/dt) = —(1/T)0,q; + (1/T)7;;0;v4, to eliminate the entropy derivative in favor of those
terms which generate entropy to arrive at

dh,
P

= 8i(n-jvj — qi) + 80]). (1996)

Thus, we see that the total enthalpy of a fluid particle is influenced by energy and momentum
diffusion as well as an unsteady pressure field.
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1.10.2.2 Extended Crocco’s theorem

With a slight modification of the preceding analysis, we can arrive at the extended Crocco’s
theorem. Begin once more with an earlier version of the linear momenta principle:

1 1 1
80%- + 0, (§Ujvj) — Eijkvjwk = —;Qp + fz + ;aj’Tji. (1997)
Now assume we have a functional representation of enthalpy in the form
h = h(s,p). (1.998)
Then we get
Oh Ooh
dh = —| ds+ —| dp. 1.999
5s | % T ol ¥ (1.999)
We also thus deduce from the Gibbs relation dh = T'ds + (1/p)dp that
Oh oh 1
—| = — =-. 1.1000
s |, ’ opl, »p ( )

Now, since we have h = h(s, p), we can take its derivative with respect to each and all of the
coordinate directions to obtain

Ooh  Oh| 0s Oh| Op
= — — . 1.1001
8@- 0s P 8:61 8]) s 8:61 ( )
. oh oh
o \ 5 o (1.1002)
Substituting known values for the thermodynamic derivatives, we get
1

We can use this to eliminate directly the pressure gradient term from the linear momentum
equation to obtain then

1 1
8ovi -+ 82 <§Ujvj) — eijkvjwk = TaZS — 82}1, + fl -+ ;@m. (11004)

Rearranging slightly, and again assuming the body force is conservative so that f; = —8@,
we get the extended Crocco’s theorem:

1 A 1
80’02' —+ 8Z <h + §’UjUj —+ ¢) = T@Zs -+ Eijkvjwk -+ ;8]'7')'2'. (11005)

Again, employing the total enthalpy, h, = h + %Ujvj + ngﬁ, we write the extended Crocco’s
theorem as

1
801),- + Q-ho = T@,s + €ijkVjWE + —aj’Tji. (11006)
P
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1.10.2.3 Traditional Crocco’s theorem

For a steady, inviscid flow, the extended Crocco’s theorem reduces to what is usually called
Crocco’s theorem:

Oiho = TaZS + €ijk VW, (11007)
Vh, = TVs+vXxXw. (1.1008)

If the flow is further required to be homeoentropic, we get
Oiho = €jjEVjW- (11009)

Similar to Lamb surfaces, we find that surfaces on which h, is constant are parallel to both
the velocity and vorticity vector fields. Taking the dot product with v;, we get

Ui@-ho = Vi€ pV;We, (]_]_0]_0)
= € kU VW, (11011)
_— (1.1012)

Integrating this along a streamline, as for Bernoulli’s equation, we find

he = C(n,b), (1.1013)

h+%vjvj+gz§ = C(n,b), (1.1014)

so we see that the stagnation enthalpy is constant along a streamline and varies from stream-
line to streamline. If the flow is steady, homeoentropic, and irrotational, the total enthalpy
will be constant throughout the flow-field:

1 ~
h + 5 Ui +o=C. (1.1015)
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Chapter 2

Vortex dynamics

see Panton, Chapter 13,
see Yih, Chapter 2.

In this chapter we will consider in detail the kinematics and dynamics of rotating fluids,
sometimes called vortex dynamics. The two most common quantities which are used to
characterize rotating fluids are

e the vorticity vector w =V x v, and
e the circulation I' = §, v’ - dr.

Both will be important in this chapter.

Although it is entirely possible to use Cartesian index notation to describe a rotating
fluid, some of the ideas are better conveyed in a non-Cartesian system, such as the cylindrical
coordinate system. For that reason, and for the sake of giving the student more experience
with the other common notation, the Gibbs notation will often be used in the chapter.

2.1 Transformations to cylindrical coordinates

The rotation of a fluid about an axis induces an acceleration in that a fluid particle’s velocity
vector is certainly changing with respect to time. Such a motion is most easily described
with a set of cylindrical coordinates. The transformation and inverse transformation to and
from cylindrical (r,0, 2) coordinates to Cartesian (x,y, z) is given by the familiar

=22+ 42 (2.1)

fan~! (9> , (2.2)

i
z = 27 Z=2z. (23>

r = rcoséb,

r
y = rsind, 0

Most of the basic distinctions between the two systems can be understood by considering two-
dimensional geometries. The representation of an arbitrary point in both two-dimensional

163



164 CHAPTER 2. VORTEX DYNAMICS

Figure 2.1: Representation of a point in Cartesian and cylindrical coordinates along with
unit vectors for both systems.

(z,y) Cartesian and two-dimensional (r,#) cylindrical coordinate systems along with the
unit basis vectors for both systems, i, j, and e,, ey, is sketched in Figure 2.1

2.1.1 Centripetal and Coriolis acceleration

The fact that a point in motion is accompanied by changes in the basis vectors with respect
to time in the cylindrical representation, but not for Cartesian basis vectors, accounts for
the most striking differences in the formulations of the governing equations, namely the
appearance of

e centripetal acceleration, and
e Coriolid] acceleration

in the cylindrical representation.
Consider the representations of the velocity vector v in both coordinate systems:

v = wui+ vj, or (2.4)

A% Vr€y + Vp€y.

Now the unsteady (as opposed to the convective) part of the acceleration vector of a particle
is simply the partial derivative of the velocity vector with respect to time. Now formally, we
must allow for variations of the unit basis vectors as well as the components themselves so

Gaspard Gustave de Coriolis, 1792-1843, Paris-born mathematician, taught with Navier, introduced the
terms “work” and “kinetic energy” with modern scientific meaning, wrote on the mathematical theory of
billiards.
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sinB 1
e/ﬂ I
- sin® j e } cos 0 j
0 \

cosB 1

Figure 2.2: Geometrical representation of cylindrical unit vectors in terms of Cartesian unit
vectors.

that
ov ou, oi Ov, dj
— = —itu — +=j+v =, (2.6)
ot ot \?ﬁ/ ot \?105_/
ov.  Ovu de, Ouvy deg
R A A T 27)

Now the time derivatives of the Cartesian basis vectors is zero, as they are defined not to
change with the position of the particle. Hence for a Cartesian representation, we have for
the unsteady component of acceleration the familiar:

ov aui N ov,
ot ot ot
However the time derivative of the cylindrical basis vectors does change with time for

particles in motion! To see this, let us first relate e, and ey to i and j. From the sketch of
Figure 2.2 it is clear that

(2.8)

e, = cosfi+ sinfj, (2.9)
eg = —sinbi—+ cosbj. (2.10)

This is a linear system of equations. We can use Cramer’s rule to invert to find

i = cosfe, — sinfey, (2.11)
j = sinfe, + cosfey. (2.12)
Now, examining time derivatives of the unit vectors, we see that
Oe, .00, 00,
5 —sm@al%—cosé’at], (2.13)
00
= — 2.14
ot €9, ( )
and
aeg 06 . . 00 .
e —cos@al—smea‘], (2.15)
00
= ——e,. 2.1
ot° (2.16)
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Y dt = ds

Figure 2.3: Sketch of relation of differential distance ds to velocity in angular direction vy.

so there is a formal variation of the unit vectors with respect to time as long as the angular
velocity % # 0. So the acceleration vector is

ov Oy 00 vy 00

ot T o o TS T g T Vg e (217)
~ (Ov. 00 dvg 00
= (81& ”95)“(%”%) (2.18)

Now from basic geometry, as sketched in Figure 2.3 we have

ds = rdb, (2.19)
vedt = 1 db, (2.20)

Vo 89

— = —. 2.21

r ot (221)

Consequently, we can write the unsteady component of acceleration as

a a r 2 a T
8—:: 81; _ % e+ %+ Ul | e, (2.22)
< N
centripetal Coriolis

Two, apparently new, accelerations have appeared as a consequence of the transformation:
centripetal acceleration, é, directed towards the center, and Coriolis acceleration, ¢,
directed in the direction of increasing #. These terms do not have explicit dependency on
time derivatives of velocity. And yet when the equations are constructed in this coordinate
system, they represent real accelerations, and are consequences of forces. As can be seen
by considering the general theory of non-orthogonal coordinate transformations, terms like
the centripetal and Coriolis acceleration are associated with the Christoffel symbols of the

transformation.
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Such terms perhaps contributed to the development of Einstein’s theory of general rel-
ativity as well. Refusing to accept that our typical expression of a body force, mg, was
fundamental, Einstein instead postulated that it was a term which was a relic of a coordinate
transformation. He held that we in fact exist in a more complex geometry than classically
considered. He constructed his theory of general relativity such that no gravitational force
exists, but when coordinate transformations are employed to give us a classical view of the
non-relativistic universe, the term mg appears in much the same way as centripetal and
Coriolis accelerations appear when we transform to cylindrical coordinates.

2.1.2 Grad and div for cylindrical systems

We can use the chain rule to develop expressions for grad and div in cylindrical coordinate
systems. Consider the Cartesian

o. 9. 0
V=it gt ek (2.23)

The chain rule gives us

0 or 0 00 0 0z 0
9 " 9uor " 0090 9r0 (224)
g oro 000 0z0
dy ~ yor  oyon  oyoE
0
0z

(2.25)
orod 000 0z0
(2.27)
Now, we have
or 2x x
- = = T _ 2.2
o N cos 0, (2.28)
or 2y Yy .
— = ——~ =2 —sinb, 2.29
Ay 2yt 4y T (2:29)
or
5 = 0, (2.30)
and
00 Y rsin 6 sin 6
- - _ = — = — 2.31
ox 22 4 y? 72 r (2:31)
00 x rcosf  cosf
e el (2.32)
00
% = 0, (2.33)
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and
0z
- = 2.34
= (2.34)
0z
— =0 2.35
ay ) ( )
0z
-~ — 1 2.
gt (2.36)
SO
0 0  sinf 0
0 0 COSQ 0
8_y = Sll’lea ” 89 (238)
0 0
— = = (2.39)
2.1.2.1 Grad

So now we are prepared to write an explicit form for V in cylindrical coordinates:

0 sinf 0 .
vV = ((30595 - %) (cos@er‘—,sm@egl
¥ i
ox
. 0 cosf 0 0
—I—<sm€§—l— . 89) (sm@er—l—cosﬁeg) 55 (2.40)
é J
Oy
0 sinfcosf  sinfcosf
_ 2 .2\ 9 _
VvV = ((cos 0 + sin 9)8r+( . + . )8)
2
+ ((— sinﬁcosHjLsinGcosG)%jL (sm 9 o 9) 82)
0
—e;, 2.41
T95° (241)
0 10 0
V = §9T+T69eg+aA 3 (2.42)

We can now write a simple expression for the convective component, v1 -V, of the acceleration
vector:

0 vy 0 0

T. — - _
Vi V=ugt e tuigs

(2.43)
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2.1.2.2 Div

The divergence is straightforward. In Cartesian coordinates we have

ou Ov Ow

T. e - -
V'.v 8x+8y+8z'

(2.44)

In cylindrical, we replace derivatives with respect to x,y, z with those with respect to r, 8, z,

SO
Ou sinfou Ov  cos@ @ ow

T .
.V = cos f— — — 0— : 2.4
Vvt g T T T T (245)
Now u, v and w transform in the same way as x, y, and z, so
u = v,co80 — vgsin, (2.46)
v = v.sinf + vgcosb, (2.47)
w o= vs. (2.48)

Substituting and taking partials, we find that

Vi.v = cosf | cos 6’% — sin 9% — sin 0 cos 9% — sin fv, — sin 9% — cos By
r 9 r r . \,—/C
+sin @ | sin 9% + cos 9% cos sin «9% + cos v, + cos 9% — sin vy
r . r r , \C,—/
81)2
) 2.4
oz (2.49)

When expanded, the terms labeled A, B, and C cancel in the above expression. Then using
the trigonometric identity sin® @ + cos? = 1, we arrive at the simple form

_ Ov. vy 1% 0vs

T
) ooz 2.
VovE gt e e (2:50)
which is often rewritten as
10 10vy  Ov:
T 0 2
v=———(rv,) + —— ) 2.51
viw r@r(rv) r09+82 (2:51)
Using the same procedure, we can show that the Laplacian operator transforms to
10 0 1 9 0?
2_ 19 (.9 — 7
Vo= (Tar) "o T o (2:52)
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2.1.3 Incompressible Navier-Stokes equations in cylindrical coor-
dinates
Leaving out some additional details of the transformations, we find that the incompressible

Navier-Stokes equations for a Newtonian fluid with constant viscosity and body force confined
to the —Z direction are

0 = 104 100 O (2.53)
%fjm%er%%?ngvg% = —%ggjtyv%z g (2.56)

Note that in the acceleration terms, strictly unsteady terms, convective terms as well as
centripetal and Coriolis terms appear. Also note that the viscous terms have additional
complications that we have not considered in detail but arise because we must transform
V?2v, and there are many non-intuitive terms which arise here when expanded in full.

2.2 Ideal rotational vortex

Let us consider the kinematics and dynamics of an ideal rotational vortex, which we define
to be a fluid rotating as a solid body. Let us assume incompressible flow, so V¥ - v = 0,
assume a simple velocity field, and ask what forces could have given rise to that velocity
field. We will simply use z for the azimuthal coordinate instead of Z here. Take
v, = 0, Vg = %, v, = 0. (2.57)

The kinematics of this flow are simple and sketched in Figure 2.4 Here w is now defined as
a constant. The velocity is zero at the origin and grows in amplitude with linear distance
from the origin. The flow is steady, and the streamlines are circles centered about the origin.
Obviously, as r — oo, the theory of relativity would suggest that such a flow would break
down as the velocity approached the speed of light. In fact, one would find as well that as the
velocities approached the sound speed that compressibility effects would become important
far before relativistic effects.

Whatever the case, does this assumed velocity field satisfy incompressible mass conser-
vation?

~——

=0
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Figure 2.4: Sketch of a fluid rotating as a pure solid body.

Obviously it does.
Next let us consider the acceleration of an element of fluid and the forces which could
give rise to that acceleration. First consider the material derivative for this flow

d o 0 0 Vo 0 0 . Vo 0
i o et e T T o (2:59)
~~~ =0 =0

=0

But the only non-zero component of velocity, vy, has no dependency on 6, so the material
derivative of velocity ‘fl—‘t’ =0.

Consider now the viscous terms for this flow. We recall for an incompressible Newtonian
fluid that

Tij = 200av)) + A Dk 0ij. (2.60)
=0
12 (aﬂ)j + 8]-%) s (261)
ajTZ‘j = K (8j8ivj + 8]'8]"02') y (262)
= N 82 8]"0]' +8j8j’0i y (263)
=0
= uViv (2.64)
We also note that
VXxw = EijkajWk = EijkajEkmnam'Un, (265)
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= EkijEkmnajamUn, (266)
= (5””5]” - 6in6jm) 0j0mvn, (267)
= (9]-8in — @-0]-1),-, (268)
= 82 8]"0]' —8j8jvi, (269)
=0

Comparing, we see that for this incompressible flow,

(V" TT)T = —u(V x w). (2.71)

Now, using relations that can be developed for the curl in cylindrical coordinates, we have

for this flow that

Wr

We

Wy

_ 10v. vy _

r 00 0z

Oy, B ov,

0z or

_ lg( )_1%

 ror "o r 00’
10 wr

= 5 (3)

= w.

(2.72)
(2.73)
(2.74)

(2.75)
(2.76)

So the flow has a constant rotation rate, w. Since it is constant, its curl is zero, and we have

for this flow that (V7 - TT)T = 0. We could just as well show for this flow that 7 = 0. That
is because the kinematics are those of pure rotation as a solid body with no deformation.

No deformation implies no viscous

stress.

Hence, the three linear momenta equations in the cylindrical coordinate system reduce

to the following:

v _1op
r pOr’
11
pr oo
10p
0 = ———g¢.
p 0z

(2.77)
(2.78)

(2.79)

The r momentum equation strikes a balance between centripetal inertia and radial pressure
gradients. The # momentum equation shows that as there is no acceleration in this direction,
there can be no net pressure force to induce it. The z momentum equation enforces a balance
between pressure forces and gravitational body forces.
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If we take p = p(r,0, z) and p(r,, 0, z,) = p,, then

dp = gfd +%d9+%d (2.80)

_ % dr + 0 df — pg. dz, (2.81)

_ pjirz dr — pg. dz, (2.82)

_ p“fr dr — pg. dz, (2.83)

e = L) e ), (2.84)
p(r.z) = po+ %2(7"2 —15) = pg:(2 — %). (2.85)

Now on a surface of constant pressure we have p(r, z) = p. So

ﬁ = Do+ 8 ( ) pgz(z_zo)a (286)
. PW
pg:(2 = 2) = po p+?(r —r2), (2.87)
5 w2
Do —DP 2 2
Z = Z,+ + re—r). 2.88
£9: 8gz( ) (2.88)

So a surface of constant pressure is a parabola in r with a minimum at » = 0. This is
consistent with what one observes upon spinning a bucket of water.
Now let’s rearrange our general equation for the pressure field and eliminate w using

vp = % and defining vy, = “3°:
1 1

p— §pvg + P92 = Po — §pvgo + pg.20 = C. (2.89)

This looks very similar to the steady irrotational incompressible Bernoulli equation in which
P+ %pv2 +pg.z = K. But there is a difference in the sign on one of the terms. Now add pv?
to both sides of the equation to get

1
~pvy + pg.z = C + puj. (2.90)

P+2

Now since vy = % ,v, = 0, we have lines of constant 7 as streamlines, and vy is constant on
those streamlines, so that we get

1
~pvg + pg.z = C', on a streamline. (2.91)

p+2

Here C' varies from streamline to streamline.
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\

Figure 2.5: Sketch of an ideal irrotational point vortex.

We lastly note that the circulation for this system depends on position. If we choose our
contour integral to be a circle of radius a about the origin we find

I = j{VT-dr, (2.92)
C

_ /0 v Gwa) (a d9), (2.93)

= madiw. (2.94)

2.3 Ideal irrotational vortex

Now let us perform a similar analysis for the following velocity field:

r,
v, = 0, vy = v, = 0. (2.95)

omr’

The kinematics of this flow are also simple and sketched in Figure 2.5 We see once again
that the streamlines are circles about the origin. But here, as opposed to the ideal rotational
vortex, vy — 0 as r — oo and vy — oo as r — 0. The vorticity vector of this flow is

B 10v, Ovg B
W= T T =0 (2.96)
ov,  Ov,
wp = 5T -2 =0, (2.97)
10 1 0v,
we = Lo (rve) = 5 (2.98)
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10 Iy

- o (ra2). (299)
10 (T

- [ Z°2) =
o (%) ol (2.100)

This flow field, which seems the epitome of a rotating flow, is formally irrotational as it
has zero vorticity. What is happening is that a fluid element not at the origin is actually
undergoing severe deformation as it rotates about the origin; however, it does not rotate
about its own center of mass. Therefore, the vorticity vector is zero, except at the origin,
where it is undefined.

The circulation for this flow about a circle of radius a is

r = %VT-dr, (2.101)
C

= /27r vg(a db), (2.102)

2ma
= TI,. (2.104)

2
_ / Lo o, (2.103)
0

So the circulation is independent of the radius of the closed contour. In fact it can be shown
that as long as the closed contour includes the origin in its interior that any closed contour
will have this same circulation. We call I', the ideal irrotational vortex strength, in that it
is proportional to the magnitude of the velocity at any radius.

Let us once again consider the forces which could induce the motion of this vortex if the
flow happens to be incompressible with constant properties and in a potential field where the
gravitational body force per unit mass is —g.k. Recall again that (VT . T)T = —u(V x w),

and that since w = 0 that (VT . T)T = 0 for this flow. Note also that because there is
deformation here, that 7 itself is not zero, its divergence is. For example, if we consider
one component of viscous stress 7,9 and use standard relations which can be derived for
incompressible Newtonian fluids, we find that

B 0 [y 10v,\ 0 Lo\ ol
o= H (TE (7) + r 09) "o <27r7’2) o2’ (2.105)

The equations of motion reduce to the same ones as for the ideal rotational vortex:

2
v _ 10p
. = oo (2.106)
110p
— __-_-Zr 2.1
0 prob’ (2.107)
10p
= =P 2.1
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Once more we can deduce a pressure field which is consistent with these and the same set
of conditions at r = r,, z = z,, with p = p,:

0 0 15}
dp = Lar+ 2L ap+ 2L gz, (2.109)
or 00 0z
=0
2
= %dr — pg. dz, (2.110)
pl'2 dr
= 42,3 P9 dz (2.111)
pl2 (1 1
D—DPo = ~ g (7‘_2 — % — pg.(z — 2,), (2.112)
pl> 1 pl2 1
p+ 872 ﬁ +pg:2 = Po-t 872 7’_2 + pgzZo, (2113)
1 1
P+ 3PV P9z = Dot PG, + pgize = C (2.114)

(2.115)

This is once again Bernoulli’s equation. Here it is for an irrotational flow field that is also
time-independent, so the Bernoulli constant C' is truly constant for the entire flow field and
not just along a streamline.

On isobars we have p = p which gives us

) 21 1
P—Do = _871'2 (ﬁ - ﬁ - pgz(z - Zo)7 (2116)
Po _ﬁ Fg 1 1
Z = Zy+ 00 + 87?292 <7’_2 - 7’_2 (2117)

Note that the pressure goes to negative infinity at the origin. One can show that actual
forces, obtained by integrating pressure over area, are in fact bounded.

2.4 Helmholtz vorticity transport equation

Here we will take the curl of the linear momenta principle to obtain a relationship, the
Helmholtz vorticity transport equation, which shows how the vorticity field evolves in a
general fluid.

2.4.1 General development

First, we recall some useful vector identities:
vl . v

2

) +w XV, (2.118)
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Vx(axb) = (b'-V)a—(a’-V)b+a(V! -b)-b(V! . a), (2.119)
V x(V¢) = 0, (2.120)
vVi.(Vxv) = VI.w=0. (2.121)

The first is Eq. (LI78)); the others are easily proved.
We start now with the linear momenta principle for a general fluid:

1 1
a—V+(VT-V)v:f——Vp+— (VT-T)T. (2.122)
ot p p

We expand the term (v - V)v and then apply the curl operator to both sides to get

T .
V x <g—;’+v (V 5 V) tw xv) =V x (f—%Vp—l—%(VT-T)T) . (2.123)
This becomes, via the linearity of the various operators,
T. 1 1
Q(VXV)—FVX V[ Y) ) 4V xwxv=Vxf-Vx(-Vp)+Vx “ (v,
ot T 2 p p

~
(2.124)
Using our vector identity for the term with two cross products we get

1 1
%—‘;’ + (v V)ci—(wT-V)v+w( v’ 1: )—v(v: w) = Vxf-Vx (;Vp) +V x (5 (V" ’T)T) .
-4 N
(2.125)
Rearranging, we have
do @b G V-V (L) T x (2 (V)T 2.126
E—;E = (OJ . )V+ X1 — X ; p =+ X ;( ’T) s ( )
ldw wdp w’ 1 1 1 1 1 o7 T
T
d (3) - (“’— : v) ViV xfolvx (1Vp> +lvx (1 (V" -T)T> . (2.128)
dt \ p p p p p p p
Now consider the term V x <%Vp>. In Einstein notation, we have
1 1 1
€ijk0; <—3kp) = €ijk (—5j5kp - —2(8jp)(3kp)) : (2.129)
P p P
1 1
= — €ij10;0kp ——5€ij1(0;p) (Okp), (2.130)
pT P
1
= —?Vp x Vp. (2.131)
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Multiplying both sides by p, we write the final general form of the vorticity transport equation
* d 1 1
P2 (% = (W V)v+V xf+=VpxVp+V x —(VT-T)T : (2.132)
dt\p) ~—— ? p? p
A C D
Here we see the evolution of the vorticity scaled by the density is affected by four physical
processes, which we describe in greater detail directly, namely

e A: bending and stretching of vortex tubes,

e B: non-conservative body forces (if f = —ng, then f is conservative, and V x f =
—V x V¢ = 0. For example f = —g,k gives ¢ = g,z z),

e (: mnon-barotropic, also known as baroclinic, effects (if a fluid is barotropic, then
p =p(p) and Vp = (dp/dp)Vp thus Vp x Vp = Vp x (dp/dp) Vp = 0.), and

e D: viscous effects.

2.4.2 Incompressible conservative body force limit

The Helmholtz vorticity transport equation (2.132]) reduces significantly in special limiting
cases involving incompressible flow in the limit of a conservative body force. In this limit
Eq. (2132) reduces to the following

1
Y W v SV (V)T (2.133)

2.4.2.1 Isotropic, Newtonian, constant viscosity

Now if we further require that the fluid be isotropic and Newtonian with constant viscosity,
the viscous term can be written as

Vx (V) = €;40;0m2u(0umvr — (1/3) @ Smk)); (2.134)
=0

14€i5%050m (O Uk, + Ok, ) (2.135)

,ueijkﬁj (8m8mvk + 8m8kvm), (2136)

= p€;j10; (0mOmVk + Ok OpUnm,), (2.137)

=0
= ,u@mﬁm eijkajvk, (2138)
N——
w
= uVw. (2.139)
So we get, recalling that v = u/p,

‘2‘;’ (W! - V)V + V2w (2.140)
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2.4.2.2 Two-dimensional, isotropic, Newtonian, constant viscosity

If we further require two-dimensionality, then we have w = (0,0, ws(x1,22))?, and V =
(01,02,0)T, so w? - V = 0. Thus, we get the very simple

dw3 82W3 02(,03
—= = Vs = — 2.141
Tt had < 02 o2 (2.141)
If the flow is further inviscid v = 0, we get
dwg
0 2.142
dt ) ( )

and we find that there is no tendency for vorticity to change along a streamline. If we further
have an initially irrotational state, then we get w = 0 for all space and time.

2.4.3 Physical interpretations
Let us consider how two of the terms in Eq. (2132) contribute to the generation of vorticity.

2.4.3.1 Baroclinic (non-barotropic) effects

If a fluid is barotropic then we can write p = p(p), or p = p(p). An isentropic calorically
perfect ideal gas has p/p, = (p/p,)”, where ~ is the ratio of specific heats, and the o subscript
indicates a constant value. Such a gas is barotropic. for such a fluid, we must have by the
chain rule that 0;p = (dp/dp)0;p. Hence Vp and Vp are vectors which point in the same
direction. Moreover, isobars (lines of constant pressure) must be parallel to isochores (lines
of constant density). If, as sketched in Figure we calculate the resultant vector from the
net pressure force, as well as the center of mass for a finite fluid volume, we would see that
the resultant force had no lever arm with the center of gravity. Hence it would generate no
torque, and no tendency for the fluid element to rotate about its center of mass, hence no
vorticity would be generated by this force.

For a baroclinic fluid, we do not have p = p(p); hence, we must expect that Vp points
in a different direction than Vp. If we examine this scenario, as sketched in Figure 2.7 we
discover that the resultant force from the pressure has a non-zero lever arm with the center
of mass of the fluid element. Hence, it generates a torque, a tendency to rotate the fluid
about G, and vorticity.

2.4.3.2 Bending and stretching of vortex tubes

Now let us consider generation of vorticity by three-dimensional effects. Such effects are
commonly characterized as the bending and stretching of what is known as vortex tubes.
Here we focus on just the following inviscid equation:

dw

W . (2.143)
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Figure 2.6: Isobars and isochores, center of mass GG, and center of pressure for barotropic
fluid.

net pressure

Figure 2.7: Isobars and isochores, center of mass (G, and center of pressure for baroclinic
fluid.
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curve everywhere parallel
to vorticity vector

_locally orthogonal
coordinate system
s, m, b

Figure 2.8: Local orthogonal intrinsic coordinate system oriented with local vorticity field.
If we consider a coordinate system which is oriented with the vorticity field as sketched in
Figure 2.8 we will get many simplifications. We take the following directions

e s: the streamwise direction parallel to the vorticity vector,

e n: the principal normal direction, pointing towards the center of curvature,

e b: the biorthogonal direction, orthogonal to s and n.

With this system, we can say that

0
2
(W'-V)v = |[(ws 0 0) % v, (2.144)
b
ov
= Wg—. 2.145
“ s ( )
So for the inviscid flow we have p 5
w v
—_— = Wg—. 2.14
dt W 0s ( 6)
We have in terms of components
dws O,
= — 2.14
dw,, v,
— = — 2.14
dt Y595 (2.148)
dwb 8vb
— = —_—. 2.14
dt Y5 Bs ( %)

The term aa”; we know from kinematics represents a local stretching or extension. Just as
a rotating figure skater increases his or her angular velocity by concentrating his or her
mass about a vertical axis, so does a rotating fluid. The first of these expressions says that
the component of rotation aligned with the present increases if there is stretching in that
direction. This is sketched in Figure 2.9]

The second and third terms enforce that if v, or v, are changing in the s direction, when

accompanied by non-zero ws, that changes in the non-aligned components of w are induced.
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unstretched
vortex tube

< stretched
vortex
tube

Figure 2.9: Increase in vorticity due to stretching of vortex tube.

Hence the previously zero components w,,, wp acquired non-zero values, and the lines parallel
to the vorticity vector bend. Hence, we have the term, bending of vortex tubes.

It is generally accepted that the bending and stretching of vortex tubes is an important
mechanism in the transition from laminar to turbulent flow.

2.5 Kelvin’s circulation theorem

Kelvin’s circulation theorem describes how the circulation of a material region in a fluid
changes with time. We first recall the definition of circulation I':

I = f vl dx, (2.150)
C

where C' is a closed contour. We next take the material derivative of I' to get

0;_5 _ % ) v ax (2.151)
= g % ~dx + %cVT . %dx, (2.152)
= C%-dxjt%cvfp-d(ajl—};), (2.153)
- ¢ % - dx + 7{CVT ~dv, (2.154)

v’ 1
- %C%-dijj{Cd(ivT-v), (2.155)
T
_ ]{C@—:) - dx. (2.156)

Here we note that because we have chosen a material region for our closed contour that ‘fl—’t‘
must be the fluid particle velocity. This then allows us to write the second term as a perfect
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differential, which integrates over the closed contour to be zero. We continue now by using
the linear momentum principle to replace the particle acceleration with density-scaled forces

to arrive at
dr % ( 1 1, T)T
@ f—-Vp+- (V-7 - dx. 2.157

dt c P P ( ) ( )

If now the fluid is inviscid (7 = 0), the body force is conservative (f = —V¢), and the fluid
is barotropic ((1/p)Vp = VT), then we have

‘2_1; = f(—vgﬂ—vr)T.dx, (2.158)
C
- ]é VT (6+) - dx (2.159)
_ _]{ a(d+7). (2.160)
<

=0

The integral on the right hand side is zero because the contour is closed; hence, the integral
is path independent. Consequently, we arrive at the common version of Kelvin’s circula-
tion theorem which holds that for a fluid which is inviscid, barotropic, and subjected to
conservative body forces, the circulation following a material region does not change with
time:
dl'
dt
Note that this is very similar to the Helmholtz equation, which, when we make the
additional stipulation of two-dimensionality and incompressibility, gives dw/dt = 0. This is
not surprising as the vorticity is closely linked to the circulation via Stokes’ theorem, which
states

0. (2.161)

F:%VT-dx:/(Vxv)T-ndA:/wT-ndA. (2.162)
c A A

2.6 Potential flow of ideal point vortices

Consider the fluid motion induced by the simultaneous interaction of a family of ideal ur-
rotational point vortices in an incompressible flow field. Since the flow is irrotational and
incompressible, we have the following useful results:

e Since V x v = (, we can write the velocity vector as the gradient of a scalar potential

0:
v =Vo, if irrotational. (2.163)

We call ¢ the velocity potential.

CC BY-NC-ND. 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

184 CHAPTER 2. VORTEX DYNAMICS

e Since VT -v = 0, we have
V. V¢ =V?¢=0, (2.164)
or expanding, we have
Py P P
922 + Oy + 5.2 0. (2.165)

e We notice that the equation for ¢ is linear; hence the method of superposition is valid
here for the velocity potential. That is, we can add an arbitrary number of velocity
potentials together and get a viable flow field.

e The irrotational unsteady Bernoulli equation gives us the time and space dependent
pressure field. This equation is not linear, so we do not expect pressures from elemen-
tary solutions to add to form total pressures.

Recalling that the incompressible, three dimensional constant viscosity Helmholtz equa-
tion can be written as

d
d—‘;’ = (T V)V + V2, (2.166)
we see that a flow which is initially irrotational everywhere in an unbounded fluid will always

be irrotational, as dd—“f = 0. There is no mechanism to change the vorticity from its uniform

initial value of zero. This even holds for a viscous flow. However, in a bounded medium, the
no-slip boundary condition almost always tends to diffuse vorticity into the flow as we shall
see.

Further from Kelvin’s circulation theorem, we also note that the circulation I' has no
tendency to change following a particle; that is I' convects along particle pathlines.

2.6.1 Two interacting ideal vortices

Let us apply this notion to two ideal counterrotating vortices 1 and 2, with respective
strengths, I'y and I'y, as shown in Figure .10, Were it isolated, vortex 1 would have no
tendency to move itself, but would induce a velocity at a distance h away from its center of
zl:r—lh. This induced velocity in fact convects vortex 2, to satisfy Kelvin’s circulation theorem.
Similarly, vortex 2 induces a velocity of vortex 1 of 21;—2h

The center of rotation G is the point along the 1-2 axis for which the induced velocity is
zero, as is illustrated in Figure 2.11l To calculate it we equate the induced velocities of each
vortex

I' Iy

-2 2.167
27Th(; 27T(h — h(;)’ ( )
(h—ha)T1 = haly, (2.168)
ATy = ha(Ty + 1), (2.169)

Iy
he = . 2.170
“ T, + 1, (2.170)
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Figure 2.10: Sketch of the mutual influence of two ideal point vortices on each other.
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Figure 2.11: Sketch showing the center of rotation G.

I
2mh
h

T
v =
2mh
r : T

Figure 2.12: Sketch showing a pair of counterrotating vortices of equal strength

v =

CC BY-NC-ND. 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

186 CHAPTER 2. VORTEX DYNAMICS

.

i
|
|
|
|
|

. | i

image | matn
|
|
|
|
|
|
|

vortex vortex

Figure 2.13: Sketch showing a vortex and its image to simulate an inviscid wall.

A pair of equal strength counterrotating vortices is illustrated in Figure 2121 Such
vortices induce the same velocity in each other, so they will propagate as a pair at a fixed
distance from one another.

2.6.2 Image vortex

If we choose to model the fluid as inviscid, then there is no viscous stress, and we can no
longer enforce the no slip condition at a wall. However at a slip wall, we must require that
the velocity vector be parallel to the wall. We can model the motion of an ideal vortex
separated by a distance h from an inviscid slip wall by placing a so-called image vortex on
the other side of the wall. The image vortex will induce a velocity which when superposed
with the original vortex, renders the resultant velocity to be parallel to the wall. A vortex
and its image vortex, which generates a straight streamline at a wall, is sketched in Figure
AR

2.6.3 Vortex sheets

We can model the slip line between two inviscid fluids moving at different velocities by what
is known as a wortex sheet. A vortex sheet is sketched in Figure 2.14. Here we have a
distribution of small vortices, each of strength dI', on the z axis. Each of these vortices
induces a small velocity dv at an arbitrary point (Z, 7). The influence of the point vortex at
(x,0) is sketched in the figure. It generates a small velocity with magnitude

dl’ dl’
dlv| = = (2.171)
2rh  27\/(% — x)2 + 32
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Figure 2.14: Sketch showing schematic of vortex sheet

Using basic trigonometry, we can deduce that the influence of the single vortex of differential
strength on each velocity component is

dzx.

u —dIl'y B fl};g X
dv @ —z) _  g@-)
2 (- 2P+ )

27 (2 — 2)% + 9?) (2173)

is a measure of the strength of the vortex sheet. Let us account for the effects of all
of the differential vortices by integrating from = —L to x = L and then letting L — oco.

We obtain then the total velocity components u and v at each point to be

Here ZF

u = lim -4 arctan( )+arctan :c) (2.174)
L—oo 2T
- +3 - +35
—s& i §>0,
_ (2.175)
14t if  §<0,
dr

al I — :Z.)2 + g2

lim 22 (L2 T 0. 2.176
1500 47 (L+7)?+ 32 ( )
So the vortex sheet generates no y component of velocity anywhere in the flow field and two
uniform x components of velocity of opposite sign above and below the x axis
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2.6.4 Potential of an ideal vortex

Let us calculate the velocity potential function ¢ associated with a single ideal vortex. Con-
sider an ideal vortex centered at the origin, and represent the velocity field here in cylindrical

coordinates:

T
= = — = 0. 2.1
v, =0, Vg Y- v, =0 (2.177)

Now in cylindrical coordinates the gradient operating on a scalar function gives

Vo = v, (2.178)
o6 106 06 r
Wer + ;%eg + gez = Oer + %eg + Oez, (2179)
9% _ (2.180)
or
1909 T T
;% = %, SO Cb = 27‘(‘9+ C(’f’, Z), (2181)
906
“= (2.182)

But since the partials of ¢ with respect to r and z are zero, C(r, z) is at most a constant,
which we can set to zero without losing any information regarding the velocity itself

r
= —40. 2.183
¢=5 (2.183)
In Cartesian coordinates, we have
r
O = o arctan (%) (2.184)

Lines of constant potential for the ideal vortex centered at the origin are sketched in Figure

2.15

2.6.5 Interaction of multiple vortices

Here we will consider the interactions of a large number of vortices by using the method of
superposition for the velocity potentials.

If we have two vortices with strengths I'; and I'y centered at arbitrary locations (x1,y;)
and (9, ys) are sketched in Figure 2.16] the potential for each is given by

T _

¢, = — arctan (y yl) : (2.185)
2T T — I
N _

¢y = —= arctan (y yz) : (2.186)
2 T — To
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Figure 2.15: Lines of constant potential for ideal irrotational vortex.
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Figure 2.16: Two vortices at arbitrary locations.
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Since the equation governing the velocity potential, V2¢ = 0, is linear we can add the two
potentials and still satisfy the overall equation so that

r — r —
o= 2—1 arctan (y yl) + —2 arctan (y y2) , (2.187)

T T — T 2T T — To

is a legitimate solution. Taking the gradient of ¢,
oo - (- () et (&) )
2m) (x—z)? +(y—m)* \2n/) (2 —22)* + (y — 12)?
Fl r — I (Fg) T — T ),
+ _ - + [ — s 2.188
(&) == (&) smarr =) @199

so that

e = = (o) oy~ @) T b @)

e = () oot (3) oo 0190

Extending this to a collection of N vortices located at (z;,y;) at a given time, we have the
following for the velocity field:

_ S _ & Y—Y;
u(y) = Y (%) CErE T (2.191)

O e (2192)

Now to convect (that is, to move) the kth vortex, we move it with the velocity induced
by the other vortices, since vortices convect with the flow. Recalling that the velocity is the
time derivative of the position u;, = Cg—f, v = %, we then get the following 2N non-linear
ordinary differential equations for the 2/N unknowns, the x and y positions of each of the N

vortices:

dx N I — Y
Loy _< ) Yk — Ui 2p(0) =23, k=1,...,N,(2.193)

v(r,y) =

M-

=1

dt i=1,ik 2m ) (w — ) + (ye — 43)
AL —_— , 0)=y?, k=1,...,N. 2.194
dt i:lzz;ék 21 ) (xn — ) + (Ye — ¥i)? u(0) = ui ( )

This set of equations, except for three or fewer point vortices, must be integrated numeri-
cally. These equations form what is commonly termed a Biot-Savart?] law. These ordinary

2Jean-Baptiste Biotl, 1774-1862, Paris-born applied mathematician
3Felix Savart, 1791-1841, French mathematician who worked on magnetic fields and acoustics.
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differential equations are highly non-linear and give rise to chaotic motion of the point vor-
tices in general. It is a very similar calculation to the motion of point masses in a Newtonian
gravitational field, except that the essential variation goes as 1/r for vortices and 1/r? for
Newtonian gravitational fields. Thus the dynamics are different. Nevertheless just as calcu-
lations for large numbers of celestial bodies can give rise to solar systems, clusters of planets,
and galaxies, similar “galaxies” of vortices can be predicted with the equations for vortex
dynamics.

2.6.6 Pressure field

We have thus far examined essentially only the kinematics of vortices. We have actually
used dynamics in our incorporation of the Helmholtz equation and Kelvin’s theorem, but
their simple results really only justify the use of a simple kinematics. Dynamics asks what
are the forces which give rise to the motion. Here, we will assume there is no body force
and that the fluid is inviscid, in which case it must be pressure forces which give rise to the
motion. We have the proper conditions for which Bernoulli’s equation can be used to give
the pressure field. We consider two cases, a single stationary point vortex, and a group of
N moving point vortices.

2.6.6.1 Single stationary vortex

If we take p = p in the far field and f; = g = 0, this steady flow gives us

1 1 oo
§VT -V + % = §V£ “ Voo t+ p?a (2195)
1 T 2 P Po
B = 0+ 2.196
: <2M) 2 s (2.196)
pl? 1
p(r) pOO 87?2 T2 ( 97)

Note that the pressure goes to negative infinity at the origin. This is obviously unphysical.
It can be corrected by including viscous effects, which turn out not to substantially alter our
main conclusions.

2.6.6.2 Group of N vortices

For a collection of N vortices, the flow is certainly not steady, and we must in general retain
the time dependent velocity potential in Bernoulli’s equation yielding

06 1 p_
Tt 3V VoD = f(h) (2.198)

Now we require that as r — oo that p — ps. We also know that as » — oo that ¢ — 0,
hence V¢ — 0 as well. Hence as r — oo, we have 22 = f(). So our final result is

D= Poo — %p(V(b)T V¢ — %. (2.199)
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Figure 2.17:  Wall streamlines and vortex lines at wall y = 0.

So with a knowledge of the velocity field through ¢, we can determine the pressure field
which must have given rise to that velocity field.

2.7 Influence of walls

The Helmholtz equation considers mechanisms that generate vorticity in the interior of a
flow. It does not, however, include one of the most important mechanisms, namely the
introduction of vorticity due to the no-slip boundary condition at a solid wall. In this
section we shall focus on that mechanism.

2.7.1 Streamlines and vortex lines at walls

It seems odd that a streamline can be defined at a wall where the velocity is formally zero, but
in the neighborhood of the wall, the fluid velocity is small but non-zero. We can extrapolate
the position of streamlines near the wall to the wall to define a wall streamline. We shall
also consider a so-called vortez line, a line everywhere parallel to the vorticity vector, at the
wall.

We consider the geometry sketched in Figure2.17. Here the z—z plane is locally attached
to a wall at y = 0, and the y direction is normal to the wall. Wall streamlines and vortex
lines are sketched in the figure.

Because the flow satisfies no-slip, we have at the wall

u(z,y=0,2) =0, v(z,y=10,2) =0, w(z,y=0,2)=0. (2.200)
Because of this, partial derivatives of all velocities with respect to either x or z will also be
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zero at y = O:

@
ox

o
0z

o
- Oz

o
0z

_w
- Oz

_ Ow

=5 | =0 (2.201)

y=0

y:O y:O y:O y:O y:O

Near the wall, the velocity is near zero, so the Mach number is very small, and the flow is well
modeled as incompressible. So here, the mass conservation equation implies that V7 -v = 0,
so applying this at the wall, we get

ou ov ow

—| + —— =0 SO (2.202)
Or|,—o Oyl 07,
———
=0 =0
ol (2.203)
dy y=0

Now let us examine the behavior of u, v, and w, as we leave the wall in the y direction.
Consider a Taylor series of each:

1
u = u|y:0+8_y Oy—‘—i? 0y2+..., (2204)
y:
=0
v 1 0% )
= — - — 2.2
v V]t By y:0y+ 5 02 yzoy +..., (2.205)
=0
=0
ow 1 0%w
w = w|y_0+a—y KA ¥ 0y2+..., (2.206)
y= y=
=0
(2.207)
So we get
0
u = 8—“ Y. (2.208)
y y:O
1 0% 5
= - — . 2.209
v 9 ay2 yzoy + ’ ( )
0
w = a—w Y+ (2.210)
Now for streamlines, we must have
d d d
oot (2.211)
u v w
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For the streamline near the wall, consider just dz/u = dz/w, and also tag the streamline as
dzs, so that the slope of the wall streamline, which is the tangent of the angle 6 between the
wall streamline and the x axis is

ow
dz, |,
tanf = 2| = lim & = ¥ (2.212)
dr |, _, v=0u du
oy y=0

Now consider the vorticity vector evaluated at the wall:

ow v ow
Wyl o = — - — = — , 2.213
|y—0 ay =0 az =0 ay Y0 ( )
—0
ou ow
Wyly=o = 35 - T o 0, (2.214)
N—_——
=0 =0
ov ou ou
oo = = - =_ - 2.21
Wz, oc|,_y By, %, (2.215)

=0
So we see that on the wall at y = 0, the vorticity vector has no component in the y direction.
Hence, it must be parallel to the wall itself. Further, we can then define the slope of the
vortex line, 22 at the wall in the same fashion as we define a streamline:

dx ?
u
dz, LWy %y 1 9916
dx T W, ow T da (2:216)
yZO z . dx y:O
oy y=0

Since the slope of the vortex line is the negative reciprocal of the slope of the streamline,
we have that at a no-slip wall, streamlines are orthogonal to vortex lines. We also note that
streamlines are orthogonal to vortex lines for flow with variation in the x and y directions
only. For general three-dimensional flows away from walls, we do not expect the two lines
to be orthogonal.

2.7.2 Generation of vorticity at walls

Now further restrict the coordinate system of the previous subsection so that the = axis is
aligned with the wall streamline and the z axis is aligned with the wall vortex line. As before
the y axis is normal to the wall. The coordinate system aligned with the wall streamlines
and vortex lines is sketched in Figure [2.18] In the figure we take the direction n to be normal
to the wall. Now for this coordinate system, we have

ow
dzg Ay |,
i e I (2.217)
dv | _ U ly=0 A
y=0
Ay y=0

CC BY-NC-ND. 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

2.7. INFLUENCE OF WALLS 195

\

z

Figure 2.18: Coordinate system aligned with wall streamlines and vortex lines.

Hence, we must have

ow
— =0. (2.218)
oy y=0
Now consider the viscous traction vector associated with the wall:
ou o

K <8y y=0 + Ox ‘y:O) ou

Tye ov ov B_y y=0

tj = NiTij = NyTyj; = Tyy = o (a—y B_y ) = 0 (2219)
y=0 y=0

o ) 9 0

H (E‘y:(] + oy y=0)

So the viscous force is parallel to the surface, hence it is a tangential or shear force; moreover,
it points in the same direction as the streamline. Now if we examine the vorticity vector at
the surface we find first by our definition of the coordinate systems that w, = w, = 0 at
y = 0 and that

v Ju
Welyeo = 7= - — : (2.220)
Y x|,y 9y,
=0
For this case, we can say that the viscous force is t; = —puw,. In fact in general, we can say
Coiscous = — N X W, at a wall. (2.221)

Since the viscous force is orthogonal to both the surface normal and the vorticity vector, it
must always at the wall be aligned with the flow direction.
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Chapter 3

One-dimensional compressible flow

see Yih, Chapter 6
see Liepmann and Roshko, Chapter 2
see Shapiro, Chapters 4-8

This chapter will focus on one-dimensional flow of a compressible fluid. The following topics
will be covered:

e development of generalized one-dimensional flow equations,
e isentropic flow with area change,
e flow with normal shock waves, and

e the method of characteristics for isentropic rarefactions.

We will assume for this chapter:
e v=0,w=0,0/0y =0,0/0z = 0; one-dimensional flow.

Friction and heat transfer will not be modeled rigorously. Instead, they will be modeled
in a fashion which captures the relevant physics and retains analytic tractability. Further,
we will ignore the influences of an external body force, f; = 0.

3.1 (Generalized one-dimensional equations

Here we will re-derive, in a rather conventional way, the one-dimensional equations of flow
with area change. Although for the geometry we use, it will appear that we should be using
at least two-dimensional equations, our results will be correct when we interpret them as an
average value at a given x location. Our results will be valid as long as the area changes
slowly relative to how fast the flow can adjust to area changes.
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We could start directly with our equations from an earlier chapter as well. However,
the ad hoc nature of friction and heat transfer commonly employed makes a re-derivation
useful. The flow we wish to consider, flow with area change, heat transfer, and wall friction,
is illustrated by the following sketch of a control volume, Figure B.1]

Perimeter length =L

Figure 3.1: Control volume sketch for one-dimensional compressible flow with area change,
heat transfer, and wall friction.

For this flow, we will adopt the following conventions
e surface 1 and 2 are open and allow fluxes of mass, momentum, and energy,
e surface w is a closed wall; no mass flux through the wall

e external heat flux ¢, (Energy/Area/Time: W/m?) through the wall allowed-g, known
fized parameter,

e diffusive, longitudinal heat transfer ignored, ¢, = 0,
e wall shear 7,, (Force/Area: N/m?) allowed—7,, known, fized parameter,
e diffusive viscous stress not allowed 7., = 0, and

e cross-sectional area a known fized function: A(z).

CC BY-NC-ND.' 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/
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3.1.1 Mass

Take the over-bar notation to indicate a volume averaged quantity.

The amount of mass in a control volume after a time increment At is equal to the original
amount of mass plus that which came in minus that which left:

ﬁAAI‘H—At = ﬁAALIZ“t + /)1141 (ulAt) - p2A2 (UQAt) . (31)
Rearrange and divide by AzAt:

ﬁA‘m—At B ﬁA‘t 4 p2Asug — prAjuy

= 0. 2
At Ax 0 (32)
Taking the limit as At — 0, Az — 0, we get
0 0
—(pA) + —(pAu) = 0. .
= (pA) + £ (pAu) = 0 (33
If the flow is steady, then
4 (pAu) = 0 (3.4)
dz ¥ - '
dp dA du
Au— — +pA— = .
udz+pudx+p . 0, (3.5)
ldp 1dA 1du
;%+ZE+E% =0 (36)
Now integrate from z; to x5 to get
/IQi(Au)dg; _ /mde (3.7)
n dr” LT |
2
/ d(pAu) = 0, (3.8)
1
pg’lLQAQ — plulAl = O, (39)
p2u2A2 = p1u1A1 =m= Cl. (310)

3.1.2 Linear momentum

Newton’s Second Law says the time rate of change of linear momentum of a body equals the
sum of the forces acting on the body. In the = direction this is roughly as follows:

d
o (mu) = F.. (3.11)
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In discrete form this would be

mu|t+At — mul,
~- F, 3.12

mul, A, = mul, + AL (3.13)

For a control volume containing fluid, we must also account for the momentum which
enters and leaves the control volume. The amount of momentum in a control volume after
a time increment At is equal to the original amount of momentum plus that which came in
minus that which left plus that introduced by the forces acting on the control volume.

Note that

e pressure force at surface 1 pushes fluid,
e pressure force at surface 2 restrains fluid,

e force due to the reaction of the wall to the pressure force pushes fluid if area change
positive, and

e force due to the reaction of the wall to the shear force restrains fluid.
We write the linear momentum principle as
(pAAz) (pAAz) al,
(p1 A1 (u1At)) uy
— (p2As (ugAt)) uy
(

u‘t—i—At

+

(
— (rwlAz) At. (3.14)
Rearrange and divide by AzAt to get

ﬁAa‘t—i—At - ﬁAﬂ‘t p2Aqus — prAus

At Ax
- p2As — 1Ay Ay — Ay ~
= Ao +p A TwL. (3.15)
In the limit Az — 0, At — 0 we get
0 0 9 0 0A
a(pAu) + %(pAu ) = —%(pA) +p8—x — Twl. (3.16)
In steady state we find
d N d dA
T(pAw’) = ——(pA) +p— — 7L, (3.17)

CC BY-NC-ND.' 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

3.1. GENERALIZED ONE-DIMENSIONAL EQUATIONS 201

du d dA dp dA
Au— —(pAu) = —p— —A— —_— = 1
du dp L

pU% = —% — Twz, (319)
pu du+dp = —ng dz, (3.20)
du + ialp = —Tw£ dz, (3.21)

U m

u? L
pd (5) +dp = ~Tuy dzx. (3.22)

Wall shear lowers the combination of pressure and dynamic head.
If there is no wall shear, then Eq. (8:22)) reduces to

dp = —pd <“;) . (3.23)

An increase in velocity magnitude decreases the pressure.
With no friction 7, = 0 we can take Eq. (8.19) as have
du dp
—+— = 0. 3.24
e dx + dx ( )

Now for flow with no area change dA = 0, the steady mass equation, Eq. (84]), reduces to
d/dz(pu) = 0. The product of u and this mass equation, u d/dz (pu) = (u)(0) = 0, can be
added to Eq. (3.24) to get

du
d 2
- = 2
—(pu*+p) =0, (3.26)
pul +p = pou+p, = Ch (3.27)

3.1.3 Energy

The first law of thermodynamics states that the change of total energy of a body equals the
heat transferred to the body minus the work done by the body:

E2 - E1 - Q — W, (328)
E, = B +Q—-W. (3.29)

So for our control volume this becomes the following when we also account for the energy
flux in and out of the control volume in addition to the work and heat transfer:

(pAAz) <e+ u;) = (pAAx) <e+ u;)

t+At t
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2

2
+p1 A1 (w1 At) <6’1 + %) — p2As (uAt) <62 + %)
+qu (ZA[L’) At + (plAl) (ulAt) — (pQAQ) (UQAt) . (330)
Note:

e the mean pressure times area difference does no work because it is acting on a stationary
boundary, and

e the work done by the wall shear force is not included [
Rearrange and divide by AtAz:

(e 9)] - (e %)
pAle+ 3 AL pA e+ 5 t
At
2 2
P2 Atz <€2 + 2+ &> — prAjug (61 + 4y IA) )
* — s (3.31)

In differential form as Az — 0, At — 0

0 u? 0 u? p

In steady state:

) = quL. (3.32)
)

” (pAu <e n “; + B) — gL, (3.33)

pAu% <e + u; + %) + <e + u; + %) %(pAu) = qul, (3.34)
pu% (e + “; + g) = %, (3.35)
e I (3.30)

Now consider the product of velocity and momentum from Eq. (3.19) to get

ydu n dp TwLu
P T e A
'In neglecting work done by the wall shear force, I have taken an approach which is nearly universal, but
fundamentally difficult to defend. At this stage of the development of these notes, I am not ready to enter
into a grand battle with all established authors and probably confuse the student; consequently, results for
flow with friction will be consistent with those of other sources. The argument typically used to justify this
is that the real fluid satisfies no-slip at the boundary; thus, the wall shear actually does no work. However,
one can easily argue that within the context of the one-dimensional model which has been posed that the
shear force behaves as an external force which reduces the fluid’s mechanical energy. Moreover, it is possible
to show that neglect of this term results in the loss of frame invariance, a serious defect indeed. To model
the work of the wall shear, one would include the term (Tw (EA:Z:)) (2At) in the energy equation.

(3.37)
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Subtract this from Eq. (3.36) to get
de pudp Gl  TwLlu
e _pap ez 3.38
dr  p dx A A (3.38)
de pdp  (qu+Tou)L
de  p*dr m (3.39)
Since e = e(p, p)
de = % dp + ? dp, (3.40)
Plp Dl,
de Oe| dp  Oel| dp
a4 41
dx dp|, dx  Op , dz (341)
so the steady energy equation becomes
de| dp Oe| dp pdp (Gw + Twu) L
) GO B N i O N 3.42
8ppda:+0ppdx p? dw m ’ (342)
de 2
dp Il ) dp _ (qut ) L (3.43)
dx de dx i 2¢ ’
op P op o

Now let us consider the term in braces in the previous equation. We can put that term

in a more common form by considering the Gibbs equation, Eq. (L54T]):

p
Tds:de—?dp,

along with a general caloric equation of state e = e(p, p), from which we get

Oe
de = —
e o

dp + ?‘ dp.
p Plp

Substituting into the Gibbs equation, we get
Oe

Tds=—| dp+ — dp—%dp
ap|, dpl, p
Taking s to be constant and dividing by dp, we get
0o ¢l op| L0 P
apl, Opl,  Opl, P*
Rearranging, we get
Ge| _
op 9 opl, P
_ E C — s
p|, e
op P

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

CC BY-NC-ND.' 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

204 CHAPTER 3. ONE-DIMENSIONAL COMPRESSIBLE FLOW

SO
A pdp _ (Gt Tow) L (3.49)
dx dx 1 2
dp o
Z—p - c2;l—p _ lwtruk T;"“> £ (3.50)
xr € puA o ,

In the above ¢ is the isentropic sound speed, a thermodynamic property of the material. We
shall see in a later section why it is appropriate to interpret this property as the propagation
speed of small disturbances. At this point, it should simply be thought of as a state property.

Consider now the special case of flow with no heat transfer ¢, = 0. We still allow area
change and wall friction allowed (see earlier footnote):

d u?  p

— —+=] =0 3.51
pudm<6+2+p) , (3.51)

u? p u? Do
— 42 = e+ 222 =(y, .52
e+2+p e—i—2+p0 Cs (3.52)

u? u?

h+§ = ho+?°:03. (3.53)

3.1.4 Summary of equations

We can summarize the one-dimensional compressible flow equations in various forms here.
In the equations below, we assume A(z), 7, qu, and L are all known.

3.1.4.1 Unsteady conservative form

0 0
E(PA%L@—(PAU) = 0, (3.54)
0 0 0A
at(pAu) 8—(pAu +pA) = p%—mﬁ, (3.55)
9 A +u—2 +— A +—+ = Ll (3.56)
s\ PAleT S pAu = @k, :
e = elp,p), (3.57)
p = p(p.7T). (3.58)
3.1.4.2 Unsteady non-conservative form
dp p 0
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du Op 1L
pE —% + 7, (360)
de ou gLl — 1,Lu
— —p—+ — .61
e e(p,p), (3.62)
p = pp,T). (3.63)
3.1.4.3 Steady conservative form
L paw) = 0 (3.64)
df(} p - 9 .
d dA
—(pAu® + pA) = p— — Ty, .
g (pAu® + pA) P L, (3.65)
d u?  p
e = elp.p), (3.67)
p = pp,T). 3.68)
3.1.4.4 Steady non-conservative form
dp p d
— ———(A .
U= Adx( u), (3.69)
du dp  T,L
de du qw»C - Twﬁu
— — 71
pu— P T (3.71)
e e(p,p), (3.72)
p = pp,T). (3.73)

In whatever form we consider, we have five equations in five unknown dependent variables:
p, u, p, e, and T. We can always use the thermal and caloric state equations to eliminate e
and T to give rise to three equations in three unknowns.

[
Ezxample 3.1

Flow of air with heat addition

Given: Air initially at p; = 100 kPa, 71 = 300 K, u; = 10 m/s flows in a duct of length 100 m.
The duct has a constant circular cross sectional area of A = 0.02 m? and is isobarically heated with

a constant heat flux ¢, along the entire surface of the duct.

ps = 100 kPa, T = 500 K

At the end of the duct the flow has

Find: the mass flow rate m, the wall heat flux ¢, and the entropy change so — s1; check for

satisfaction of the second law.
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Assume: Calorically perfect ideal gas, R = 0.287 kJ/(kg K), ¢, = 1.0035 kJ/(kg K)

Analysis:
A = 7r? (3.74)
A
. A (3.75)
i
L = 2mr=2V7A=27(0.02m2) = 0.501 m. (3.76)
Now get the mass flux.
p1 = p1RTy, (3.77)
100 kPa
po= = , (3.78)
1 (0.287 kg—JK) (300 K)
kg
= 1161 -3 (3.79)
So
. kg m 2 kg
= prndr = (1161 =5 ) (10 2 (0.02 m?) = 0.2322 =2, (3.80)
m s s
Now get the flow variables at state 2:
100 kP
pr = 2 - 2 , (3.81)
RT, (0.287 kg—JK) (500 K)
kg
= 0.6060 =, (3.82)
nggAg = plulAl, (383)
prutAr  prug
wp, = S A 3.84
? p2Asa P2 (8.84)
(1161 %) (10 2)
- . =16.67 2. (3.85)
0.6969 12 s
Now consider the energy equation:
d u? b Gl
— — 4+ = = — 3.86
pudx<e+2+p> A7 ( )
d u? qul
— | h+—= = — 3.87
dw( + 2> m (3:87)
L 2 L
d (2 Qwﬁ
—|h+—=)dz = —d 3.88
/0 dx( T ) - (3:88)
u? u? quwL L
hot 2 —h——= = = 3.89
2 + 2 1 2 m ) ( )
ui  u? quwL L
Th-T)+=2-2L = =2 :
o (—T)+ 5 — 5 — (3.90)
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Solving for gq,,, we get

() (cors- 7+ - 15) oo

_ < 0.2322 3 ) <<1oo3.5 L) (500 K — 300 K) + 10072 (105) ) . (3.92)

Qw

(100 m) (0.501 m) kg K 2 2
= 0.004635 % <200700 kig —88.9 ?—j) , (3.93)
= 0.004635 ;‘fs (200700 kig —88.9 k%) , (3.94)
= 930 % (3.95)

The heat flux is positive, which indicates a transfer of thermal energy into the air.

Now find the entropy change.

1y P2
o1 = cn(22)—Rm (2 .
S9 — 81 cpn<T1) Rn(p1>, (3.96)
J 500 K J 100 kPa
s = (10035 —— Vo (222) _ (987 2 ) 1n (@ .
52781 < 0035 15 K) n<3oo K) < s K) n<1oo kPa>’ (3.97)
J

Is the second law satisfied? Assume the heat transfer takes place from a reservoir held at 500 K. The
reservoir would have to be at least at 500 K in order to bring the fluid to its final state of 500 K. It
could be greater than 500 K and still satisfy the second law.

Sy— 8 > % (3.99)
G- % > 92 (3.100)
T
m(sy —s1) > %, (3.101)
QwAtot
> :
> (3.102)
quwl L
> .
> 5 (3.103)
wLL
Sy— 81 > _qu : (3.104)
930 —) (100 m) (0.501
s12.6 0 > (930 7i) (100 m) (0501 m) (3.105)
kg K (0.2322 E) (500 K)
J J
126 —— > 401.3 ——. 1
5 GkgK > 03kgK (3.106)
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3.1.5 Influence coefficients

Now, let us uncouple the steady one-dimensional equations. First let us summarize again,
in a slightly different manner than before:

dp du pudA
dv " "dv —  Adw 3.107
udx_l_pdx A dx’ ( )
du  dp Tl
dv ' dz A 3.108
puT+ o = 108
d d o) L
f—&f.zﬁiilﬂ__ (3.109)
v . puAg—;
p
In matrix form this is
u dA
v ‘0 1 (7 I Ty (3.110)
- dx puAg—;

p

Use Cramer’s Rule to solve for the derivatives. First calculate the determinant of the coef-
ficient matrix:

u ((pu)(1) — (1)(0)) ~ p ((0)(1) — (=*)(1)) = p (u® ~ &) (3.111)

Implementing Cramer’s Rule:

dp ,
. 3.112
dx p(u2 — c2) ) ( )
du A dx A puA g_; |p
dr p(u? —c2) ; (3.113)
U dA Twl (qutTwu)L
gt (a9
L = e (3.114)
dr p (U2 — c2) : :
Simplify to find
dp (wﬁ%+n£+@%%%
9p
- = 7 s 3.115
dr ~ A (W2 — ) ! (3.115)
J ] czpu% —ut, L — 7([1“;22’“”“)5
u op
o T 3 —. 3.116
dx A P (u2 _ 02) ( )
J ) —?putd 4 A1, L+ 7(‘1‘”:;’;”“)5“
D ap
Y L. A1
dz A (u? — 2) (3.117)
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Note, we have
e a system of coupled non-linear ordinary differential equations,
e in standard form for dynamic system analysis: du/dx = f(u),
e valid for general equations of state, and

e singular when velocity sonic u = c.

3.2 Flow with area change

This section will consider flow with area change with an emphasis on isentropic flow. Some
problems will involve non-isentropic flow but a detailed discussion of such flows will be
delayed.

3.2.1 Isentropic Mach number relations
Take the special case of

o 7, =0,

® ¢y =0,

e calorically perfect ideal gas (CPIG).

Then
d
d
d ur p
— — + = = 0. 12
dx<e+2+p> 0 (3.120)

Integrate the energy equation using Eq. (L53T]) h = e + p/p to get

u2

w2
h+—=h,+ —=2. 3.121
+5 +5 (3.121)
If we define the “0” condition to be a condition of rest, then u, = 0. This is a stagnation

condition. So

U2
ht s = h, (3.122)

2
(h—ho)+% . (3.123)
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Since we have a CPIG,

Now note that

SO

Recall the sound speed and Mach number for a CPIG:

Thus,

Now if the flow is isentropic, we have

Thus,

cp(T—To)—l—% = 0, (3.124)
U2
T-T,+— = 0, (3.125)
2¢y,
T, u?
1-22 = 0. 3.126
T + 2¢,T ( )
Cp—Cyp  CpCp—Cy YR
— -2 = 3.127
Cp CpCp—Cv Cvz_z,_ 7_17 ( )
T e e (3.128)
T 2 ART '
T, v—1 u?
R [ I 12
T TS 3RT (8129)
— yRT if p=pRT, e=cT+e,, (3.130)
2
(E> . (3.131)
&
T, v—1 5
0 = 14— M 3.132
T | !
— = (14+—M?) . 3.133
r = (1+150e) (3.133)
T -1 =
L (ﬁ) — (ﬁ) . (3.134)
T, Po Po
LN
P Y= 2\ 77
L= (1+1—=Mm 3.135
Lo (e 25e) T (3.135)
P (22 he) T (3.136)
Do 2
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For air v = 7/5, so
T 1 -1
— = (1+-M? 1
T ( + 7 ) : (3.137)
A
1Y 2
- (14+ZMm 3.138
- ( i ) , (3.138)
1 N\E
p 2
L - (14=Mm 3.139
- ( i ) (3.130)

Figures [3.2), B.3/3.4l show the variation of T', p and p with M? for isentropic flow.

Other thermodynamic properties can be determined from these, e.g. the sound speed:

—-1/2
c | YRT /T y—1_, !
— = =4/==(14"—-M )
Co YRT, T, + 2

T(K)
300
20 calorically perfect ideal gas
200 R = 0.287 kJ/(kg K)

5(} Y - 7/5
150 ~_| stagnation temperature = 300 K
100

0 2 4 6 8 0 M

Figure 3.2: Static temperature versus Mach number squared.

p (bar)
0.8

\ calorically perfect ideal gas
0.6 R = 0.287 kJ/(kg K)

\ y="17/5
04 stagnation pressure = 1 bar
0.2
—
0 2 4 6 8 0 M

Figure 3.3: Static pressure versus Mach number squared.

I
Example 3.2
Airplane problem

(3.140)
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P (kg/m3)

1.2

It calorically perfect ideal gas
08 \ R = 0.287 kJ/(kg K)
y="7/5
stagnation density = 1.16 kg/m3

0.6

0.4

0.2

M2

Figure 3.4: Static density versus Mach number squared.

Given: An airplane is flying into still air at « = 200 m/s. The ambient air is at 288 K and 101.3 kPa.
Find: Temperature, pressure, and density at nose of airplane
Assume: Steady isentropic flow of C.P.I.G.

Analysis: In the steady wave frame, the ambient conditions are static while the nose conditions are

stagnation.
200 =
M=Y-_2 _ s = 0.588 (3.141)
¢ VIRT \/ 1 (287 L) 288 K
5 kg K
SO
1 2 1 2
T,=T(1+:M?) = (288 K) (14 -0.5887 ) = 3079 K (3.142)
1 ,\?2 101.3 kP k
o = p <1 + —M2) - a — = 145 -2 (3.143)
g (0.287 Q—JK) (288 K) (1 + £0.5882) 2 m
1 \? 1 :
Po=p (1 + 3M2> = (101.3 kPa) (1 + g0.5882> — 128 kPa (3.144)

Note the temperature, pressure, and density all rise in the isentropic process. In this wave frame, the
kinetic energy of the flow is being converted isentropically to thermal energy.

3.2.2 Sonic properties

Let “*” denote a property at the sonic state M? =

T 1. \! 2

= = (14 1—12 = 14

T, <+ 2 ) v+ 1 (3.145)
1 1

P —1,) 2\t

o= 1+ 11— = — 3.146

Po ( * 2 ) (7+1) ’ ( )
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p. P =1\ (2 )ﬁ

LA s | (), 3.147

Po < 2 ) <7+1 ( )

~1/2

Cs vy—1_4 2

S (14100 = — 3.148

Co < T ) v+ 1 (3.148)

3
w, = ¢, =/4RT, = | —L_RT,. (3.149)
v+1
If the fluid is air, we have v = 7/5 and

T
—t = 0.8333 3.150
To Y ( )
P — 06339, (3.151)
Po
P~ 05083, (3.152)
Po
“ — 09123, (3.153)
Co

3.2.3 Effect of area change

To understand the effect of area change, the influence of the mass equation must be con-
sidered. So far we have really only looked at energy. In the isentropic limit the mass,
momentum, and energy equation for a C.P.I.G. reduce to

dp du dA
7y - 154
p + ” + 1 0, (3.154)
pudu+dp = 0, (3.155)
dp = ’y@. (3.156)
p p
Substitute energy, then mass into momentum:
pu du + ngp — 0, (3.157)
pu du + 7L (—3 du— "2 dA) — 0, (3.158)
P\ u A
D 1 1
Pl_L g2 aa) — 1
du+7p "> du "I d ) 0, (3.159)
p/p pdA
1- = 222 1
du( - ) S (3.160)
du p/p p/p dA
— 11— = — .161
u ( u? u? A’ (3.161)
du 1 1 dA
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%U(Mz_l) = %, (3.163)
du 1 dA

Figure gives show the performance of a fluid in a variable area duct. We note

Consider u > 0

Subsonic Subsonic

Diffuser w
e

B —

dA > 0, M* < 1so
du < 0, flow slows down dA <0, M*< 1so0

dp >0 du > 0, flow speeds up
dp <0

Supersonic Supersonic

V w
_ >

_ >

dA >0, M’> 150 dA <0, M*> 150

du > 0, flow speeds up du < 0, flow slows down
dp < 0 dp >0

Figure 3.5: Behavior of fluid in sub- and supersonic nozzles and diffusers.

e there is a singularity when M? = 1,

e if M? =1, we need dA =0,

e area minimum necessary to transition from subsonic to supersonic flow,
e it can be shown an area maximum is not relevant.

Consider A at a sonic state. From the mass equation:

puA = puu A, (3.165)
puA = pic A, (3.166)
A . 1 . 1 « VYR /YRT

A P P SRT =YD il (3.167)
A, pu p u  pNYRT u

A « [T 1 «Po | TNT, 1

S N e N —. (3.168)
A, p VT po p N T,T M
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Substitute from earlier-developed relations and get

A1 2 =1 L\ )\
I - M<7+1<1+ 5 M)) . (3.169)

Figure shows the performance of a fluid in a variable area duct.

(SIS
-

A A*
4 \ calorically perfect
\ ideal gas
& R = 0.287 kJ/(kg K)
9 \ y="7/5
/
M

0 0.5 1 1.5 2 2.5 3
Figure 3.6: Area versus Mach number for a calorically perfect ideal gas.

Note that
e A/A, has a minimum value of 1 at M =1,
e For each A/Ax > 1, there exist two values of M, and

o A/A, > o0cas M — 0or M — oc.

3.2.4 Choking

Consider mass flow rate variation with pressure difference. We have then
e small pressure difference gives small velocity and small mass flow,

e as pressure difference grows, velocity and mass flow rate grow,

velocity is limited to sonic at a particular duct location,

this provides fundamental restriction on mass flow rate,

it can be proven rigorously that sonic condition gives maximum mass flow rate.

Mimaz = PrlsAs, (3.170)

1
2 71 2
Zf ideal gas: = = po (ﬁ) ! ( f)/——:/lRTo) A*, (3171)
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2 \71/ 2 \
= p0< ) <—) V7 YRT,A,, (3.172)

v+1 y+1
R e
= po <ﬁ) \/ ')/RTOA* (3173)

A flow which has a maximum mass flow rate is known as choked flow. Flows will choke
at area minima in a duct.

[
Ezxample 3.3

Isentropic area change problem with choking

Given: Air with stagnation conditions p, = 200 kPa T, = 500 K flows through a throat to an exit
Mach number of 2.5. The desired mass flow is 3.0 kg/s,

Find: a) throat area, b) exit pressure, c¢) exit temperature, d) exit velocity, and e) exit area.

Assume: C.P.I.G., isentropic flow, v = 7/5

Analysis:
o 200 kP k
po= 22 — 2 — 1.394 —2. (3.174)
RT, (0.287 Q—JK) (500 K) m
Since it necessarily flows through a sonic throat:
)\
Mmaz = Po (—) VYRTL A, (3.175)
v+1
mmaw
A, = Taar , (3.176)
=
po(35)" " VART,
3 ke
A, = u = 0.008297 m?. (3.177)
(1.394 %) (0.5787) \/1.4 (287 k%K) (500 K)
Since we know M, use isentropic relations to find other exit conditions.
- —3.5
SR SVCANS Ly o
pe = po (145 = (200 kPa) (1+ 225 = 11.71 kPa, (3.178)
Y-l - | -
T. = T,(1+-5—M) =(500K)(1+:25 = 2222 K. (3.179)
Note
e 11.71 kP k
. A a =0.1834 m—g3. (3.180)

pe = 2 =
RT, kJ
(0.287 kg—K) (222.2 K)

2adopted from White, Fluid Mechanics McGraw-Hill: New York, 1986, p. 529, Ex. 9.5
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Now the exit velocity is simply

Ue = Mece = Mo\/yRT, = 2.5\/1.4 <287 ﬁ) (222.2 K) = 747.0 =. (3.181)
g S

Now determine the exit area.

1y+1
A, 2 v—1 231
A = 1 M? 3.182
M, ('H—l ( + 2 e)) ’ ( )
0.008297 m2 /5 1 3
= 2T (214 2252 —0.0219 m2. 1
o F <6< + = 5)) 0.0219 m (3.183)

3.3 Normal shock waves

This section will develop relations for normal shock waves in fluids with general equations of
state. It will be specialized to calorically perfect ideal gases to illustrate the general features
of the waves.

Assume for this section we have

e one-dimensional flow,

steady flow,

no area change,

viscous effects and wall friction do not have time to influence flow, and

heat conduction and wall heat transfer do not have time to influence flow.

We will consider the problem in the context of the piston problem as sketched in Figure 3.7

The physical problem is as follows:

e Drive a piston with known velocity v, into a fluid at rest (v; = 0) with known proper-
ties, py, p1 in the x* laboratory frame,

Determine the disturbance speed D,

Determine the disturbance properties v, pa, p2,

in this frame of reference we have an unsteady problem.

Transformed Problem:
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Do n
Py P,
Laboratory Frame
¥
u=v-D v=u-+ D
z=1a%- Dt z¥=x+ Dt

U= U
Dy

u=-D
Py

——

Figure 3.7: Normal shock sketch.

Steady Wave Frame

T

e use a Galilean transformation x = z* — Dt, u = v — D to transform to the frame in

which the wave is at rest, therefore rending the problem steady in this frame,

e solve as though D is known to get downstream “2” conditions: uq(D), pe(D), ...,

e invert to solve for D as function of uy, the transformed piston velocity: D(us),

e back transform to get all variables as function of vy, the laboratory piston velocity:

D(U2)7P2(U2), p2(U2),

3.3.1 Rankine-Hugoniot equations

Under these assumptions the conservation principles in conservative form and equation of

state are in the steady frame as follows:

(3.184)
(3.185)

(3.186)
(3.187)

Upstream conditions are p = py, p = p1, u = —D. With knowledge of the equation of state,
we get h = h;. In what is a natural, but in fact naive, step we can integrate the equations
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from upstream to state “2” to give the correct Rankine-Hugoniot jump equations.@

PruUusy = —plD, (3188)

pous +py = p1D*+py, (3.189)
2 D2

ho + % = i+, (3.190)

hg = h(pg,pg). (3191)

This analysis is straightforward and yields the correct result. In actuality, however, the
analysis should be more nuanced. We are going to solve these algebraic equations to arrive at
discontinuous shock jumps. Thus, we should be concerned about the validity of of differential
equations in the vicinity of a discontinuity.

As described by LeVequel the proper way to arrive at the shock jump equations is to use
a more primitive form of the conservation laws, expressed in terms of integrals of conserved
quantities balanced by fluxes of those quantities. If q is a set of conserved variables, and
f(q) is the flux of q (e.g. for mass conservation, p is a conserved variable and pu is the flux),
then the primitive form of the conservation law can be written as

d [

3 | @) de =f(a(e, 1) — fla(ez, ). (3.192)

Here we have considered flow into and out of a one-dimensional box for x € [x1, x5]. For our
Euler equations we have

p po
q= pu , f(q) = pu”+p : (3.193)
p(e+ 1u?) pu (e + 3u? + %)

If we assume there is a discontinuity in the region = € [x1,x2] propagating at speed D, we
can break up the integral into the form

d xr1+Dt™ T2

= alz, )d:c+% [ aet) de=fa(0) — fat ). (3199

Here x; + Dt~ lies just before the discontinuity and x; + Dt™ lies just past the discontinuity.
Using Leibniz’s rule, we get
xz1+Dt™ 8(1 x9 8
q(xy —I—Dt_,t)D—|—0+/ — dz+0—q(zy +Dt+,t)D—|—/ — dx (3.195)
T 8t x1+Dtt 8

= f(q(z, 1) — f(alzs, 1))

3William John Macquorn Rankine, 1820-1872, Scottish engineer and mechanician, pioneer of thermody-
namics and steam engine theory, taught at University of Glasgow, studied fatigue in railway engine axles.

4Pierre Henri Hugoniot, 1851-1887, French engineer.

SLeVeque, R. J., 1992, Numerical Methods for Conservation Laws, Birkhiuser, Basel.
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Now if we assume that on either side of the discontinuity the volume of integration is suffi-
ciently small so that the time and space variation of q is negligibly small, we get

q(z1)D —q(z2) D = f(q(z1)) — f(a(e2)), (3.196)
D(a(z1) —aq(z2)) = f(a(z1)) - fla(zz)). (3.197)

Defining next the notation for a jump as

[a(z)] = a(z2) — alz1), (3.198)

the jump conditions are rewritten as

Dla(2)] = [f(a(=))]- (3.199)

If D =0, as is the case when we transform to the frame where the wave is at rest, we
simply recover

0 = f(a(z1)) — f(a(22)), (3.200)
fla(z1)) = fla(z2)), (3.201)
[fla(z))] = (3.202)

That is the fluxes on either side of the discontinuity are equal. This is precisely what we
obtained by our naive analysis. We also get a more general result for D # 0, which is the
well-known

=
e

p - fla(@)) —faz,)) _ [fla(@))]
q(w2) — q(x1) [a(=)]

The general Rankine-Hugoniot equation then for the one-dimensional Euler equations across
a non-stationary jump is given by

(3.203)

P2 — pP1 P2tz — P1U1
D pPalle — PrUy = p2u% + p2 — plu% — P
p2 (€2 + 3u3) — p1 (e1 + 1ud) Polls (62 + Jud+ ’;—z) — 1y ((21 + ui+ %)
(3.204)

3.3.2 Rayleigh line
If we operate on the momentum equation as follows

p2 = p1+pD? = pous, (3.205)

2 )2 2,,2
p = p A 2 (3.206)

P1 P2
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Since mass gives us psus = p2D? we get an equation for the Rayleigh LGeﬁ a line in (p,1/p)
space:

1 1
p2 = p1 + p1D? (E - g) : (3.207)

Note that the Rayleigh line

e passes through ambient state,
e has negative slope,
e has a slope with magnitude proportional to square of the wave speed, and

e is independent of state and energy equations.

3.3.3 Hugoniot curve

Let us now work on the energy equation, using both mass and momentum to eliminate
velocity. First eliminate uy via the mass equation:

2 2
uj D

s = 2 (3.208)
1 (D D>
W (22) e
2 P2 2
D? 1 ?
he —hi+ — [ (2) —1) = 21
2 — Ny + 5 <<p2) 0, (3.210)
5 ("77)
hy — hy + — 0, 3.211
-me 2 (A2 321)
D>
he = hi + = ((pl pg)p2(p1+p2)) _ (3.212)
2

Now use the Rayleigh line, Eq. (3.:207), to eliminate D?:

2 = - (5) (5 - ) (3:213)
o= e () (%)

» = ()25

6John William Strutt (Lord Rayleigh), 1842-1919, aristocratic-born English mathematician and physi-
cist, studied at Cambridge, influenced by Stokes, toured the United States rather than the traditional
continent of Kurope, described correctly why the sky is blue, appointed Cavendish professor experimental
physics at Cambridge, won the Nobel prize for the discovery of Argon, described traveling waves and solitons.

(3.214)
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So the energy equation becomes

b i (3) (22 (52 ) <0

by — by — = (p2 — 1) (i) (p1+p2) — 0, (3217

2 1

1 1 1
he —hy — = (p2 — —+—] = 0 21
v=hi= g Gep) (240 ) =0 s

Regrouping to see what induces enthalpy changes, we get

hy — hy = (p2 — p1) (%) (i + %) : (3.219)

This equation is the Hugoniot equation. It

e holds that enthalpy change equals the product of the pressure difference and mean
volume,

e is independent of wave speed D and velocity uy, and

e is independent of the equation of state.

3.3.4 Solution procedure for general equations of state
The shocked state can be determined by the following procedure:
e specify the equation of state h(p, p),

e substitute the equation of state into the Hugoniot, Eq. (8.219), to get a second relation
between p, and po,

e use the Rayleigh line, Eq. (8:207)), to eliminate ps in the Hugoniot so that the Hugoniot
is a single equation in po,

e solve for p, as functions of “1” and D,
e back substitute to solve for po, us, ho, 15 as functions of “1” and D,
e invert to find D as function of “1” state and us,

e back transform to laboratory frame to get D as function of “1” state and piston velocity
Vg = Up.
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3.3.5 Calorically perfect ideal gas solutions
Let us follow this procedure for the special case of a calorically perfect ideal gas.
(T = Tp) + ho, (3.220)
= pRT. (3.221)
Thus,
p Po
ho— P N 3.222
@ <Rp Rp0> " ( )
Cp (D Do
L = 2 <_ — _> + hy, 3.223
R\p  po ( )
ho= @ (3—&)+hm (3.224)
Cp—=C \P  Po
h o= —l—(g—&)+ho (3.225)
Yy=1\p po

Evaluate at states 1 and 2 and substitute into the Hugoniot equation, Eq. (3.219):

(G2 (508
y—=1\p2 po Yy—1\p1  po

1\ /1 1

L(@—&) — (p2 —p1) (—) (—+—

Yy—=1\p2 m 2/ \p2 m
1

< y+1 1
P 2(v=1) p2

o) (1)

1) ( y+1 1 1 0

RS _p _—_— — = 5
201)  T\2(v=1) o1 2p
<7+11 1) <7+11 1

pl———— ] ————— =0,
Yy=1lp2 p Y=1p1  p2

ytl 1 1

pr=plg o2

v—1 p2 p1

e a hyperbola in (p,1/p) space,

e 1/po = (v—1)/(v+1)(1/p1) causes py — o0, note = v = 1.4, p, — 6 for infinite

pressure, and

e as 1/py — 00, p2 — —p1(y — 1)/ (v + 1), note negative pressure, not physical here.
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p (kPa)
500 :
/shocked state
Pyl 1 :
400
excluded zone
slope of Rayleigh line < 0
excluded o | : o )
zone, «— Rayleigh line, slope - D
Lp < 1ppin from mass and momentum
200 -
Hugoniot,
initial state from energy
100 frfrtm === K= e e o e e e e s
P excluded zone, 2nd law violation
1., 1/ 2 3 4 5 6 7 1p (kg/m?
“¢1) p, LI P /P (kg/m?)
Y+ « \ excluded zone, negative pressure
/P min = —1
Y+l py

Figure 3.8: Rayleigh line and Hugoniot curve for a typical shocked gas.

The Rayleigh line and Hugoniot curve are sketched in Figure [3.8
Note:

e intersections of the two curves are solutions to the equations,

e the ambient state “1” is one solution,

the other solution “2” is known as the shock solution,

the shock solution has higher pressure and higher density,

higher wave speed implies higher pressure and higher density,
e a minimum wave speed exists, it

— occurs when the Rayleigh line is tangent to the Hugoniot curve,
— occurs for infinitesimally small pressure changes,
— corresponds to a sonic wave speed, and

— has disturbances which are acoustic.
e if pressure increases, it can be shown that entropy increases, and

e if pressure decreases (for wave speeds which are less than sonic), entropy decreases;
this is non-physical.
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Substitute the Rayleigh line into the Hugoniot equation to get a single equation for ps:

1 1 yHl1 1
—1
p+piD? (— - —) =pias (3.226)
1 P2 v—1 p2 p1

This equation is quadratic in piz and factorizable. Use computer algebra to solve and get
4
P1

1 14-1 2
-7 <1+ i pl). (3.227)

two solutions, one ambient p% = — and one shocked solution:

p2 pmy+1 (v-1)D2p
The shocked density ps is plotted against wave speed D for CPIG air in Figure
Note
e density solution allows allows all wave speeds 0 < D < o0,

e plot range, however, is ¢; < D < o0,

Rayleigh line and Hugoniot show D > ¢4,

solution for D = D(v,), to be shown, rigorously shows D > ¢,

strong shock limit: D* — oo, ps — (y+1)/(y — 1),

acoustic limit: D* — ypy/p1, pa — p1, and
e non-physical limit: D* — 0, ps — 0.

Back substitute into Rayleigh line and mass conservation to solve for the shocked pressure
and the fluid velocity in the shocked wave frame:

2 s v—1

= D” — , 3.228

b2 - 1,01 - lpl ( )
—1 2y D1

= -D—(14+—--—+——]. 3.229

2 7+1< (7—1)D2p1) (3.229)

The shocked pressure ps is plotted against wave speed D for CPIG air in Figure3.I0 including
both the exact solution and the solution in the strong shock limit. Note for these parameters,
the results are indistinguishable. The shocked wave frame fluid particle velocity us is plotted
against wave speed D for CPIG air in Figure 3.1Il The shocked wave frame fluid particle

Mach number, M3 = pyu3/(vp2), is plotted against wave speed D for CPIG air in Figure
B.12
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strong
) shock
py (kg/m?) limit
7
6
5 calorically perfect ideal gas
4 exact y=17/5
3 solution R = 0.287 kJ/(kg K)
2
1
D (m/s)
T’)OU 1000 1500 2000 2500 3000 !
D= Dmm =

Figure 3.9: Shock density versus shock wave speed for calorically perfect ideal air.

p2 (Pa)
8 x10°
6 x10° calorically perfect ideal gas
ambient = Y="17/5
4x10° 100000 Pa R = 0.287 kJ/(kg K)
\ exact !
2 x10° solution and
strong shock limit
D (m,"S)
TSOO 1000 1500 2000 2500 3000
D= Dmm !

Figure 3.10: Shock pressure versus shock wave speed for calorically perfect ideal air.

Uy (m/s)

= - - D (m/s)
500 1000 1500 2000 2500 3000
-100
strong
-200 shock calorically perfect ideal gas
/5
-300 limit 1= 7/5 ,
R = 0.287 kJ/(kg K)
-400
exact
-500 solution
u = -¢
D= Dmin -G

Figure 3.11: Shock wave frame fluid particle velocity versus shock wave speed for calorically

perfect ideal air.
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strong
shock
limit
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Figure 3.12: Mach number squared of shocked fluid particle versus shock wave speed for

calorically perfect ideal air.
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Note in the steady frame that the Mach number of the
e undisturbed flow is (and must be) > 1: supersonic, and
e shocked flow is (and must be) < 1: subsonic.

Transform back to the laboratory frame u = v — D:

7—1< 2y pl)
w—D = —p—— (1421 3.230
? v+ 1 (v — 1) D2 p, (3:230)
y—-1 2y m
- p-p— (14 2L 1) 3.231
02 7+1< +(7—1)1)2[)1) (3.231)

Manipulate the above equation and solve the resulting quadratic equation for D and get

1 1\’
D=2 1 2 () (3.232)
4 P1 4

Now if vy > 0, we expect D > 0 so take positive root, also set the velocity equal to the
piston velocity vy = vy,.

1 1\?
p_1*t Up+\/%+vg<%>. (3.233)
1

Note:
e acoustic limit: as v, — 0, D — ¢;; the shock speed approaches the sound speed, and
e strong shock limit: as v, — 0o, D — v,(y+1)/2.

The shock speed D is plotted against piston velocity v, for CPIG air in Figure[3.13] Both
the exact solution and strong shock limit are shown.

(@/s) calorically perfect ideal gas

Y="7/5
R = 0.287 kJ/(kg K)

exact
1200 solution

a0
1000
strong
shock
limit

800

. 600
acoustic

limit, — 400
D—¢ 200

v, (m/s )
200 400 600 800 1000 *

Figure 3.13: Shock speed versus piston velocity for calorically perfect ideal air.
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If we define the Mach number of the shock as

D
M, =—, (3.234)
(&1
we get
Y S R PO B R (3.235)
B 4 \/’}/RTl ’)/RTl 4 ’ )

The shock Mach number M, is plotted against piston velocity v, for CPIG air in Figure [3.14]
Both the exact solution and strong shock limit are shown.

exact
solution

calorically perfect ideal gas
y="T7/5

R = 0.287 kJ/(kg K)
strong

shock

acoustic limit
limit,
M~ 1 0.5

- vy (/)
200 400 600 800 1000

Figure 3.14: Shock Mach number versus piston velocity for calorically perfect ideal air.

3.3.6 Acoustic limit

Consider that state 2 is a small perturbation of state 1 so that

p2 = p1+A4Qp, (3.236)
Uy = U+ Aul, (3237)
p2 = pit+Ap. (3.238)

Substituting into the normal shock equations, we get

(p1 +Ap) (ur + Au) = pruy, (3.239)
(p1 + Ap) (ug + Au)2 +(p1+Ap) = Pl + pi, (3.240)
v p+Ap 1 2 Y op1 1o,
L A St Aw)? = LBy Sy 3.241
N P PR y—1p 2" (3.241)

Expanding, we get

prur +ur (Ap) + p1 (Au) + (Ap) (Au) = p1uy
(prua® + 2p1us (Au) 4+ ur® (Ap) + pr (Au)” + 2uy (Au) (Ap) + (Ap) (Au)?)
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+(p1+ Ap) = pru® +

Nz D1 I 2
—— | =+ —Ap—=A —l—...)+—u + 2uy (Au) + (Au

7—1<P1 p1 i ’ 2(1 1 (Au) + (Au)’)

Y P 2

y—1p

1
—U
21

Subtracting the base state and eliminating products of small quantities yields

u (Ap)+ pr (D) = 0, (3.242)
2p1uy (Aw) +u 2 (Ap) + Ap 0, (3.243)
Y 1 P1
— [ —Ap—=Ap | +u; (Au 0. 3.244
7__1<p1 P p) 1 (Au) (3.244)
In matrix form this is

uy p1 0 Ap 0
U12 2p1u1 1 Au = 0 (3245)

S o Fa/ \ A 0

As the right hand side is zero, the determinant must be zero and there must be a linear

dependency of the solution. First check the determinant:

27 ) ( Yoo ¥ m)
u u—u | —p| —— —+— =] = 0,
1<7—1 b \v—1 0 -1 2

2

(751 1 2 pl)
77— (y—1)— —— (vul+72) = o0,
e @r= - 1) - 2 (r e 2
2 2 b .
m(7+U—<7m+v—> = 0,
1
uw? = VEIC%
P1

So the velocity is necessarily sonic for a small disturbance.
Take Au to be known and solve a resulting 2 x 2 system:

( Uy 0 ) (Ap) (—plAu)
1 1 pu— .

Solving yields

Bp = =T
g
Ap = —m 7% Au = —pic1Au.
1
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3.4 Flow with area change and normal shocks

This section will consider flow from a reservoir with the fluid at stagnation conditions to a
constant pressure environment. The pressure of the environment is commonly known as the

back pressure: py.

Generic problem: Given A(x), stagnation conditions and p,, find the pressure, tempera-

ture, density at all points in the duct and the mass flow rate.

3.4.1 Converging nozzle

A converging nozzle operating at several different values of py is sketched in Figure3.15l The

m/mma:t
d
\—J D ;] e C
- b
Po Pe
/ :
0 : ! pb/p 0
P/ 1

,,,,,,,, a~-subsonic exit
———————— b--subsonic exit
,,,,,,,, c--sonic exit

-—-- d--choked, external expansion

—~ e--choked, external expansion

Figure 3.15: Converging nozzle sketch.

flow through the duct can be solved using the following procedure:

e check if p, > p,

e at any point in the flow where A is known, compute A/A, and then invert A/A, relation

if so, set p. = p,
determine M, from isentropic flow relations,

determine A, from A/A, relation,

to find local M.

Note:
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e These flows are subsonic throughout and correspond to points a and b in Figure .15

e If p, = p, then the flow is sonic at the exit and just choked. This corresponds to point
c in Figure [3.15]

o If p, < p,, then the flow chokes, is sonic at the exit, and continues to expand outside
of the nozzle. This corresponds to points d and e in Figure 3.5l

3.4.2 Converging-diverging nozzle

A converging-diverging nozzle operating at several different values of p, is sketched in Figure

0. 16l
\/ Py

—_—
Po Pt DPe
—_—
possible
normal
shock
p(2)/po
1 A e e e o - - o L o o e e e e e e e e e e e - -

a--subsonic exit

b--subsonic exit
c--subsonic design

e-shock at end of duct

f--external compression

I
I
I
throat X
| —— g--supersonic design
! | h--external expansion
T I X
Tt Te
m/ Mg
hg fe d ¢
1 e —=o
I
I
! b
I
I
I
| a
I
I
0

p*/ 0 I1 pb/p()
Figure 3.16: Converging-diverging nozzle sketch.
The flow through the duct can be solved using the a very similar following procedure
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e set A, = A,,

with this assumption, calculate A./A,,

determine M, gyp, Mesup, both supersonic and subsonic, from A/A, relation,

determine pegup, Pesup, from Mesyp, Mesup; these are the supersonic and subsonic design
pressures,

if pp > Peswp, the flow is subsonic throughout and the throat is not sonic. Use same
procedure as for converging duct: Determine M, by setting p. = p, and using isentropic
relations,

if Pesub > Db > Desup, the procedure is complicated.

— estimate the pressure with a normal shock at the end of the duct, pegy,.
— If py > pesn, there is a normal shock inside the duct,

— If py < pesn, the duct flow is shockless, and there may be compression outside the
duct.

o if pesup = Db, the flow is at supersonic design conditions and the flow is shockless, and

o if pp < Pesup, the flow in the duct is isentropic and there is expansion outside the duct.

3.5 Rarefactions and the method of characteristics

Here we discuss how to model expansion waves in a one-dimensional unsteady, inviscid, non-
heat conducting fluid. This analysis is a good deal more rigorous than much of traditional
one-dimensional gas dynamics, and draws upon some of the more difficult mathematical
methods we will encounter.

In assuming no diffusive transport, we have eliminated all mechanisms for entropy gen-
eration; consequently, we will be able to model the process as isentropic. We note that even
without diffusion, shocks can generate entropy. However, the expansion waves are inherently
continuous, and do remain isentropic. We will consider a general equation of state, and
later specialize to a calorically perfect ideal gas. The problem is inherently non-linear and
is modeled by partial differential equations of the type which is known as hyperbolic. Such
problems, in contrast to say Laplace’s equation, which requires boundary conditions, require
initial data only, and no boundary data.
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3.5.1 Inviscid one-dimensional equations

The equations to be considered are shown here in non-conservative form

op dp ou
5t + Uos + Py = 0, (3.253)
ou ou dp
pop T oum o = 0, (3.254)
ds ds
e + Uge = 0, (3.255)
p = plp,s). (3.256)

Here we have written the energy equation in terms of entropy. The development of this was
shown in Chapter 1. We have also utilized the general result from thermodynamics that any
intensive property can be written as a function of two other independent thermodynamic
properties. Here we have chosen to write pressure as a function of density and entropy. Thus
we have four equations for the four unknowns, p, u, p, s.

Now we note that

dp dp
dp = —| d —| d 2

D 8p's o+ 8s'p s, S0, (3.257)

Jp dp| dp Op| Os
oy _ 9Py 9P il Bl 3.258
dz|, 8p)58xt+8sp8xt (3.258)

Now, let us define thermodynamic properties ¢? and ¢ as follows

= Op , (= op (3.259)

Pl Js|,

We will see that ¢ will be unimportant, and will be able to ascribe to ¢? the physical
significance of the speed of propagation of small disturbances, the so-called sound speed,
which we have already encountered in acoustics. If we know the equation of state, then we
can think of ¢ and ¢ as known thermodynamic functions of p and s. Our definitions give us

0 0 0

op _ 20 05

ox ox Ox
Substituting into our governing equations, we see that pressure can be eliminated to give
three equations in three unknowns:

(3.260)

op dp ou
E + ua—x + pa—x = 0, (3261)
ou ou  ,0p ds
pa + pua—x +c a_SL’ + Ca—x = 0, (3262)
Os Os
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Now if 0s/0t + u(0s/0x) = 0, we can say that if s = s(x, 1),

O0s 0s
ds Os dx Os
pri- + T (3.265)

Thus, on curves where dx/dt = u, we have from substituting Eq. ([3.265) into the energy
equation (3.263)

ds

— =0. 3.266
Thus we have converted the partial differential equation into an ordinary differential equa-
tion. This can be integrated to give us

s=0C, on a particle pathline, ‘Cil—f = u. (3.267)
This scenario is sketched on the so-called = — t diagram of Figure [3.17]

¢

A pathlines ..

5= 5,

Figure 3.17: x — t diagram showing maintenance of entropy s along particle pathlines
dx/dt = u for isentropic flow.

This result is satisfying, but not complete, as we do not in general know where the
pathlines are. Let us try to apply this technique to the system in general. Consider our
equations in matrix form:

1 00 9p w p 0 9p 0

b %
0 p 0 g—g +| & pu ¢ g—" =10]. (3.268)
00 1 o 0 0 wu " 0
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These equations are of the form

7ot

8uj

Vor =

A +B C,. (3.269)

As described by WhithamE] there is a general technique to analyze such equations. First
pre-multiply both sides of the equation by a yet to be determined vector of variables /;:

Yot

Now, this method will work if we can choose ¢; to render the above product to be of the
form similar to 0/0t + u(9/0x). Let us take

A, 2 (230 -
= mj% on Z—f =\ (3.272)

So comparing terms, we see that
;Ai; = my, (;B;j = Am;;, (3.273)
MiAi; = Amy, (3.274)

so, we get by eliminating m; that
l; (NA;; — Byj) = 0. (3.275)

This is a left eigenvalue problem. We set the determinant of AA;; —B;; to zero for a non-trivial
solution and find

A—u —p 0
—2 p(A—u) —C |=0. (3.276)
0 0 A—u

Evaluating, we get
(A =u) (p(A —w)?) + p(A —u)(—=c®) = 0, (3.277)
pA—u) (A—u)’ =) = 0. (3.278)

Solving we get

A=u, A=uzc (3.279)

"Gerald Beresford Whitham|, 1927-, applied mathematician and developer of theory for non-linear wave
propagation.
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Now the left eigenvectors ¢; give us the actual equations. First for A = u, we get

u—u —p 0
(¢ Ly (3) —c? plu—u) —C =(0 0 0), (3.280)
0 0 uU—u
0 —p O
0 0 0

Two of the equations require that ¢; = 0 and /5 = 0. There is no restriction on f3. We will
select a normalized solution so that

;= (0,0,1). (3.282)

Thus (;A;; 8uj/8t + (;B;;(0u;/0x) = (;C; gives

0 % w p 0 % 0
(0 0 1) 0 g—g+(oo1)c2puc g_" = (0 0 1)]0],
1 ds 0 0 u)\& 0
op p
t x
(001)%+(00u)% _ 0
O0s O0s
2 hu— = 0. 3.283
o or (3:283)

So as before with s = s(z,t), we have ds = (0s/0t)dt + (0s/0x)dx, and ds/dt = 0s/0t +
(dz/dt)(0s/0x). Now if we require dz/dt to be a particle pathline, dx/dt = u, then our

energy equation gives us

ds dx
— =0 — =u. 3.284
a0 w (3.284)
The special case in which the pathlines are straight in x —t space, corresponding to a uniform
velocity field of u(x,t) = u,, is sketched in the x — ¢ diagram of Figure 3.18

Now let us look at the remaining eigenvalues, A\ = u =+ c.

utc—u —p 0
(0 Ly L3) —c? plutc—u) —C =(0 0 0), (3.285)
0 0 utc—u
¢ —p 0
(6 by l3)| = Hpc —C | =(0 0 0). (3.286)
0 0 =£c

As one of the components of the left eigenvector should be arbitrary, we will take ¢; = 1; we
arrive at the following equations then

te—cly = 0,=ly = :I:E, (3.287)
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t

A

pathlines -

Figure 3.18: x — t diagram showing maintenance of entropy s along particle pathlines
dx/dt = u, for isentropic flow.

1
—pEpcly = 0,= ly=+—, (3.288)
c

—ng + C£3 = 0,= 63 = C_i (3289)

Thus ¢;A;;(0u;/0t) + €;B;;(0u;/0x) = (;C; gives

0
0 g—f u p 0
O (2 ]+(1 £ S)| & pu ¢
1)\ & 0 0 w

(1 2 %) ¢>+(uic pEpt £+

1
(1 =t 5|0
0

o O

SESINSN

"8y

Q%%:Q?
v v
Il
—~
—_
H_
(I
U~
N—
o O O
S~———

ot ox

ap dp . pou ¢ O0s ds
o e )%j:EEij(lj: >8x+028t ( ) = =0 (3.200)

dp dp p [ Ou ou ¢ 08 8 B
<8t+(u:|:c)ax):l: <8t+( + )az)Jr ( ) = 0, (3.291)

ap ap ou ou s

2 _— _— —

c (8t+( i—c)&g)i—pc<at—I—(ui—c)a )+<<8t (uj:c)ax) 0. (3.292)

Now on lines where dx/dt = utc, we get a transformation of the partial differential equations
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to ordinary differential equations:

d d d d
22 4 pc—u + C—S =0, on d_f =utec. (3.293)

A sketch of the characteristics, the lines on which the differential equations are obtained,
are sketched in the x — ¢ diagram of Figure [3.19

pathline
t . characteristic
acoustic dz
A characteristic e dt v
dx . . \ / S dl =
N L T
\ A e / i
. L AN o K acoustic
. N e W R 7 characteristic
. N N N 7 : 4
\ . ‘ \y\/ ) K : / ’
N "\ VN N L
\ N ; N le\ v
N \ / N R 'l/
\ N \ S 2
\ N / \ L/ ! \ /
\ ‘/k % | A ! ,
\ N /N | \/ | ,
\ / \ / \ | /\ 1 s
N ! N / A\ RN h /0
\ i R N ,
N ! ! \\\'\ / N A\ i 7
\7’/ s i N
}/\ I /N A
LN /) \ /N /\\\
N /R ’/l \ i
I /A / \ /o
/ \ / \ / \ / \
1 \ / \\ // \ / \
! A \ // Ay \
/ >

Figure 3.19: 1z — ¢ diagram showing characteristics for pathlines dz/dt = w and acoustic
waves dzx/dt = u £ c.

3.5.2 Homeoentropic flow of an ideal gas

The equations developed so far are valid for a general equation of state. Here let us now
consider the flow of a calorically perfect ideal gas, so p = pRT and e = ¢, T + é. Further
let us take the flow to be homeoentropic, that is to say, not only does the entropy remain
constant on pathlines, which is isentropic, but it has the same value on each streamline.
That is the entropy field is a constant. Consequently, we have the standard relations for a
calorically perfect ideal gas:

2 = 4L (3.294)
P

L= a (3.295)

p
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where A is a constant. Because of homeoentropy, we no longer need consider the energy
equation, and the linear combination of mass and linear momentum equations reduces to

02% + ch—? =0, on ‘é—f =uztec. (3.296)
Rearranging, we get
du dp c dx
— = F = — =uzec 3.297
at - di p’ on a e ( )
Now ¢ = yp/p = vAp"~!, and ¢ = /7 Ap'T, so
du y—1 dp 2 d y—1
= F VA T — A (0 3.208
dt VAP g TV T g P (3.298)

Regrouping, we find
d 2 a1\

d 2
- <u e 10) = 0. (3.300)

Following notation used by Courant and Friedrichsﬂ we then integrate each of these equa-
tions, which are homogeneous, along characteristics to obtain algebraic relations

d
u+ ¢ = 2r, on 2wt ¢, C7 characteristic, (3.301)
v—1 dt
2 dx _ .
u———c = —2s, on — =u—c, (7 characteristic. (3.302)
v—1 dt

A sketch of the characteristics is given in the x — ¢ diagram of Figure 3.20. Now r and
s can take on different values, depending on which characteristic we are on. On a given
characteristic, they remain constant. Let us define additional parameters a and 3 to identify
which characteristic we are on. So we have

2
u+ ¢ = 2r(3), on Cfi—f =u+c¢, C7 characteristic, (3.303)
N -
_ 2 = —2s(a), on o, - ¢, C7 characteristic (3.304)
u o ¢ = @), T =u—C racteristic. :

8Richard Courant), 1888-1972, Prussian-born German mathematician, received Ph.D. under David Hilbert
at Gottingen, compiled Hilbert’s course notes into classic two-volume text of applied mathematics, drafted
into German army in World War I, where half of his unit was killed in action, developed telegraph system
which used the earth as a conductor for use in the trenches of the Western front, expelled from Gottingen
by the Nazis in 1933, fled Germany, and founded the Courant Institute of Mathematical Sciences at New
York University, author of classic mathematical text on supersonic fluid mechanics.

9Kurt Otto Friedrichs, 1901-1982, German-born mathematician who emigrated to the United States in
1937, student of Richard Courant’s at Goéttingen, taught at Aachen, Braunschweig, and New York University,
worked on partial differential equations of mathematical physics and fluid mechanics.
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arbitrary region do wic on ¢ dr _ w-c on O
. dt dt g
of interest

»

X

Figure 3.20: z — ¢ diagram showing C* and C~ characteristics dx/dt = u + c.

These quantities are known as Riemann invariants

3.5.3 Simple waves

Simple waves are defined to exist when either () or s(«) are constant everywhere in x — ¢
space and not just on characteristics. For example say s(a) = s,. Then the Riemann

invariant
2

v—1

is actually invariant over all of x — ¢ space. Now the other Riemann invariant,

c = —28,, (3.305)

u+ 2 6= 2r (), (3.306)

N —
takes on many values depending on . However, it is easily shown that for the simple wave
that the characteristics have a constant slope in the x — ¢t plane as sketched in the z — ¢
diagram of Figure [3.21l

Now consider a rarefaction with a prescribed piston motion u = wu,(t). A sketch is given
in the x — ¢t diagram of Figure

10Georg Friedrich Bernhard Riemann, 1826-1866, German mathematician and geometer whose work in
non-Euclidean geometry was critical to Einstein’s theory of general relativity, produced the first major study
of shock waves.
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arbitrary region
of interest

Figure 3.21: x — t diagram showing C* for a simple wave.

For this configuration, the Riemann invariant u —2c/(y — 1) = —2s, is valid everywhere.
Now when ¢t = 0, we have u =0, ¢ = ¢,, S0

U———C=——C,. (3.307)

Consider now a special characteristic CT at ¢ = . At this time the piston moves with
velocity 4, and the fluid velocity at the piston face is

Uface(t) = ip. (3.308)
We get cface(f) from Eq. (3.307):
2 2
Uface = Cface = — Co, 3.309
o o (3.309)
ﬁp
. vy—1,
Crace(t =1) = ¢ + Tup. (3.310)
Also from Eq. ([3307), we have
—1
c=Co+ 5 (3.311)

which is valid everywhere.
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=0

Figure 3.22: x — t diagram showing C*t characteristics for isentropic rarefaction problem,
along with piston cylinder arrangement.

Now on C*, we have

2
u + c = Utgee + ———Ctace , 3.312
— < ! po— >t:£ ( )
2 v—1 R 2 vy—1,
U+ ﬁ (CO + 5 u) = Up + ﬁ (CO + Tup) s (3313)
2 R 2
2u + N 1CO = 2up + ﬁcw (3314)
v = @, on CF (3.315)
So on C'F, we have
—1
¢=cot VTap. (3.316)
So for C'*, we get
d —1 1
d—f:u+c=ap+co+77ap:%ap+co. (3.317)

for a particular characteristic, this slope is a constant, as was earlier suggested.
Now for prescribed motion, u, decreases with time and becomes more negative; hence

the slope of our C* characteristic decreases, and they diverge in x — t space. The slope of
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the leading characteristic is ¢,, the ambient sound speed. The characteristic we consider,
C'™", along with a few other is sketched in the x — ¢ diagram of Figure [3.23. We can use our

13

T
Figure 3.23: z — ¢ diagram showing C' for our rarefaction problem.

Riemann invariant along with isentropic relations to obtain other flow variables. From Eq.

B307), we get
c —1u
Z =1+ VTC_‘ (3.318)

Since the flow is homeoentropic, we have ¢/c, = (p/po)%1 and p/p, = (p/po)”, s0

2y

1\
pﬁ - (1 + 7763) , (3.319)
2
1 o1
pﬁ — (1 + VTCE) . (3.320)

3.5.4 Centered rarefaction

If the piston is suddenly accelerated to a constant velocity, then a family of characteristics
clusters at the origin on the x —t diagram and fans out in a centered rarefaction. This can also
be studied using the similarity transformation £ = z/t which reduces the partial differential
equations to ordinary differential equations. Relevant sketches comparing centered to non-
centered rarefactions are shown in in the x — t diagram of Figure B.24l

|
Example 3.4
Analyze a centered rarefaction fan propagating into calorically perfect ideal air for a piston suddenly
accelerated from rest to u, = —100 m/s. Take the ambient air to be at p, = 105 Pa, T, = 300 K.
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Figure 3.24: x —t diagram centered and non-centered rarefactions, along with pressure and

The ideal gas law gives p,

po/RT, = 10° Pa/((287 kJ /kg/K)(300 K)) = 1.16 kg/m3. Now

co = /ART, = \/ 287 —> (300 K) = 347 2

On the final characteristic of the fan, CT: u = u,

=100 2. So

7/5—1
- (347 E) LY (—100 E) —327 2
S 2 S S
2(/7/5)
(=100 m)\ T
+7/52 L S)> — 0.660

c:co+L

Now the final pressure is

pj 1Uj 771
1 =11
Po < T 2 Co> < 347 2

s
Hence py = 6.6 x 10* Pa. Since the flow is homeoentropic, we get

: k k
pr = po <ﬂ) - <1.16 —%) (0.660)%/7 = 0.863 —g.
Po m
And the final temperature is

66.0 x 10° P
Tf: Dy _ X a

N " J = 266.4 K.
prlt (0.863 &) (287 g )
From linear acoustic theory, Sec. [3.3.6] we deduce that

Au
Ap ~ —p,

, Ap ~ —pocoAu, AT ~ —(v—=1) OAu
Co

CC BY-NC-ND.
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We compare the results of this problem with the estimates of linear acoustic theory. and see

Apemact

Apemact
AT'emacif =

k k
~0.298 -2 Apjinear = —0.335 —2, (3.327)
m m
—34.0 x 10° Pa, Apiinear = —40.3 x 10° Pa, (3.328)
336K,  ATincar = —34.6 K. (3.329)

3.5.5 Simple compression

We sketch a simple compression in the x — t diagram of Figure [3.25]

T 41(

g /,/::/ formation

ambient
region

Figure 3.25:

x — t diagram for simple compression.

3.5.6 Two interacting expansions

We sketch two interacting expansion waves in the x — ¢ diagram of Figure 3.26l

3.5.7

Wall interactions

We sketch an expansion wall interaction in the x — ¢ diagram of Figure 3.27]
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Figure 3.26: «x — t diagram for two interacting expansion waves.

3.5.8 Shock tube

We sketch the behavior of a shock tube in the diagrams of Figure [3.2§]
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Figure 3.27: x — t diagram for expansion wall interaction.
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Figure 3.28:
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x —t and p, p, T versus x behavior for a shock tube.
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3.5.9 Final note on method of characteristics

We have described here a common and traditional approach to the method of characteristics
(MOC). Using common notation, we have written what began as partial differential equations
(PDEs) in the form of ordinary differential equations (ODEs), and it is often said that the
method of characteristics is a way to transform PDEs into ODEs. However, the equations
which result are certainly not in a standard form for ODEs; they are burdened with unusual
side conditions.

It is in fact more sound to state that the MOC transforms the PDEs in (z,t) space to
another set of PDEs in a new space (7, s) in which the integration is much easier. Consider
for example a model equation which is hyperbolic, the inviscid Burgers’ equation:

ou ou
5 T =0, (3.330)

Now consider a general transformation (x,t) — (r,s). Applying the chain rule, we get

ou ou g Ou Os

E == E@t + EE, (3331)
ou Ouor Ou0s
9% orow + 5 92" (3.332)
In transformed space, the inviscid Burgers’ equation becomes
oudr Ouds Oouor Ou0s
EE+EE+U<E%+$%) =0. (3333)
Now we also have
ox ox
de = o dr + 95 ds, (3.334)
ot ot
dt = o dr + 95 ds. (3.335)
With the Jacobia 9 Ot Or ot
z T
we invert to find
1 /ot ox
1 ot ox

WCarl Gustav Jacob Jacobi, 1804-1851, Prussian born, prolific German mathematician. The Jacobian
determinant was extensively studied by Jacobi, but first identified by Cauchy.
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So it is easy to see that we get the following for the partial derivatives

or 10x or 10t

5 T il (3.339)
Js 10z 0s 10t
%= Jar e T (3.340)
Substituting into the inviscid Burgers’ equation, we get
1 Oudzr Ouldx Oudt  Ou ot
J (_EE+$E+“(E£_EE)) =0, (3.341)
Oudx  Ouldx Ju Ot Ou Ot

Up to this point we have a perfectly general transformation and a perfectly general inviscid
Burgers’ equation, now cast in the transformed space. Let us now demand of our transfor-
mation that

% = u%, t(r,s) =s. (3.343)
The first of these says that on any line on which r is a constant that for a given change in
s, the ratio of the change in x to that in ¢ will be equal to w. This is a generalization of our
more standard statement that on characteristics, dz/dt = u. The second is a convenience,
and we actually need not be as restrictive. With this specification, our inviscid Burgers’
equation becomes

ou ox Ou Oz Oou Ot Oou Ot

—_— — +—— 4y — —uUu— — :O’ (3344)
or \8;5’_/ Os Or or \8;9_/ 0s \81"_/
= u% = =1 =0
Oou Ouodx ou

_UE e + UE =0, (3.345)
Ou Oz

7 0. .34
Js Or 0 (3.346)

Now, let us require that dz/0r # 0; hence in this special transformed space, we have that

ou
— =0. 3.347
P ( )
This has solution
u= f(r), (3.348)

where f(r) is an arbitrary function. We now substitute this into dz/0s = u(0t/0s) to get

ox ot
= = fr)s, (3.349)
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which can be integrated to get
x = f(r)t+ g(r). (3.350)

Now substituting ¢ = s and setting g(r) = r arbitrarily so that our transformation maps z
into r when t = s = 0, we get

x=f(r)s+r. (3.351)
In summary we can write a solution parametrically in terms of our transformed space as
u(r,s) = f(r), (3.352)
x(r,s) = f(r)s+r, (3.353)
t(r,s) = s. (3.354)

So given an initial distribution of u, we can select a domain in (r,s) and parametrically
determine u as a function of x and ¢. While this formulation maps every (7, s) into (u, z,t),
we cannot be assured that in physical space that the same (x,¢) may not map into non-
unique values of u! This multi-valuedness actually indicates that a shock has formed, and
correct insertion of a shock will eliminate the difficulty.

I
Ezxample 3.5
If we have the inviscid Burgers’ equation du/dt + u(du/0x) = 0 with u(z,0) = sin(wx), find u, and
plot u(z) for t =0, 1, 2.

When t = s =0, we have x = r, so f(r) = sin(7r), and our solution is

u(r, s) sin(7r), (3.355)
x(r,s) = ssin(mr) +r, (3.356)
t(r, s) s. (3.357)

We can use this solution to form parametric plots and effectively form u(x) for various values of ¢.
These are shown in Figure It is clear that as time advances the left side of the wave is flattening
and the right side is steepening. The left side is undergoing what is equivalent to a rarefaction, and the
right side is undergoing what is equivalent to a compression. At ¢ = 3, the wave has steepened enough
so that u is a multivalued function of x. In a physical problem, this would indicate that a shock has
formed.

This procedure can be extended to the Euler equations, though it is somewhat more com-
plicated. For isentropic Euler equations, Courant and Friedrichs give some special solutions
for rarefactions.
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Figure 3.29: u(zx) for t = 0,1, 2 for inviscid Burgers’ equation problem.
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Chapter 4

Potential flow

see Panton, Chapter 18
see Yih, Chapter 4

This chapter will consider potential flow. A good deal of highly developed and beautiful
mathematical theory was generated for potential flows in the nineteenth century. Addition-
ally, these solutions can be applied in highly disparate fields, as the equations governing
potential flow of a fluid are identical in form to those governing some forms of energy and
mass diffusion, as well as electro-magnetics.

Despite its beauty, in some ways it is impractical for many engineering applications,
though not all. As the theory necessarily ignores all vorticity generating mechanisms, it
must ignore viscous effects. Consequently, the theory is incapable of predicting drag forces
on solid bodies. Consequently, those who needed to know the drag, resorted in the nineteenth
century to far more empirically based methods.

In the early twentieth century, Prandtl took steps to reconcile the practical viscous world
of engineering with the more mathematical world of potential low with his viscous boundary
layer theory. He showed that indeed potential flow solutions could be of great value away
from no-slip walls, and provided a recipe to fix the solutions in the neighborhood of the wall.
In so doing, he opened up a new field of applied mathematics known as matched asymptotic
analysis.

So why study potential flows? The following arguments offer some justification.

e portions of real flow fields are well described by this theory, and those that are not can
often be remedied by application of a viscous boundary layer theory,

e study of potential flow solutions can give great insight into fluid behavior and aid in
the honing of a more precise intuition,

e fundamental solutions are useful as test cases for verification of numerical methods,
and

e there is pedantic and historical value in knowing potential flow.
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4.1 Stream functions and velocity potentials

We first consider stream functions and velocity potentials. We have seen velocity potentials
before in study of ideal vortices. In this chapter, we will adopt the same assumption of
irrotationality, and further require that the flow be two-dimensional. Recall if a flow velocity
is confined to the x — y plane, then the vorticity vector is confined to the z direction and
takes the form

0
w = 0 : (4.1)
v _ Ou
ox Jy
Now if the flow is two-dimensional and irrotational, we have
ov  Ju
— ——=0. 4.2
or 0Oy (42)

Moreover, because of irrotationality, we can express the velocity vector v as the gradient of
a potential ¢, the velocity potential:
v =Vo. (4.3)

Note that with this definition, fluid flows from regions of low velocity potential to regions of
high velocity potential. Thus,

99
= — 4.4
ax ) ( )
d¢
= —. 4.5
v =5 (15)
We see by substitution into the equation for vorticity, that this is true identically:
ov Ou 0 [0¢ 0 (0¢
)= (=) =0 4.6
or Oy Ox <8y) oy (01’) (4.6)
Now for two-dimensional incompressible flows, we have
Ju Ov
— 4+ —=0. 4.7
ox + oy (4.7)
Substituting for v and v in favor of ¢, we get
0 (0¢ 0 (0¢
—_ [ == —_ | = =0 4.8
Ox (355) "oy ((‘931) ’ “8)
Vi = 0. (4.9)
Now if the flow is incompressible, we can also define the stream function 1 as follows:
oY o
i S 4.10
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Direct substitution into the mass conservation equation shows that this yields an identity:

0 0 g (0 0 0

ou + u_9 _¢ + — __w =0
Oor Oy Ox \ 0y dy ox

Now, in an equation which will be critically important soon, we can set our definitions of u

and v in terms of ¢ and v equal to each other, as they must be:

(4.11)

? = g—¢ , (4.12)
<z \,y-/

u U

o N

Y 9 (4.13)
~~ ~

) v

Now if we differentiate the first equation with respect to y, and the second with respect to

T we see
D¢ 0*
= 4.14
OyOx oy?’ (4.14)
0% 0%
oxdy Oz’ (4.15)
now subtract the second from the first to get (4.16)
O
Vi = 0. (4.18)

Let us know examine lines of constant ¢ (equipotential lines) and lines of constant
(which we will see are streamlines). So take ¢ = C4, 1p = Cy. For ¢ we get

o) 0o
_ v 2 dy = 4.1
do o dx + 3y dy =0, (4.19)
dp = udr+vdy=0, (4.20)
dy - ¢ (4.21)
dx|,_c, v
Now for 1 we similarly get
L o, _
dy = e dz + ay dy = 0, (4.22)
dy = —vdr+udy=0, (4.23)
dy - ° (4.24)
dx W=Cs

We note two features
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° Z—Z} 6=y = —ﬁ; hence, lines of constant ¢ are orthogonal to lines of constant 1),
dx p=Cq

and
e on ¢ = Cy, we see that dx/u = dy/v; hence, lines of 1 = Cy must be streamlines.

As an aside, we note that the definition of the stream function u = 9y /dy, v = —0v /0,
can be rewritten as
0 dx 0 d
Op _dr 0y dy (4.25)
Oy dt ox dt
This is a common form from classical dynamics in which we can interpret ¢ as the Hamil-
tonian of the system. We shall not pursue this path, but note that a significant literature
exists for Hamiltonian systems.

Now the study of ¢ and v is essentially kinematics. The only incursion of dynamics is that
we must have irrotational flow. Recalling the Helmholtz equation, Eq. (2.132]), we realize that
we can only have potential flow when the vorticity generating mechanisms (three-dimensional
effects, non-conservative body forces, baroclinic effects, and viscous effects) are suppressed.
In that case, the dynamics, that is the driving force for the fluid motion, can be understood
in the context of the unsteady Bernoulli equation, Eq. (L9606, taken for incompressible flow
and negligible body force, in which limit, Eq. (L957) reduces to T = p/p:

op 1 P
5T 5(V¢)T Vo + e f(t). (4.26)

Note that we do not have to require steady flow to have a potential flow field. It is also easy
to correct for the presence of a conservative body force.

Now solutions to the two key equations of potential flow V3¢ = 0, V21 = 0, are most effi-
ciently studied using methods involving complex variables. We will delay discussing solutions
until we have reviewed the necessary mathematics.

4.2 Mathematics of complex variables

Here we briefly introduce relevant elements of complex variable theory. Recall that the
imaginary number i is defined such that

it =1, i=+v-1 (4.27)

IWilliam Rowan Hamilton, 1805-1865, Anglo-Irish mathematician.
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4.2.1 Euler’s formula

We can get a very useful formula Fuler’s formula, by considering the following Taylorg
expansions of common functions about ¢ = 0:
1 1

1 1
b= 141¢ —t2 —t3 —t4 —t5 ... 4.28
e +t+ 2 + a0 + m + = , ( )

1 1
: _ 2 _ 1.3 4y 145
sint = 0+t—i—0 Tt S't +04't 5!15 e (4.29)
cost = 1+0t—1t2+01t3+1t4+01t5 (4.30)
N 2! 34l 5! '

With these expansions now consider the following combinations: (cost+ isint),_, and

€'li_io:
1
cosf +isinfd = 1+1i0— —92 2593 + 94 + 2—95 : (4.31)
0 1 3 1 . N
e’ = 14+i0+ = (26’) 3‘(9) —I—Z(ZH) —I——(z@) +..., (4.32)
= 1+i9—§92 393+ 94—1—@ 95 (4.33)

As the two series are identical, we have Euler’s formula

" = cosf +isin6. (4.34)

4.2.2 Polar and Cartesian representations

Now if we take x and y to be real numbers and define the complex number z to be
z=x+1y, (4.35)
we can multiply and divide by /2% + y2 to obtain

:m(

(4.36)

x _ Y
+1 .
/.1'2 +y2 /,’L'2 _|_y2>
Noting the similarities between this and the transformation between Cartesian and polar
coordinates suggests we adopt

— 2 L2 — r ing—- 94
r=\a?+y? cos@-\/m, sm@-\/m. (4.37)

2Brook Taylor, 1685-1731, English mathematician and artist, Cambridge educated, published on capillary
action, magnetism, and thermometers, adjudicated the dispute between Newton and Leibniz over priority
in developing calculus, contributed to the method of finite differences, invented integration by parts, name
ascribed to Taylor series of which variants were earlier discovered by Gregory, Newton, Leibniz, Johann
Bernoulli, and de Moivre.
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2,

Y
8

Figure 4.1: Polar and Cartesian representation of a complex number z.

Thus we have

z = r(cosf+isind), (4.38)
z = re’. (4.39)

The polar and Cartesian representation of a complex number z is shown in Figure .1l
Now we can define the complex conjugate Z as

z = T —1y, (4.40)
— x . Yy
zZ = yat+y? —1 , 4.41
Y ( /«T2+y2 /«T2+y2> ( )
Z = r(cosf —isinf), (4.42)
zZ = r(cos(—0) +isin(—0)), (4.43)
z = re®. (4.44)
Note now that
2Z (z +iy)(x —iy) = 2° + 9 = |2]%, (4.45
= reflre ™ =12 = |22 (4.46)
We also have
0 _ —if
sinf = % (4.47)
0 —if
cosf = %. (4.48)
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4.2.3 Cauchy-Riemann equations

Now it is possible to define complex functions of complex variables W (z). For example take
a complex function to be defined as

W(z) = 24z, (4.49)
= (z+iy)* + (z +1iy), (4.50)
= 2%+ 2xyi —y* +x + iy, (4.51)
= (P®+z—y*) +i(2zy+y). (4.52)
In general, we can say
W(z) = ¢(z,y) + iv(z,y). (4.53)

Here ¢ and v are real functions of real variables.
Now W (z) is defined as analytic at z, if dW/dz exists at z, and is independent of the
direction in which it was calculated. That is, using the definition of the derivative
aw Wiz + Az) — W(z,)

Zo

Now there are many paths that we can choose to evaluate the derivative. Let us consider
two distinct paths, y = C] and x = Cy. We will get a result which can be shown to be valid
for arbitrary paths. For y = C, we have Az = Ax, so

aw Wz, + iy, + Ax) — W(zo +1iy,)  OW

— | = : 4.
dz |, Ax oz |, (455)
For x = Cs, we have Az = 1Ay, so
aw Wiy +iyo + iAy) = Wixo +iy,) 1 OW| oW (4.56)
dz |, iAy i Oy |, dy |, ’
Now for an analytic function, we need
ow ow
= = 4.
or, expanding, we need
op 0P (00 O
a2t = =22 4.
ax+lax Z<8y+28y , (4.58)
o 0
= — —i—. 4.
o i o (4.59)
For equality, and thus path independence of the derivative, we require
dp O dp O (4.60)

dxr — dy’ Oy  Or
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These are the well known Cauchy—RiemamE equations for analytic functions of com-
plex variables. They are identical to our kinematic equations for incompressible irrotational
fluid mechanics. Consequently, any analytic complex function is guaranteed to be a physical
solution. There are essentially an infinite number of functions to choose from.

Thus we define the complex velocity potential as

W(z) = é(x,y) + iy (z,y), (4.61)

and taking a derivative of the analytic potential, we have

dw  0¢ 0P ,
T " o +1 oy~ U W (4.62)
We can equivalently say
aw 0] w o 8¢ _

Now most common functions are easily shown to be analytic. For example for the function
W(z) = 2% + 2, which can be expressed as W (z) = (22 + z — y?) +i(2zy + y), we have

or,y) = 2 +z—y>,  Ylx,y) =2zy+y, (4.64)
do o
5 = 2w+l =2y (4.65)
do o
5~ %, 5 2% + 1. (4.66)

Note that the Cauchy-Riemann equations are satisfied since d¢/dx = 0v /0y and ¢ /0y =
—01/0z. So the derivative is independent of direction, and we can say

dW oW
- 5 2z + 1) +i(2y) (x +1y) + z+ (4.67)

Y

We could get this result by ordinary rules of derivatives for real functions.
For example of a non-analytic function consider W (z) = z. Thus

W(z) =z —1y. (4.68)
So ¢ =z and ¥ = —y, 0¢p/0x = 1, 0¢/0y = 0, and Oy /0x = 0, 0/Jy = —1. Since

0¢/0x # P /dy, the Cauchy-Riemann equations are not satisfied, and the derivative depends
on direction.

3Augustin-Louis Cauchy, 1789-1857, French mathematician and military engineer, worked in complex
analysis, optics, and theory of elasticity.
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4.3 Elementary complex potentials
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Figure 4.2: Streamlines for uniform flow.

Let us examine some simple analytic functions and see the fluid mechanics to which they

correspond.

4.3.1 Uniform flow

Take

Then

W(z) =

Since A is complex, we can say

Thus we get

A=U, e =U,cosa — iU, sin a.

Az, with AecCl
d
d—vj =A=u—1iv.

u = U, cosa,

v =U,sin .

(4.69)

(4.70)

(4.71)

(4.72)

This represents a spatially uniform flow with streamlines inclined at angle « to the x axis.
The flow is sketched in Figure 1.2l

4.3.2 Sources and sinks

Take

W(z)=Alnz,

with

A e RN

(4.73)
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With z = re?? we have Inz = Inr +i6. So
W(z) = Alnr +iAf. (4.74)

Consequently, we have for the velocity potential and stream function

b= Alnr, = Af. (4.75)
Now v = V¢, so
09 A _1oe
UT_W_7’ Ug—;%—o (476)

So the velocity is all radial, and becomes infinite at » = 0. We can show that the volume
flow rate is bounded, and is in fact a constant. The volume flow rate ) through a surface is

2m 2m
Q= / vli.ndA= / v df = / ér df =27 A. (4.77)
A 0 0

r

The volume flow rate is a constant. If A > 0, we have a source. If A < 0, we have a sink.
The potential for a source/sink is often written as

W(z) = % In 2. (4.78)

For a source located at a point z, which is not at the origin, we can say

Wi(z) = % In(z — z,). (4.79)

The flow is sketched in Figure 1.3

4.3.3 Point vortices

For an ideal point vortex, identical to what we studied in an earlier chapter, we have

W(z) =iBlnz, with B € R. (4.80)
So
W(z) =iB(Ilnr+i) = —-Bf +iBlnr. (4.81)
Consequently,
¢ =—B0, ¥ =Blnr. (4.82)

We get the velocity field from

_ 99 _

_109 _ B
UT_@T_

= (4.83)

0. w=T57 5
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Figure 4.3: Velocity vectors and equipotential lines for source flow.

So we see that the streamlines are circles about the origin, and there is no radial component
of velocity. Consider the circulation of this flow

2T B
IEi%der:/)—_wdez—%B. (4.84)
C 0 r

So we often write the complex potential in terms of the ideal vortex strength I':

1)
W(z)= - Inz. (4.85)
2m
For an ideal vortex not at z = z,, we say
1)
W(z) = —;—W In(z — 2,). (4.86)

The point vortex flow is sketched in Figure [4.4l

4.3.4 Superposition of sources

Since the equation for velocity potential is linear, we can use the method of superposition
to create new solutions as summations of elementary solutions. Say we want to model the
effect of a wall on a source as sketched in Figure At the wall we want u(0,y) = 0. That
is

aw _ .
%{d—} = R{u —iv} =0, on  z=1y. (4.87)
z
Here R denotes the real part of a complex function. Now let us place a source at z = a
and superpose a source at z = —a, where a is a real number. So we have for the complex
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Figure 4.4: Streamlines, equipotential, and velocity vectors lines for a point vortex.

o e

Figure 4.5: Sketch for source-wall interaction.

CC BY-NC-ND. 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

4.3. ELEMENTARY COMPLEX POTENTIALS 267

potential
W(z) = Q In(z —a) + Q@ In(z + a), (4.88)
2m A g
origi,nal im;go
_Q
= o (In(z —a) +In(z +a)), (4.89)
= % (In(z —a)(z +a)), (4.90)
= % In(2? — a?), (4.91)
dW Q 2z
o (4.92)
Now on z = iy, which is the location of the wall, we have
dW Q 21y
- = (=L ). 4.
dz 27 (—y2 — a2) (4.93)

The term is purely imaginary; hence, the real part is zero, and we have v = 0 on the wall,
as desired.
On the wall we do have a non-zero y component of velocity. Hence the wall is not a
no-slip wall. On the wall we have then
Q_y

== . 4.94
v T Y% + a? ( )

We find the location on the wall of the maximum v velocity by setting the derivative with
respect to y to be zero,

0 24 a?) —y(2
dy « (Y2 + a?)?
Solving, we find a critical point at y = +a, which can be shown to be a maximum.
So on the wall we have ) L0 )
—(u* +v?) = 10 v

2 272 (2 + a?)?’
We can use Bernoulli’s equation to find the pressure field, assuming steady flow and that
P — P, as 7 — 00. So Bernoulli’s equation in this limit

(4.96)

Losr. P_Po
5 (Vo) V¢+p ’x (4.97)

reduces to Lo )
Y
=Po— —pPp————. 4.98
PP P s ) (4.98)
Note that the pressure is p, at y = 0 and is p, as y — oo. By integrating the pressure over
the wall surface, one would find that the source exerted a net force on the wall.
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4.3.5 Flow in corners

Flow in or around a corner can be modeled by the complex potential

W(z) = A", with A € R, (4.99)
= A(re”)", (4.100)
= Arte™ (4.101)
= Ar"(cos(nf) + isin(nd)). (4.102)
So we have
¢ = Ar"cosnd, Y = Ar"sinné. (4.103)

Now recall that lines on which 1) is constant are streamlines. Examining the stream function,
we obviously have streamlines when ¢ = 0 which occurs whenever § = 0 or § = 7/n.
For example if n = 2, we model a stream striking a flat wall. For this flow, we have

Wi(z) = A2 (4.104)
= Az +iy)?, (4.105)
= A((@* —y*) +i(22y)), (4.106)
¢ = A@®—y?), ¢ =A(2zy) (4.107)
So the streamlines are hyperbolas. For the velocity field, we take
d
d—W =2Az = 2A(x + iy) = u — v, (4.108)
z
u=2Ax, v = —2Ay. (4.109)

This flow actually represents flow in a corner formed by a right angle or flow striking a flat
plate, or the impingement of two streams. For n = 2, streamlines are sketched in in Figure
4.6l

4.3.6 Doublets

We can form what is known as a doublet flow by considering the superposition of a source
and sink and let the two approach each other. Consider a source and sink of equal and
opposite strength straddling the y axis, each separated from the origin by a distance € as
sketched in Figure 4.7, The complex velocity potential is

Wi(z) = % In(z +€) — % In(z — ), (4.110)
_ Qm(”E). (4.111)
2T zZ—€

It can be shown by synthetic division that as e — 0, that

zZ+€
Z—€

2 2
=l4+e-+eE5+.. . (4.112)
z z
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Figure 4.7: Source sink pair.

So the potential approaches

Q 2,2
Wi(z)~—In(1+e- —4+... ).
(2) 5 0 +ez+622+
Now since In(1 + ) — x as © — 0, we get for small € that
Q@ 2 Qe
W ~N —€— ~ ——
(2) 27r€z mZ
Now if we require that
lim — — pu,
e—0 T
we have _ _
W)=t P I—Z_y:u(x—ly)'
2 rtiyx—iy % 4 y?
So .
¢(I,y):/ﬁm> w(x’y):_'uxz—i—yz
In polar coordinates, we then say
cos sin 0
=K ) ¢ =K
r r

Streamlines and equipotential lines for a doublet are plotted in Figure [4.8

(4.113)

(4.114)

(4.115)

(4.116)

(4.117)

(4.118)
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-4 ) 0 2 4
Figure 4.8: Streamlines and equipotential lines for a doublet.

4.3.7 Rankine half body

Now consider the superposition of a uniform stream and a source, which we define to be a
Rankine half body:

W(z) = Uz+ % In z, with U,Q e R, (4.119)
= Ure? + g(lnfr +i6), (4.120)
T
= Ur(cosf +isinf) + 29(11&7“ +i6), (4.121)
T

B Q o Q
= (Urcosf0+—Inr | +i|{Ursinf+ —0 ). (4.122)

2w 2m

So
qszrcosH—i—an'r, 1/):Ursin9+g9. (4.123)
2T 2w

Streamlines for a Rankine half body are plotted in Figure Now for the Rankine half
body, it is clear that there is a stagnation point somewhere on the x axis, along § = 7. With
the velocity given by

aw Q .
A —~ —u—- 4.124
7 U+ 5y~ U ( )
we get
QL o _ ,
U+ 5 7€ = u— v, (4.125)
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Figure 4.9: Streamlines for a Rankine half body.

Q1 o

U+ g;(COSH —isinf) = wu— v, (4.126)
_ Q Q.

u=U+ 57 €05 9, v = 5_—sin 6. (4.127)

When 6 = 7, we get u = 0 when;

_ Q

0 = U+t=(-1), (4.128)
_ @
= 3o (4.129)

4.3.8 Flow over a cylinder

We can model flow past a cylinder without circulation by superposing a uniform flow with
a doublet. Defining a? = u/U, we write

It a?
Wi(z) = Uz+;:U z+; , (4.130)
= ! . 131
U(re +r629)’ (4.131)
2
= U (7’(0089 +isinf) + a?(cosﬁ — isin 9)) : (4.132)
a? a?
= U((rcosﬁ—i-?cose)—i—i(rsin@—?sin@)), (4.133)
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Figure 4.10: Streamlines and equipotential lines for flow over a cylinder without circulation.

a? a?
= Ur <0030<1+—2) +z'sin9(1——2>). (4.134)
r T

a? a?
gb:Urcos@(ler—z), w:Ursin0<1——). (4.135)

r2
Now on 7 = a, we have ¢ = 0. Since the stream function is constant here, the curve r = a,
a circle, must be a streamline through which no mass can pass.
A sketch of the streamlines and equipotential lines is plotted in Figure [4.10L
For the velocities, we have

0¢ a? a?

U= o= U cos @ (1 + ﬁ) + Urcosé <_2'r_3> : (4.136)
a2
= Ucosf (1 — ﬁ) : (4.137)
10¢ , a?
Vo = —op = —Usinf (1 + ﬁ) : (4.138)
So on r = a, we have v, = 0, and vy = —2U sinf. Thus on the surface, we have

(V)T - Vo = 4U?sin? 6. (4.139)

Bernoulli’s equation for a steady flow with p — p., as r — oo then gives
p 1 T Poo | U?
-+ =(V Vo = —+ — 4.140
;T a(Ver-ve S T (4.140)
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potential
theory

pressure
distribution

on cylinder
surface from
potential theory

Figure 4.11: Pressure distribution for ideal flow over a cylinder without circulation.

1
P = Doo+t 5,oU2(1 — 4sin?0). (4.141)

The pressure coefficient C,, defined below, then is

_ P — P .2
C,= =1—4sin”0. (4.142)
p %pUg
A sketch of the pressure distribution, both predicted and experimentally observed, is
plotted in Figure .11l We note that the potential theory predicts the pressure well on
the front surface of the cylinder, but not so well on the back surface. This is because
in most real fluids, a phenomenon known as flow separation manifests itself in regions of

negative pressure gradients. Correct modeling of separation events requires a re-introduction
of viscous stresses. A potential theory cannot predict separation.

|
Example 4.1
For a cylinder of radius ¢ at rest in an accelerating potential flow field with a far field velocity of
U = a + bt, find the pressure on the stagnation point of the cylinder.

The velocity potential and velocities for this flow are
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2
o(r,0,t) = (a+bt)rcosh (1 + T_Q) ,

2
v = ?z(a—l—bt)cos@(l—%),
r T
19¢ : c?
vg = ;%——(a—l—bt)smH(l—i—T—Q),
1 2\? 2
(Vo) - Vo = §(a+bt)2 cos29(1—r—2) +sin29<1+—
1 4 22
= §(a+bt)2(1+;—4+Ti2(sin29—cos26‘)).

Also, since the flow is unsteady, we will need d¢/dt:

o c?
e br cos 0 (1—|— T_Q) .

Now we note in the limit as » — oo that
oler 1 T 1 9
E—H)rcosﬁ, §(V¢) V¢ — §(a+bt) :

We also note that on the surface of the cylinder
vp(r =¢,0,t) =0.

Bernoulli’s equation gives us

%4

1 D
5 3V Yo+ L= 1),

We use the far field behavior to evaluate f(t):
1 2 P
br cos 6 + §(a+ bt)* + = = f(t).
p

Now if we make the non-intuitive choice of f(t) = (a+ bt)* + po/p, we get

1 1 o
brcos 6 + §(a+bt)2+§ = §(a+bt)2 + %
So

P = po, — pbrcosf = p, — pbzx.

=)

(4.143)
(4.144)

(4.145)

(4.146)

(4.147)

(4.148)

(4.149)

(4.150)

(4.151)

(4.152)

(4.153)

(4.154)

Note that since the flow at infinity is accelerating, there must be a far-field pressure gradient to induce

this acceleration. Consider the £ momentum equation in the far field

du _ _Op
pdt a ox’
o) = —p(-b).

So for the pressure field, we have

2 1 4 9.2
br cos 6 <1+ :—2> + 5 (a+0t)? <1+ S+ T%(SiHQH—coszﬁ)) + g _

N =
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which reduces to
e 1 9 ct 2¢2 . 9 9
p(r,0,t) = p, — pbr cos 6 (1 + r_z) — ip(a + bt) (r_4 + T—Q(sm 6 — cos 9)> . (4.158)

For the stagnation point, we evaluate as

plemt) = po— phe(—1)(1+1)— %p(a bt (1+2(1)(0— 1), (4.159)
= po+ %p(a + bt)* + 2pbe. (4.160)

The first two terms would be predicted by a naive extension of the steady Bernoulli’s equation. The
final term however is not intuitive and is a purely unsteady effect.

4.4 More complex variable theory

There are more basic ways to describe the force on bodies using complex variables directly.
We shall give those methods, but first a discussion of the motivating complex variable theory
is necessary.

4.4.1 Contour integrals

Consider the closed contour integral of a complex function in the complex plane. For such in-
tegrals, we have a useful theory which we will not prove, but will demonstrate here. Consider
contour integrals enclosing the origin with a circle in the complex plane for four functions.
The contour in each is C': z = Re® with 0 < @ < 27. For such a contour dz = iRet? do.

4.4.1.1 Simple pole

We describe a simple pole with the complex potential

W(z) = % (4.161)
and the contour integral is

a 0=27 a o

%W(z) dz = %— dz :/ ——iRe" db, (4.162)
c cz o=0 Re'
2m
= ai/ df = 2mia. (4.163)
0
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4.4.1.2 Constant potential
We describe a constant with the complex potential
W(z) =b.

and the contour integral is

6=2m
fW(z) dz = %bdz:/ biRe df,
C C 6=0

A 2
R 0

?

=0.

since e = 2™ = 1,

4.4.1.3 Uniform flow
We describe a constant with the complex potential
W(z) = cz.

and the contour integral is

0=2m
7{ W(z) dz = 7{ cz dz = / cReiRe” db,
c c 6=0

[T ch2 u
= icR? / e’ df = = 0.
0 27
since % = ™ = 1.
4.4.1.4 Quadrupole
A quadrupole potential is described by
k
W(z) = 2
Taking the contour integral, we find
27 1 if
7{—2dz ~ k/ e g
c? 0 R26229
. 2m
— k—AZ —10 de_ @ie 0 :O
R Jo R = 0

(4.164)

(4.165)

(4.166)

(4.167)

(4.168)

(4.169)

(4.170)

(4.171)

(4.172)

So the only non-zero contour integral is for functions of the form W(z) = a/z. We find all
polynomial powers of z have a zero contour integral about the origin for arbitrary contours

except this special one.
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4.4.2 Laurent series

Now it can be shown that any function can be expanded, much as for a Taylor series, as a
Laurent sem’esﬂ

W(z)=...40_3(2—2) 2+ C_1(2 — 2,) "+ Colz — 2,)° + C1(z — 2,) +Colz — 2,)* +....
(4.173)

In compact summation notation, we can say
W(z)= > Culz—z)" (4.174)

Taking the contour integral of both sides we get

7{} W(z) dz = ]{C io Oz — 2,)" dz, (4.175)

= Z an{(z — 2,)" dz, (4.176)
n=-—00 c
this has value 27¢ only when n = —1, so (4.177)
= C_2nmi (4.178)

Here C'_; is known as the residue of the Laurent series. In general we have the Cauchy
integral theorem which holds that if W (z) is analytic within and on a closed curve C' except
for a finite number of singular points, then

f W(z)dz = 2mi Zresidues. (4.179)
c

The constants C), can be shown to be found by evaluating the contour integral

o, =L W), (4.180)

o Jo (2= z)ntl

where C' is any closed contour which has z, in its interior.

4.5 Pressure distribution for steady flow

For steady, irrotational, incompressible flow with no body force present, we have the Bernoulli
equation:

(Vo) - Ve = %‘" + %Ufo. (4.181)

N —

Py
P

4Pierre Alphonse Laurent, 1813-1854, Parisian engineer who worked on port expansion in Le Harve,
submitted his work on Laurent series for a Grand Prize in 1842, with the recommendation of Cauchy, but
was rejected because of a late submission.
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We can write this in terms of the complex potential in a simple fashion. First, recall that
(Vo) - Vo =u? + 07 (4.182)
We also have dW/dz = u — iv, so dW/dz = u + iv. Consequently,

dawdw ., .
o =u'+tu = (V)T -Vo. (4.183)

So we get the pressure field from Bernoulli’s equation to be

1 ,  dWdW
— - ). 4.184
p poo+2,0<Uoo 7 dz) (4.184)

The pressure coefficient C), is

_ P Px 1 dwdwW

Cr="=1—F%——. 4.185
P IpU% U2 dz dz ( )

4.6 Blasius force theorem

For steady flows, we can find the net contribution of a pressure force on an arbitrary shaped
solid body with the Blasiudl force theorem.

Consider the geometry sketched in Figure [A.12 The surface of the arbitrarily shaped
body is described by S,, and C' is a closed contour containing Sy. First consider the linear
momenta equation for steady flow, no body forces, and no viscous forces,

P (VT . V) v = —Vp, add mass to get conservative form, (4.186)
(V7" (pva))T = —Vp, integrate over V, (4.187)
/ (V7" (pva))TdV = —/ Vp dV, use Gauss, (4.188)
v v
/pv(vT ‘m) dS = —/pn ds. (4.189)
S s

Now the surface integral here is really a line integral with unit depth b, dS = b ds. Moreover
the surface enclosing the fluid has an inner contour S, and an outer contour C'. Now on C,
which we prescribe, we will know z(s) and y(s), where s is arc length. So on C' we also get
the unit tangent a and unit outward normal n:

d dy
a= (g;), n= (_dfi_w), on C. (4.190)
ds

ds

SPaul Richard Heinrich Blasius, 1883-1970, student of Ludwig Prandtl and long time teacher at the tech-
nical college of Hamburg whose 1907 Ph.D. thesis gave mathematical description of similarity solution to
the boundary layer problem.
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Figure 4.12: Potential flow about arbitrarily shaped two-dimensional body with fluid control

volume indicated.

Moreover, on S, we have, since it is a solid surface
vl .n=0, on C.

Now let the force on the body due to fluid pressure be F:

/ pn dS =F.
Sp
Now return to our linear momentum equation
/pva ‘ndS = - / pn dS, break this up,
S S
fgpva~ndS+fgpva~ndS = —ﬁpndé’—fgpnd&’,
b =0 b
N—_——
=F
%pva-ndS = —F—j{pndS.
c c
We can break this into x and y components:
dy dx dy
— —v—|bds = — —bds — F,
%Cpu (uds Uds) ° jipds °
N—_— —
vT.n
dy dx dx
— —v— ) bds = —bds—F,.
jipv <ud8 Uds) ° ipds ° Y
N—_— ——
vT.n

(4.191)

(4.192)

(4.193)

(4.194)

(4.195)

(4.196)

(4.197)
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Solving for F, and Fj per unit depth, we get

= % —p dy — pu® dy + puv dz,
c

@Lﬁﬁ @|5:11

= %pdx%—p?ﬂ dz — puv dy.
c

(4.198)

(4.199)

Now Bernoulli gives us p = K — (1/2)p(u® + v?), where K is some constant. So the x force
per unit depth becomes

Fy

b

1
7{ —K dy + §p(u2 + %) dy — pu® dy + puv dz,
c

since the integral over a closed contour of a constant K is zero,

p(—u* +v?) dy + puv dz,

j{(—uz +v?) dy + 2uv da.
c

Similarly for the y direction, we get

Now consider the group of terms

F, —iF,

b

So if we have the complex potential, we can easily get the force on a body.

1
— 7{ K dr — §p(u2 + %) dy + pv* dx — puv dy,
c

1
= —pj!(—u2 + %) dr — 2uv dz.
2" Je

Fu—iF, |
—

2

1
§p% (i(u?® — v?) + 2uv) dz + ((—u® + v?) + 2uwi)dy,
c

1
§p% (i(u® — v®) + 2uv) dx + (i(u® — v®) + 2uv)i dy,
c

%pfg(z( 2 — v 4 2uv) (dw + i dy),
%p]{ci(u—w(dxm dy),

Lif (M)
QPZC dZ ’
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—p% (—u? +0?) dy + 2uv do — (—u® + v?)i dz + 2uvi dy,
c

(4.200)
(4.201)
(4.202)

(4.203)

(4.204)

(4.205)

(4.206)
(4.207)
(4.208)
(4.209)

(4.210)
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Figure 4.13: Potential flow about arbitrarily shaped two-dimensional body with distribution
of sources, sinks, vortices, and dipoles.

4.7 Kutta-Zhukovsky lift theorem

Consider the geometry sketched in Figure 4.13l Here we consider a flow with a freestream
constant velocity of U,. We take an arbitrary body shape to enclose a distribution of cancel-
ing source sink pairs, doublets, point vortices, quadruples, and any other non-mass adding
potential flow term. This combination gives rise to some surface which is a streamline.

Now far from the body surface a contour sees all of these features as effectively concen-
trated at the origin. Then, the potential can be written as

Q Q

I
W(z) ~ .Uz + %lnz—glnz + ;—Wlnz + g +... (4.212)
uniform flow ~- o N—— N~~~

canceling source sink pair  clockwise! vortex  doublet

Note that the sign convention for I' has been violated here, by tradition. Now let us take
D to be the so-called drag force per unit depth and L to be the so-called lift force per unit
depth, so in terms of F, and Fj,, we have

F F,
D 2 =L 4.213
f=p, (4213)
Now by the Blasius force theorem, we have
1 dw\?
D—iL = =pi — 4.214
; mec(dz)dz, (1214)
1. i 2
= = ——=+4+...| d 4.21
2p17€ <U+ 52 2T ) 2, (4.215)
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1 , iTU 1 (T2
= - — = |-—+2 . 4.21
2pzj{C<U + — = (47r2+ U,u)+ )dz (4.216)

Now the Cauchy integral theorem gives is the contour integral is 27i > residues. Here the
residue is (['U/7. So we get

D—il = pi <2m (@)) (4.217)
2 s

= —ipl'lU. (4.218)

So we see that
D = 0, (4.219)
L = pUT. (4.220)

Note that

e [ is associated with clockwise circulation here. This is something of a tradition in
aerodynamics.

e Since for airfoils I' ~ U, we get the lift force L ~ pU?,

e For steady inviscid flow, there is no drag. Consideration of either unsteady or viscous
effects would lead to a non-zero x component of force.

[
Ezample 4.2

Consider the flow over a cylinder of radius a with clockwise circulation T'.

To do so, we can superpose a point vortex onto the potential for flow over a cylinder in the following
fashion:

W(z)=U <z + a;) + % In (2) . (4.221)

Breaking this up as before into real and complex parts, we get

W(z) = (Urcoso <1 + i—j)) +i <U7’sin9 <1 - i—j)) + % (ln (2) + z'o) . (4.222)

So, we find

b S () = Ursin (1- %) + L1 (r) (4.223)
= z)) = Ursin - — —In{-]). .
M r2 2m a
On r = a, we find that ) = 0, so the addition of the circulation in the way we have proposed maintains
the cylinder surface to be a streamline. It is important to note that this is valid for arbitrary I'. That
is the potential flow solution for flow over a cylinder is non-unique. In aerodynamics, this is used to
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advantage to add just enough circulation to enforce the so-called Kutta conditionld The Kutta condition
is an experimentally observed fact that for a steady flow, the trailing edge of an airfoil is a stagnation
point.

The Kutta—ZhukovskyE lift theorem tells us whenever we add circulation, that a lift force L = pUT
is induced. This is consistent with the phenomena observed in baseball that the “fastball” rises. The
fastball leaves the pitcher’s hand traveling towards the batter and rotating towards the pitcher. The
induced aerodynamic force is opposite to the force of gravity.

Let us get the lift force the hard way and verify the Kutta-Zhukovsky theorem. We can easily get
the velocity field from the velocity potential:

a® Te
¢ = R(W(z))=Urcost |1+ — |- 5=, (4.224)
r 27
o 2a2 a®
vy = E_Urcosﬂ(—T—g) —I—Ucos@(l—l—r—2 , (4.225)
2a° a®
vrl,_, = U-cosb (—F +1+ ;) =0, (4.226)
199 1 ) a® r
o= S = (—UTSln9 (1+r_2) _E>’ (4.227)
. a? r
vgl,_, = —Usin® (1 + E) ~ 5 (4.228)
2 sinf — - (4.229)
= - inf — —. .
2ma
We get the pressure on the cylinder surface from Bernoulli’s equation:
1 1
Po= Pt 5pU% = 5p(VO)T - Ve, (4.230)
1, 1 . r\?
= Pt EpU — 5P (—2U51n9 — %) . (4.231)

Now for a small element of the cylinder at » = a, the surface area is dA = br df = ba df. This is
sketched in Figure .14l We also note that the x and y forces depend on the orientation of the element,
given by 6. Elementary trigonometry shows that the elemental x and y forces per depth are

dF,
A fa db, (4.232)
dF,
Ty = —psinfa db. (4.233)
So integrating over the entire cylinder, we obtain,
F, 2m 1 1 r\?
5 = /0 — (poo+§pU2—§p (—QUSiHH—%) )cosﬁa de, (4.234)
F, 2 1 1 r\°
Ty = ‘/O - (poo + §pU2 - §p (—2Usin6‘ — %) ) sin fa df. (4235)

SMartin Wilhelm Kutta, 1867-1944, Silesian-born German mechanician, studied at Breslau, taught
mainly at Stuttgart, co-developer of Runge-Kutta method for integrating ordinary differential equations.

"Nikolai Egorovich Zhukovsky, 1847-1921, Russian applied mathematician and mechanician, father of
Russian aviation, purchased glider from Lilienthal, developed lift theorem independently of Kutta, organized
Central Aerohydrodynamic Institute in 1918.
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X

Figure 4.14: Pressure force on a differential area element of cylindrical surface.

Integration via computer algebra gives

= 0, (4.236)

]2 |

= pUT. (4.237)

This is identical to the result we expect from the Kutta-Zhukovsky lift theorem.

4.8 Conformal mapping

Conformal mapping is a technique by which we can render results obtained for simple flows,
such as those over a cylinder, applicable to flows over more complicated geometries. We
will not consider these in any detail here, but the reader should refer to texts on potential
flow for a full explanation. In short, one relies on a coordinate transformation to map the
complicated geometry in an ordinary space into a simple geometry in a warped geometric
space. In the warped space, on can obtain pressure fields in terms of the warped coordinates,
then transform them back into ordinary space to get the actual pressure field.
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Chapter 5

Viscous incompressible laminar flow

see Panton, Chapter 7, 11
see Yih, Chapter 7

Here we consider a few standard problems in viscous incompressible laminar flow. For this
entire chapter, we will make the following assumptions:

e the flow is incompressible,
e body forces are negligible, and

e the fluid properties, ¢, 4 and k, are constants.

5.1 Fully developed, one dimensional solutions

The first type of solution we will consider is known as a one-dimensional fully developed
solution. These are commonly considered in first courses in fluid mechanics and heat transfer.
The flows here are essentially one-dimensional, but not absolutely, as they were in the chapter
on one-dimensional compressible flow. In this section, we will further enforce that

e the flow is time-independent, 0, = 0,

e the velocity and temperature gradients in the = and z direction are zero, dv/dz = 0,

ov/0z=0,0T/0x =0,0T/0z = 0.

We will see that these assumptions give rise to flows with a non-zero x velocity u which
varies in the y direction, and that other velocities v, and w, will be zero.

5.1.1 Pressure gradient driven flow in a slot

Consider the flow sketched in Figure B.Il Here we have a large reservoir of fluid with a
long narrow slot located around y = 0. We take the length of the slot in the 2z direction,

285
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b i ,/
p — constant y S
_ / >
w = constant y by

Figure 5.1: Pressure gradient driven flow in a slot.

b, to be long relative to the slot width in the y direction h. Attached to the slot are two
parallel plates, separated by distance in the y direction h. The length of the plates in the x
direction is L. We take L >> h. Because of gravity forces, which we neglect in the slot, the
pressure at the entrance of the slot p, is higher than atmospheric. At the end of the slot,
the fluid expels to the atmosphere which is at p;. Hence, there is a pressure gradient in the
x direction, which drives the flow in the slot. We will see that the flow is resisted by viscous
stresses. An analogous flow in a circular duct is defined as a Hagen—Poiseuill flow.

Near x = 0, the flow accelerates in what is known as the entrance length. If L is sufficiently
long, we observe that the fluid particles no longer accelerate after traveling in the slot. It is
at this point where the viscous shear forces exactly balance the pressure forces to give rise
to the fully developed velocity field.

For this flow, let us make the additional assumptions that

e there is no imposed pressure gradient in the z direction, and

e the walls are held at a constant temperature, 7.

Incorporating some of these assumptions, we write the incompressible constant property
Navier-Stokes equations as

pao’Ui + p’Ujaj’Ui = —0Oip+ uajajvi,
,ocaoT + ,ocvjajT = k@,@,T + 2#8(ZU])8(Z’UJ) .

IGotthilf Ludwig Hagen, 1797-1884, German engineer who measured velocity of water in small diameter
tubes.

2Jean Louis Poiseuille, 1799-1869, French physician who repeated experiments of Hagen for simulated
blood flow.
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Here we have five equations in five unknowns, v;, p, and T

As for all incompressible flows with constant properties, we can get the velocity field by
only considering the mass and momenta equations; velocity is only coupled one way to the
energy equation.

The mass equation, recalling that gradients in x and z are zero, gives us

0 0 0
— — — w = 0. 5.4
8xu+0yv+ 5 ¥ (5.4)
~~~ ~~~
=0 =0
So the mass equation gives us
ov
— =0. 5.5
- (55)

Now, from our assumptions of steady and fully developed flow, we know that v cannot be a
function of x, 2z, or t. So the partial becomes a total derivative, and mass conservation holds
that dv/dy = 0. Integrating, we find that v(y) = C. The constant C' must be zero, since we
must satisfy a no-slip boundary condition at either wall that v(y = h/2) = v(y = —h/2) = 0.
Hence, mass conservation, coupled with the no slip boundary condition gives us

v=0. (5.6)
Now consider the z momentum equation:
gu%— ugu%— vgu%— wgu——@jL 8_2u+8_2u+8_2
Pgg " gy TP TP 5 Y T e T a2 T e Tar
- =~
=0 =0 =0 =0 =0
(5.7)
Op 0*u
0 = —— —. 5.8
8x+'u8y2 (58)

We note for this fully developed flow that the acceleration, that is the material derivative
of velocity, is formally zero, and the equation gives rise to a balance of pressure and viscous
surface forces.

For the y momentum equation, we get

pgv+pu—v+pv—v+pw£v _ o (5.9)
PN T A NI
=0 =0 =0
0? 0? 0?
e T g2t
=0 B =0
dp
0 = —. 5.10
3 (5.10)
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Hence, p = p(z, z), but since we have assumed there is no pressure gradient in the z direction,
we have at most that

p= (). (5.11)

For the z momentum equation we get:

pgw%—pugwjtp v £w+pw£w _ o (5.12)
ot Ox \:fo" dy 0z 0z
=0 =0 =0 =0
2 . 92 . 2
— W+ =W+ =5 w
e oy? 022 ’
=~
=0 =0
0w
0 = —. 5.13
o (513)
Solution of this partial differential equation gives us
w = f(z,2)y + g(x, 2). (5.14)

Now to satisfy no-slip, we must have w = 0 at y = +h/2. This leads us to two linear

equations for f and g:
Ao flz,2)\ _ (0
(%)) - () (515

Since the determinant of the coefficient matrix, h/2+ h/2 = h, is non-zero, the only solution
is the trivial solution f(z,z) = g(x, z) = 0. Hence,

w = 0. (5.16)

Next consider how the energy equation reduces:

0 0 0 0 0? 0? 0?
pc o T+pclu —T+ v T+ w, —T| = k| 5T+5T+5T
ot ox \_fo-*a \:fo" 0z ox oy 0z
-0 =0 =0 =0 =0

o*T

Note that there is no tendency for a particle’s temperature to increase. There is a balance
between thermal energy generated by viscous dissipation and that conducted away by ther-
mal diffusion. Thus the energy path is 1) viscous work is done to generate thermal energy,
2) thermal energy diffuses throughout the channel and out the boundary. Now consider the
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viscous dissipation term for this flow.

81 U1 81 V2 81 U3
~—~

NN NN
=0 =0 =0 =0 =0 0 0O 0
8Z'Uj = 82’(]1 82\1),2/ 82\113/ = 821)1 0 0 y (519)
= = 0 00
83 U1 83 (%) 83 (R}
=0 =0 =0 =0 =0
0 % 82v1+81v2 0 Lo
0 0 35 0
Oavy) = =12 0o o] (520
% 821)1—'—811)2 0 0 0 0 0
=0
0 0 0
Further,

g (LOu) (1ou)? 1
(Zvﬁ) (Zvﬁ) - 2 ay 9 ay - 2

ou\>
— | . 5.21
(@y) 520
So the energy equation becomes finally
T ou\?
0=k— — ] . 5.22
ap (331) (522
At this point we have the x momentum and energy equations as the only two which seem
to have any substance.

op 0*u
0°T ou?

This looks like two equations in three unknowns. One peculiarity of incompressible equations
is that there is always some side condition, which ultimately hinges on the mass equation,
which really gives a third equation. Without going into details, it involves for general flows
solving a Poissonf] equation for pressure which is of the form V?p = f(u,v). Note that this
involves second derivatives of pressure. Here we can obtain a simple form of this general
equation by taking the partial derivative with respect to x of the x momentum equation:

p 0 0%u
2 2
0 - _Ip O Ou (5.26)

C0x2 " Oy O
=0

3Siméon Denis Poisson), 1781-1840, French mathematician taught by Laplace, Lagrange, and Legendre,
studied partial differential equations, potential theory, elasticity, and electrodynamics.
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The viscous term above is zero because of our assumption of fully developed flow. Moreover,
since p = p(x) only, we then get
d*p
2 =0 p(0)=po, p(L) =p1, (5.27)

which has a solution showing the pressure field must be linear in z:

Do — D
pr) = po——p . (5.28)
dp Po — D1
=z . 5.29
dx L ( )

Now, since u is at most a function of y, we can convert partial derivatives to ordinary deriva-
tives, and write the z momentum equation and energy equation as two ordinary differential
equations in two unknowns with appropriate boundary conditions at the wall y = £h/2:

d?u Do — P1 h h

2T p [ du? h h
I T(Z)=1, T(-2)=1. 31
w = im) e t(5)=m r()-m 31

We could solve these equations directly, but instead let us first cast them in dimensionless
form. This will give our results some universality and efficiency. Moreover, it will reveal more
fundamental groups of terms which govern the fluid behavior. Let us select scales such that
dimensionless variables, denoted by a * subscript, are as follows

T—-T, U
= .= —. 5.32
T, b Ue (5.32)

* — 7 T*
P

We have yet to determine the characteristic velocity u.. Note that the dimensionless tem-
perature has been chosen to render it zero at the boundaries. With these choices, the x
momentum equation becomes

ue d*u, Po— D1
— = — 5.33
2 dy? pL 039
d2 . . — h2
dy? pLu,
ucts(zh = h/2) = wucu (xh =—h/2) =0, (5.35)
Us(xe = 1/2) = wuu(z, =-1/2) =0. (5.36)

Let us now choose the characteristic velocity to render the x momentum equation to have a

simple form:

(po - pl)h2
pl

(5.37)

Ue
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Now scale the energy equation:

T, d*T. pu? [ duy )\’
79 2 - - 2 5 (538)
h? dy? kh? \ dy,
&°T. 2 (du,\*
c o= e () (5.39)
dy; kT, \ dy.
2 2
e uzZ [ du
- () (40
du,\”
= —PrEc . ) (5.41)

n (1) - n(2)-o i)

Here we have grouped terms so that the Prandtl number Pr = puc/k, explicitly appears.
Further, we have defined the Eckert] number Ec as

0 ((po—zzlm?)
U, 7

In summary our dimensionless differential equations and boundary conditions are

d*u, 1
- —1, u<i§) =0, (5.44)
dT, du, \ > 1

— _PrE T.[+=) =0 4
dy? g C<dy*) ’ < 2) ! (5.45)

These boundary conditions are homogeneous; hence, they do not contribute to a non-trivial
solution. The pressure gradient is an inhomogeneous forcing term in the momentum equa-
tion, and the viscous dissipation is a forcing term in the energy equation.

The solution for the velocity field which satisfies the differential equation and boundary
conditions is quadratic in ¥, and is

w3 ((3) ). (540

Note that the maximum velocity occurs at y, = 0 and has value

1
wmaz = = 5.47
— (5.47)

4Ernst R. G. Eckert, 1904-2004, scholar of convective heat transfer.
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y, = 1/2

y, = -1/2

Figure 5.2: Velocity profile for pressure gradient driven flow in a slot.

The mean velocity is found through integrating the velocity field to arrive at

1/2
Usmean = / U*(y*) dy*a (548)

1/2

—1/2 2 2 * v .

1/1 1\

= (=g —= , 5.50
5 <4y 3y*) s (5.50)
1

= —. 5.51
3 (5.51)

Note that we could have scaled the velocity field in such a fashion that either the maximum
or the mean velocity was unity. The scaling we chose gave rise to a non-unity value of both.
In dimensional terms we could say

-3 ((3) - (). (552

nL

The velocity profile is sketched in Figure 5.2l
Now let us get the temperature field.

PT, d (1{/1\ )
o = —PrEc <dy* (5 ((5) —y*)>) : (5.53)

= —PrFEc (_y*)2a (554)
= —PrEcy?, (5.55)

dT, 1
* = ——PrEcy>+0C 5.56
. S0 cy, + Ch, (5.56)
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Y

1/2"

-1/2

Y

Figure 5.3: Temperature profile for pressure gradient driven flow in a slot.

1
T, = —EPTEC Y+ Cry, + Co, (5.57)
1 1 1 1
= ——PrEc — — . = =, .
0 LT cl6+012+6'2, Yy 5 (5.58)
1 1 1 1
= ——PrEc — —C= = =7, .
0 5 PrEC ¢ 012+02, Y 5 (5.59)
PrEc
c, = 0, Cy = T (5.60)

Regrouping, we find that

T, = PI;EC ((%)4 - yf) . (5.61)

In terms of dimensional quantities, we can say

T—T, (po—p)?h* {1\ 4
_ (o= py) ) (3> . (5.62)
T, 12uL2kT, 2 h
The temperature profile is sketched in Figure 5.3
From knowledge of the velocity and temperature field, we can calculate other quantities
of interest. Let us calculate the field of shear stress and heat flux, and then evaluate both

at the wall.
First for the shear stress, recall that in dimensional form we have

Tij = 21035y + A Opvy 0y, (5.63)
=0

We have already seen the only non-zero components of the symmetric part of the velocity
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gradient tensor are the 12 and 21 components. Thus the 21 stress component is

821)1 + 01’112
~~

T = 2pdpury =2p f:o : (5.65)

= ,uﬁgvl. (566)

In (z,y) space, we then say here that

du

Note this is a stress on the y (tangential) face which points in the x direction; hence, it
is certainly a shearing stress. In dimensionless terms, we can define a characteristic shear
stress 7., so that the scale shear is 7, = 7,,/7.. Thus, our equation for shear becomes

e du,
Ty = ) 5.68
T,T, hdy. ( )
Now take ( e
HUc H\Po — P1 h h
=re Ve TV (p, — — ). 5.69
o= e M B, (1) (5.69)
With this definition, we get
du
. = . 5.70
= (5.70)
Evaluating for the velocity profile of the pressure gradient driven flow, we find
Te = —Ys. (5.71)

The stress is zero at the centerline y, = 0 and has maximum magnitude of 1/2 at either
wall, y, = £1/2. In dimensional terms, the wall shear stress 7, is

Y= —%(po —p) (%) | (5.72)

Note that the wall shear stress is governed by the pressure difference and not the viscosity.
However, the viscosity plays a determining role in selecting the maximum fluid velocity. The
shear profile is sketched in Figure [5.4]

Next, let us calculate the heat flux vector. Recall that, for this flow, with no = or z
variation of T', we have the heat flux vector as

oT
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y =1/2

y,=-1/2

Figure 5.4: Shear stress profile for pressure gradient driven flow in a slot.

Now define scale the heat flux by a characteristic heat flux ¢., to be determined, to obtain

a dimensionless heat flux:

So,
4cqx
4+
Let g. = kT,/h, so
qx
G«

4y
dc ( )
kT, dT.

—— 5.75
kT, dT.

= e 7x 5.76

hq. dt, ( )
dT,

_ 5.77
dy*’ ( )

1

gPrEc 2. (5.78)

For our flow, we have a cubic variation of the heat flux vector. There is no heat flux at the
centerline, which corresponds to this being a region of no shear. The magnitude of the heat
flux is maximum at the wall, the region of maximum shear. At the upper wall, we have

1
q*‘y*:1/2 = —PrEec.

The heat flux profile is sketched in Figure 5.5l In dimensional terms we have

Qw
kTo
h

Qw

o (5.79)
1 (po_p1)2h4
TR (5.80)
1 DPo—DP 2h3
ﬂ%. (5.81)
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y, = 1/2

Yy, =-1/2

Figure 5.5: Heat flux profile for pressure gradient driven flow in a slot.

- L >
—»
y=hu="U U
P=1p p=n

Figure 5.6: Configuration for Couette flow with pressure gradient.

5.1.2 Couette flow with pressure gradient

We next consider Couette flow with a pressure gradient. Couette flow implies that there is a
moving plate at one boundary and a fixed plate at the other. It is a common experimental
configuration, and used often to actually determine a fluid’s viscosity. Here we will take the
same assumptions as for pressure gradient driven flow in a slot, expect for the boundary
condition at the upper surface, which we will require to have a constant velocity U. We will
also shift the coordinates so that y = 0 matches the lower plate surface and y = h matches
the upper plate surface. The configuration for this flow is shown in Figure 5.6l
Our equations governing this flow are

d2u Po — D1

d*T wfdu\?

R — —_— —_— T = T07 T h == To- .
e~ (). 1o (0 (5.3)

Once again in momentum, there is no acceleration, and viscous stresses balance shear stresses.
In energy, there is no energy increase, and generation of thermal energy due to viscous work
is balanced by diffusion of the thermal energy, ultimately out of the system through the
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boundaries. Here there are inhomogeneities in both the forcing terms and the boundary
conditions. In terms of work, both the pressure gradient and the pulling of the plate induce

work.

Once again let us scale the equations. This time, we have a natural velocity scale, U, the

upper plate velocity. So take

*:_, T*: y « =
Y h u

The momentum equation becomes

Udu,  po—p

h? dy? pL
@ _ (po - pl)h2
dy? pUL

With dimensionless pressure gradient

_ 2
,P = (po pl)h ’
pUL
we get
d*u,
w -

This has solution ]
Uy = —§7>yf + Chys + Cs.

Applying the boundary conditions, we get

1
0 = —§P(0)2+Cl(0)+02,
0 = C27

1
1 = —§P(1)2+Cl(1),

1

Cl — 1+§P,

1, 1
*x — T = 1 = *9
u 273y*+< +2P)y

1

uy = SPy(l—wy)+ v

STE

(5.84)

(5.85)

(5.86)

(5.87)

(5.88)

(5.89)
(5.90)

(5.91)

(5.92)
(5.93)

(5.94)

(5.95)

(5.96)

(5.97)
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y, =0 u =0
=

Figure 5.7: Velocity profiles for various values of P for Couette flow with pressure gradient.

We see that the pressure gradient generates a velocity profile that is quadratic in y,. This is
distinguished from the Couette effect, that is the effect of the upper plate’s motion, which
gives a linear profile. Because our governing equation here is linear, it is appropriate to
think of these as superposed solutions. Velocity profiles for various values of P are shown in
Figure 5.7

Let us now calculate the shear stress profile. With 7 = u(du/dy), and taking 7, = 7/7,
we get

_ pUdu,
T = 0 (5.98)
_ pU du,
Te = T g, (5.99)
taking 7. = % (5.100)
5= Z“*, so here, (5.101)
s
1
Te = —Py*—|—§73+1, and (5.102)
1
Ty = ZPHL (5.103)
1

The wall shear has a pressure gradient effect and a Couette effect as well. In fact we can
select a pressure gradient to balance the Couette effect at one or the other wall, but not
both.

We can also calculate the dimensionless volume flow rate ()., which for incompressible
flow, is directly proportional to the mass flux. Ignoring how the scaling would be done, we
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arrive at
1
Q. = /u*dy*, (5.105)
01 1 1
2
= / <—§Py* + (1 + —73) y*) dy., (5.106)
0
13\ 1.\ 2]
= (—= 1+=-P) = 5.107
(670),+ (1437) 5], s20m
P 1 1
- _ 14 = Z 1
6+<+2P)2’ (5.108)
P 1
= E+§' (5.109)

Again there is a pressure gradient contribution and a Couette contribution, and we could
select P to give no net volume flow rate.
We can summarize some of the special cases as follows

o P — —00: u,

(1/2)Py.(1 = yu); 7 = P (1/2

—,), Q. = P/12. Here the fluid flows

in the opposite direction as driven by the plate because of the large pressure gradient.

P = —6. Here we get no net mass flow and u, = 3y2 — 2y,, 7 = 2v,, Q, = 0.

e P = —2. Here we get no shear at the bottom wall and u, = y2, 7. = 2y,, Q. = 1/3.

P = 0. Here we have no pressure gradient and u, = y,, 7 = 1, Q. = 1/2.

e P = 2. Here we get no shear at the top wall and u, = —y2 + 2y,, 7% = —2y, + 2,

Q. = 2/3.

o P — 00! u,

in the same direction as driven by the plate.

We now consider the heat transfer problem. Scaling, we get

T, d*T,
h2 dy?
A>T,
dy?

% (d“*>2, T.(0) = To(1) = 0,

kh? \ dy.

uU? ([ du, 2

kT, (dy*) ’
pec U? (du, 2
kT, (dy*) ’

du, \°
—PrEc(dZ*) ,

—PrEc 12,

CC BY-NC-ND.

(1/2)Py(1 — ys); 7o = P (1/2 — yi), Q. = P/12. Here the fluid flows

(5.110)
(5.111)
(5.112)

(5.113)

(5.114)

26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

300 CHAPTER 5. VISCOUS INCOMPRESSIBLE LAMINAR FLOW

1 2
= —PrEc (—Py* + 577 + 1) :

2
= —PrEc|P*?—-2P (%P+1) y*+<1+%77) )
dT, P? 1 ) 1.\’
dy = —PrFEc By* P §P+1 y*—i— 1+§P Y +Cl,
o= —pree[ P i) wa (il 2
L= PrBel i3 g Y9 27 ) Y
+Chy« + Cy,
T.(00) = 0=0C4,
P2 P 1 2
T.(1) = 0——PTEC<E—§<2P+1> 2(1—1— 77) >+C’1,
2
C, = PrEc<1+P+P—)
2
T. = —PrEc (—y* < ) ;(14— 77) yf)
P P2

1
PrE
+Pr C<2+6+24)

Factoring, we can write the temperature profile as

PrEc

T, = —uy.(1—

2_
51 y)(12+4P + P

8Py, — 2Py, + 2P%*y2).

For the wall heat transfer, recall ¢, = —k(dT'/dy). Scaling, we get

B kT, dT,
qcqsx = A dy*’
B kT, dT.,
& = hq. dy,
. KT,
choosing ¢. = -
B dT.,
So
P2 1 1\? 1 P P
. = PrBEc| =y —P(zP+1)yi+(1+= e— o — — — — .
q rc(gy* 77<277+ )y*+(+277)y 576 24
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M{U

‘ U

Figure 5.8: Schematic for Stokes’ first problem of a suddenly accelerated plate diffusing
linear momentum into a fluid at rest.

At the bottom wall y, = 0, we get for the heat transfer vector

1 P P?
q*|y*:0:—PrEc<——|———|——).

12
2 6 24 (5.129)

5.2 Similarity solutions

In this section, we will consider problems which can be addressed by what is known as a
similarity transformation. The problems themselves will be fundamental ones which have
variation in either time and one spatial coordinate, or with two spatial coordinates. This is in
contrast with solutions of the previous section which varied only with one spatial coordinate.

Since two coordinates are involved, we must resort to solving partial differential equations.
The similarity transformation actually reveals a hidden symmetry of the partial differential
equations by defining a new independent variable, which is a grouping of the original in-
dependent variables, under which the partial differential equations transform into ordinary
differential equations. We then solve the resulting ordinary differential equations by standard
techniques.

5.2.1 Stokes’ first problem

The first problem we will consider which uses a similarity transformation is known as Stokes’
first problem, as Stokes addressed it in his original work which developed the Navier-Stokes
equations in the mid-nineteenth Century The problem is described as follows, and is
sketched in Figure B.8 Consider a flat plate of infinite extent lying at rest for ¢ < 0 on
the y = 0 plane in x — y — z space. In the volume described by y > 0 exists a fluid of semi-
infinite extent which is at rest at time ¢t < 0. At ¢t = 0, the flat plate is suddenly accelerated to

9Stokes, G. G., 1851, “On the effect of the internal friction of fluids on the motion of pendulums,” Trans-
actions of the Cambridge Philosophical Society, 9(2): 8-106.
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a constant velocity of U, entirely in the x direction. Because the no-slip condition is satisfied
for the viscous flow, this induces the fluid at the plate surface to acquire an instantaneous
velocity of u(0) = U. Because of diffusion of linear  momentum via tangential viscous shear
forces, the fluid in the region above the plate begins to acquire a positive velocity in the z
direction as well. We will use the Navier-Stokes equations to quantify this behavior. Let
us make identical assumptions as we did in the previous section, except that 1) we will not
neglect time derivatives, as they are an obviously important feature of the flow, and 2) we
will assume all pressure gradients are zero; hence the fluid has a constant pressure.
Under these assumptions, the £ momentum equation,

—u-+ u£u+ v gu%— wo— U = _@+ a—2u+—2u+—2u
Port TP gp TP, TP 5o T T o T a2t Tt T et |
~ =0 =~ ~~ ~~ ~
(5.130)

is the only relevant component of linear momenta, and reduces to

0 0?
pg—? - “a_z (5.131)
—~~ L
(mass)(acceleration) shear force
The energy equation reduces as follows
0 0 0 0 0? 0? 0?
pc=T+pclu —T+ v —T+ w, —T| = k| —=T+—=T+-—=T
—~— ~— 2 2 2
ot ?:g ~ dy ~ iz)* 8_:2 dy 8_z0
oT T ou\*
A M <a—“) (5.133)
. , Y Y

energy 1ncrease thermal diffusion  viscous work source

Let us first consider the x momentum equation. Recalling the momentum diffusivity
definition v = u/p, we get the following partial differential equation, initial and boundary
conditions:

ou 0%u
— = Vv— 5.134
ot Vo2’ (5.134)
u(y,0) = 0, u(0,t) = U, u(oo,t) = 0. (5.135)

Now let us scale the equations. Choose
U t Y

= =, e = —, . = —. 5.136
U =g T = (5.136)
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We have yet to choose characteristic length, (y.), and time, (¢.), scales. The equations
become

U Ou, vU 9%u,

— = —— 5.137
t Ot ye oy’ (5:137)
Oou, vt, 0w,
= — . 5.138
TR (0135
Wasting no time, we choose
v
= — = 5.139
=G0 (5.139)
Noting the SI units, we see p/(pU) has units of length: %m—;% = kif%m—gi = m. With
this choice, we get
V_tc_ I/tCU2 _tCU2 (5 140)
vt v '
This suggests we choose
v
te = ek (5.141)
With all of these choices the complete system can be written as
Ou, 0?u,
= 5.142
us(ys,0) =0, us(0,t,) = 1, ux (00, t,) = 0. (5.143)

Now for self-similarity, we seek transformation which reduce this partial differential equation,
as well as its initial and boundary conditions, into an ordinary differential equation with
suitable boundary conditions. If this transformation does not exist, no similarity solution
exists. In this, but not all cases, the transformation does exist.

Let us first consider a general transformation from a v,,t, coordinate system to a new
7y, ty coordinate system. We assume then a general transformation

N = (Y ts), (5.144)

~

t, = t(ysts). (5.145)

We assume then that a general variable 1, which is a function of y, and t, also has the same

~

value at the transformed point 7, t,:

Qﬂ*(y*,t*) = ¢*(U*7f*) (5146)
The chain rule then gives expressions for derivatives:
o, O, | On, onp, | Ot
aw = (,)fb 877 O = (5.147)
t* Y s ta t* Y 015* M t* Y
o, O, | On, o, | Ot
Gl %) O O . (5.148)
ay* ta an* ta ay* ta at* N ay* ta
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Now we will restrict ourselves to the transformation

~

i =t., (5.149)
so we have gi* =1 and gz* = 0, so our rules for differentiation reduce to
* Yx * 1t

o, OV, |  On, N,
Gul o OO O O (5.150)
at* Ys 87]* ta 8t* Ys 8t* M
o, O, |  On.
Gel O} Ol (5.151)
0y |, O |z Oy: |,

The next assumption is key for a similarity solution to exist. We restrict ourselves to
transformations for which ¢, = v.(n.). That is we allow no dependence of 1, on t,. Hence

we must require that %%

= 0. Moreover, partial derivatives of 1), become total derivatives,

RS

giving us a final form of transformations for the derivatives

| = o o1

) - e e
In terms of operators we can say

8%% _ g?: y*dim’ (5.154)

8iy*t* _ gzi t*din*' (5.155)

Now returning to Stokes’ first problem, let us assume that a similarity solution exists of
the form w,(ys,t«) = u.(n.). It is not always possible to find a similarity variable 7,. One
of the more robust ways to find a similarity variable, if it exists, comes from group theoryﬁ
and is explained in detail in the recent monograph by Cantwell. Group theory, which is too

6Group theory has a long history in mathematics and physics. Its complicated origins generally include
attribution to Evariste Galois, 1811-1832, a somewhat romantic figure, as well as Niels Henrick Abel, 1802-
1829, the Norwegian mathematician. Critical developments were formalized by Marius Sophus Lie, 1842-
1899, another Norwegian mathematician, in what today is known as Lie group theory. A modern variant,
known as “renormalization group” (RNG) theory is an area for active research. The 1982 Nobel prize in
physics went to Kenneth Geddes Wilson, 1936-, of Cornell University and The Ohio State University, for use
of RNG in studying phase transitions, first done in the 1970s. The award citation refers to the possibilities
of using RNG in studying the great unsolved problem of turbulence, a modern area of research in which
Steven Alan Orszag, 1943-2011, made many contributions.

Quoting from the wuseful Eric Weisstein’s World of Mathematics, available online at
http://mathworld.wolfram.com/Group.html, “A group G is a finite or infinite set of elements together
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detailed to explicate in full here, relies on a generalized symmetry of equations to find simpler
forms. In the same sense that a snowflake, subjected to rotations of 7/3, 27/3, m, 4m/3,
5m/3, or 2w, is transformed into a form which is indistinguishable from its original form,
we seek transformations of the variables in our partial differential equation which map the
equation into a form which is indistinguishable from the original. When systems are subject
to such transformations, known as group operators, they are said to exhibit symmetry.

Let us subject our governing partial differential equation along with initial and boundary
conditions to a particularly simple type of transformation, a simple stretching of space, time,
and velocity:

t = et,, 7§ = ey, U = e“u,. (5.156)

Here the “~” variables are stretched variables, and a, b, and ¢ are constant parameters. The
exponential will be seen to be a convenience, which is not absolutely necessary. Note that
for a € (—00,00), b € (=00, ), ¢ € (—00,00), that e € (0,00), € € (0,00), e € (0,00).
So the stretching does not change the direction of the variable; that is it is not a reflecting
transformation. We note that with this stretching, the domain of the problem remains
unchanged; that is ¢, € [0,00) maps into ¢ € [0,00); y. € [0,00) maps into § € [0, 00).
The range is also unchanged if we allow u, € [0,00), which maps into @ € [0,00). Direct
substitution of the transformation shows that in the stretched space, the system becomes

_,0u oy 0210
a—e_ — p— 5.157
o~ ¢ o (5.157)
e “u(y,0) = 0, e “u(0,t) = 1, e “ti(o0,t) = 0. (5.158)

In order that the stretching transformation map the system into a form indistinguishable
from the original, that is for the transformation to exhibit symmetry, we must take

c=0, a=2b (5.159)

with a binary operation which together satisfy the four fundamental properties of closure, associativity, the
identity property, and the inverse property. The operation with respect to which a group is defined is often
called the ‘group operation,” and a set is said to be a group ‘under’ this operation. Elements A, B, C, ...
with binary operations A and B denoted AB form a group if

1. Closure: If A and B are two elements in G, then the product AB is also in G.
2. Associativity: The defined multiplication is associative, i.e. for all A, B,C € G, (AB)C = A(BC).

3. Identity: There is an identity element I (a.k.a. 1, E, or e) such that A = Al = A for every element
AeG.

4. Inverse: There must be an inverse or reciprocal of each element. Therefore, the set must contain an
element B = A~! such that AA~! = A1 A = I for each element of G.

..., A map between two groups which preserves the identity and the group operation is called a homomor-
phism. If a homomorphism has an inverse which is also a homomorphism, then it is called an isomorphism
and the two groups are called isomorphic. Two groups which are isomorphic to each other are considered to
be ‘the same’ when viewed as abstract groups.” For example, the group of 90 degree rotations of a square
are isomorphic.
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So our symmetry transformation is
t = et 7§ = ey, U = u,, (5.160)

giving in transformed space

ot 0*a
ge _ gt 5.161
a(g,0) = 0, w(0,t) = 1, (00, t) = 0. (5.162)

Now both the original and transformed systems are the same, and the remaining stretching
parameter b does not enter directly into either formulation, so we cannot expect it in the
solution of either form. That is we expect a solution to be independent of the stretching
parameter b. This can be achieved if we take both u, and @ to be functions of special
combinations of the independent variables, combinations that are formed such that b does
not appear. Eliminating b via

) (5.163)
we get

)2, (5.164)

or after rearrangement .
Y« _ Y
VE Vi

We thus expect u, = u, (y.//T) or equivalently @ = @ (ﬂ/ Vi ) This form also allows

Uy = Uy (ay* /1t ), where « is any constant. Let us then define our similarity variable 7,
as

(5.165)

Y
N = N (5.166)
Here the factor of 1/2 is simply a convenience adopted so that the solution takes on a
traditional form. We would find that any constant in the similarity transformation would
induce a self-similar result.

Let us rewrite the differential equation, boundary, and initial conditions (Qu,/0t, =
0?u, /Oy?, Uy (ys,0) = 0, u,(0,t,) = 1, u,(0o,t,) = 0), in terms of the similarity variable 7,.
We first must use the chain rule to get expressions for the derivatives. Applying the general
results just developed, we get

Ou, _ ons du, _ _l&t*_g/z% _ _Ealu*7 (5.167)
Ot Ot, dn, 22 dn, 2t, dn.
Ou, N, du, 1 du,

0y Oy, dn, NG dn,’
0%u, 0 [ Ou, 0 1 du,

pr— = -1
dy2 Y. (8y*) Y. (2\/15* dm) ’ (5.169)
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1 d?u,

B 1 0 (du. 1 1 d?u, B (5.170)
2ROy \dn. ) 2VE \2vE dn2 ) At dp? '
Thus, applying these rules to our governing linear momenta equation, we recover
Ny du, 1 d?u,
— = — 5.171
2t, dn, 4t, dn?’ ( )
d?u, du,
2n,—— = 0. 5.172
a2 "M, (5.172)

Note our governing equation has a singularity at ¢, = 0. As it appears on both sides of

the equation, we cancel it on both sides, but we shall see that this point is associated with

special behavior of the similarity solution. The important result is that the reduced equation

has dependency on 7, only. If this did not occur, we could not have a similarity solution.
Now consider the initial and boundary conditions. They transform as follows:

Yo = 0,=n, =0, (5.173)
Y —> 00,== 1)y — 00, (5.174)
t., — 0,= n, — oc. (5.175)

Note that the three important points for £, and y, collapse into two corresponding points in
7.. This is also necessary for the similarity solution to exist. Consequently, our conditions
in 7, space reduce to

us(0) = 1,

us(00) = 0,

(5.176)
(5.177)

no slip,
initial and far-field.

We solve the second order differential equation by the method of reduction of order, noticing
that it is really two first order equations in disguise:

d ([ du, du,
+ 21, (—) = 0. 5.178
dn. (dm) dns ( )
multiplying by the integrating factor e’ (5.179)

d (du 2 [ du

3 * 3 *
+ 2n,€ 0. 5.180
dr). (dn*) ! (dn*) ( )

d 2du*
e 0, 5.181
dr). ( dm) ( )

du
b A 182
e an. : (5.182)

du* .2
Ae 1
an. e, (5.183)
M
u, B+ A / e ds. (5.184)
0
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Now applying the condition u, =1 at n, = 0 gives

0
1 = B+A/ e ds, (5.185)
<
-0
B = 1 (5.186)
So we have
o
Uy = l—l—A/ e % ds. (5.187)
0

Now applying the condition u, = 0 at n, — oo, we get

oo

0 = 1+A [ e ds, (5.188)

0 = 1+A4 (5.189)

A= — = (5.190)

Though not immediately obvious, it can be shown by a simple variable transformation to a
polar coordinate system that the above integral from 0 to oo has the value y/7/2. It is not
surprising that this integral has finite value over the semi-infinite domain as the integrand
is bounded between zero and one, and decays rapidly to zero as s — oo. Consequently, the
velocity profile can be written as

us(ne) = 1_ﬁ i e ds, (5.191)

Us (Y, t) = 1— — e ¥ ds, (5.192)

Wy, t) = erfc< Y ) (5.193)

In the last form above, we have introduced the so-called error function complement, “erfc.”
Plots for the velocity profile in terms of both 7, and y,,t. are given in Figure We see
that in similarity space, the curve is a single curve that in which u, has a value of unity at
7. = 0 and has nearly relaxed to zero when 7, = 1. In dimensionless physical space, we see
that at early time, there is a thin momentum layer near the surface. At later time more

momentum is present in the fluid. We can say in fact that momentum is diffusing into the
fluid.
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U * U *

Figure 5.9:  Sketch of velocity field solution for Stokes’ first problem in both similarity
coordinate 7, and primitive coordinates v, t,.

We define the momentum diffusion length as the length for which significant momentum
has diffused into the fluid. This is well estimated by taking n, = 1. In terms of physical
variables, we have

Ys

= 1 5.194

NG : (5.194)

Yy, = 21, (5.195)
t

LA (5.196)
U Uz

v Ut
= /= 1
y o\ (5.197)

y = 2Vl (5.198)

We can in fact define this as a boundary layer thickness. That is to say the momentum
boundary layer thickness in Stokes’ first problem grows at a rate proportional to the square
root of momentum diffusivity and time. This class of result is a hallmark of all diffusion
processes, be it mass, momentum, or energy.

Taking standard properties of air, we find after one minute that its boundary layer
thickness is 0.01 m. For oil after one minute, we get a thickness of 0.002 m.

We next consider the shear stress field. For this problem, the shear stress reduces to
simply

0
7= pSl (5.199)
dy
Scaling as before by a characteristic stress 7., we get
U Ou,
nr. o= B2 (5.200)
v 9y
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pU? 1 du,
L= BT 201
T o, (5.201)
Taking 7. = pU? /v = pU?/(11/p) = pU?, we get
* ]- *
. o= s du (5.202)

gy, 2/ dn.
_ 1 _2 (5.203)
RN ﬁe , .

N (5.204)
Tt
1 Y 2
= T exp (—2\/5) : (5.205)
Now at the wall, y, = 0, and we get
1
7—*|y*=0 = _Tt* (5206)

So the shear stress does not have a similarity solution, but is directly related to time variation.
The equation holds that the stress is infinite at ¢, = 0, and decreases as time increases. This
is because the velocity gradient flattens as time progresses. It can also be shown that while
the stress is unbounded at a single point in time, that the impulse over a finite time span
is finite, even when the time span includes t, = 0. It can also be shown that the flow
corresponds to a pulse of vorticity being introduced at the wall, which subsequently diffuses
into the fluid.
In dimensional terms, we can say

T 1
—_— = — 5.207
pU?
- = 5.208
' VTV (5.208)

pU \/%
N (5.209)
U.\/pii

e (5.210)

Now let us consider the heat transfer problem. Recall the governing equation, initial and
boundary conditions are

oT T ou\?
T(y,0) = T, T(0,t) =Ty, T(oo,t) =1T,. (5.212)
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We will adopt the same time . an length 3. scales as before. Take the dimensionless tem-

perature to be
T-T,

T, = . 5.213
= (5.213)
So we get
T, JT. KT, T,  pU? (Ou,\?
r~ = Po () (5.214)
te Ot ye Oyi o yd \Oy.
T, kT, t. O°T. pU® t. [Ou.\’
- = Y ( ¢ ) , (5.215)
Ot vz pcly Oy;  yz pcdy \ Oy
k t. kU? 1 k k 1
pow Sl _ WTrv1_k _k_ 1 (5.216)
Y2 pc v2 U?pc  pcv  pc  Pr
72 2772 1 2 2
plz te _ pURv 1 WU U e (5.217)
y2 pcT, vz U2 pcT, %cho T,
So we have in dimensionless form
oT., 1 9°T. o\
= — E 21
Ot Pr 0y? - C(ay*) ’ (5:218)
T.(y,,0) = 0, T.(0,t.)=0, T.(co,t,)=0. (5.219)

Notice that the only driving inhomogeneity is the viscous work. Now we know from our
solution of the linear momentum equation that

Ou, 1 Y2
=— ——= . 5.220
Oy 7t P < 4t*> ( )

So we can rewrite the equation for temperature variation as

T, 1 &°T, Ec Y2
= — — —= 5.221
ot Pr 0y? - at, P < 2t*> ’ ( )
T.(y.,0) = 0, T.(0,t.) = 0, T. (00, t,) = 0. (5.222)

Before considering the general solution, let us consider some limiting cases.

e Fce— 0

In the limit as E'c — 0, we get a trivial solution, Ty (ys, t.) = 0.

e Pr— oo

Recalling that the Prandtl number is the ratio of momentum diffusivity to thermal
diffusivity, this limit corresponds to materials for which momentum diffusivity is much
greater than thermal diffusivity. For example for SAE 30 oil, the Prandtl number is
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around 3500. Naively assuming that we can simply neglect conduction, we write the
energy equation in this limit as

oT, Ec Y2
o = L exp (_Qt*) . (5.223)

and with T, = T,(n.) and 1. = y./(2v/t.), we get the transformed partial time deriva-
tive to be

T, M. dT,
= — . 5.224
ot, 2t, dn, ( )
So the governing equation reduces to
N dT Ec 5
_ — = .22
2. dn. A (5:225)
I 2Pel (5.226)
dny T 7k
2K > 1
T, = 228 Ze% g (5.227)
T s

UE

We cannot satisfy both boundary conditions; the equation has been solved so as to
satisfy the boundary condition in the far field of 7. (c0) = 0.

Unfortunately, we notice that we cannot satisfy the boundary condition at n, = 0.
We simply do not have enough degrees of freedom. In actuality, what we have found
is an outer solution, and to match the boundary condition at 0, we would have to
reintroduce conduction, which has a higher derivative.

First let us see how the outer solution behaves near n, = 0. Expanding the differential
equation in a Taylor series about 7, = 0 and solving gives

dT,  2Ec (1
_ e (— — 2 20 4 ) , (5.228)
dn, s «
2F 1
e (b ) s
™

It turns out that solving the inner layer problem and the matching is of about the
same difficulty as solving the full general problem, so we will defer this until later in
this section.

Pr—0

In this limit, we get
T,
oy

0. (5.230)

The solution which satisfies the boundary conditions is

T, =0. (5.231)
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In this limit, momentum diffuses slowly relative to energy. So we can interpret the
results as follows. In the boundary layer, momentum is generated in a thin layer.
Viscous dissipation in this layer gives rise to a local change in temperature in the layer
which rapidly diffuses throughout the entire flow. The effect of smearing a localized
finite thermal energy input over a semi-infinite domain has a negligible influence on
the temperature of the global domain.

So let us bring back diffusion and study solutions for finite Prandtl number. Our gov-
erning equation in similarity variables then becomes

M. dT, 1 1 d*T, Ec

— = — e 5.232
2t, dn; Pr4t, dn? * Wt*e ’ ( )
dT, | T, 4Ec _,.»
D = Prag TR (5.233)
d*T, dr, 4
e +2Pr n,— an = —;ECPT’ e (5.234)
T.00) = 0, T.(co)=0. (5.235)

The second order differential equation is really two first order differential equations in dis-
guise. There is an integrating factor of e 7. Multiplying by the integrating factor and
operating on the system, we find

d’T, dT, 4
ePr dn 2 +2Pr n.e’" Zdn - _;ECPT e(Pr—2)nf’ (5.236)
d dT, 4
e ( Pron? i ) = —;EcPr elr=2m (5.237)
dT, 4 =
P i - —;ECP’/‘/ =25 4s 4 (5.238)
« 0
dT, 4 T
— —ZEcPrefrm / ePr=2)s* gg 4 Che” P’“”*
dln* 7T 0
(5.239)
4 M 2 P
T, = ——EcPr/ e fre / (Pr=2)s* gg dp
™ 0 0
M
+q/ e T ds + O (5.240)
0

The boundary condition 7 (0) = 0 gives us Co = 0. The boundary condition at co gives us
then

4 o0 P )
0 = ——EcPr/ e_PTPQ/ ePr=25" (g dp+C'1/ e ds. (5.241)
T 0 0 0
—
1L /7
2 Pr
(5.242)
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Therefore, we get

4 o 2 P Cl
—EcP “brpt [ e (Pr=Ds g g = 2L [ 24
—Be 7”/0 e /0 sdp=~ Pr (5.243)
P
C, = %Ecpr?’/? / —Prp? / (Pr=2)s* s dp. (5.244)
0 0

So finally, we have for the temperature profile

4 e —Pr p? P (P7‘—2)s2
Ti(n.) = ——EcPr i e i e ds dp

8 3/2 —Pr p? P (Pr 2)s " —Pr s?
+ WECPT *ds dp e ds. (5.245)
0 0 0

This simplifies somewhat to

_% (/On o~ Pr PP ort (W p) dp — erf (\/P_r 77) /OOO e~ Perf (\/2—7553252) dp) :

This analysis simplifies considerably in the limit of Pr = 1, that is when momentum and
energy diffuse at the same rate. This is a close to reality for many gases. In this case, the
temperature profile becomes

4 K > [P 2 e 2
T.(n.) = —%Ec/ e ! / e % ds dp+C'1/0 e ¥ ds. (5.247)

Now if h(p) = fop =5* ds, we get dh/dp = e ?". Using this, we can rewrite the temperature
profile as

4 T dh L g2
T.(n.) = —;Ec i h(p)d— dp + Cy i e ¥ ds, (5.248)
4F T h? T 2
_ == d( )+01/ e ds, (5.249)
™ Jo 2 0

AEc (1 CP o
__A4Bc <_) ( / - ds) e / e ds, (5.250)
s 2 0 0
2F T 2 - 2
= (——C/ e’ ds+01>/ e % ds. (5.251)
m 0 0

Now for T'(c0) = 0, we get

0 = (—@/ 6_82d$+01)/ e ds, (5.252)
T Jo 0
B 2Ec /T LS
0 = <_TT + C'1> 5 (5.253)
Ec
¢, = 7 (5.254)
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Figure 5.10: Plot of temperature field for Stokes’ first problem for Pr =1, Ec = 1.

So the temperature profile can be expressed as

T.(p,) = Ee (" e as) (1= 2 [7 e as) . (5.255)
VT \Jo VT Jo

We notice that we can write this directly in terms of the velocity as

o) = Zou(m) (1 = wa(n.). (5.256)

2
This is a consequence of what is known as Reynolds’ analogy which holds for Pr = 1 that
the temperature field can be directly related to the velocity field. The temperature field for
Stokes’ first problem for Pr =1, Ec = 1 is plotted in Figure [5.10L

5.2.2 Blasius boundary layer

We next consider the well known problem of the flow of a viscous fluid over a flat plate. This
problem forms the foundation for a variety of viscous flows over more complicated geometries.
It also illustrates some important features of viscous flow physics, as well as giving the original
motivating problem for the mathematical technique of matched asymptotic expansions. Here
we will consider, as sketched in Figure B.11] the incompressible flow of viscous fluid of
constant viscosity and thermal conductivity over a flat plate. In the far field, the fluid will
be a uniform stream with constant velocity. At the plate surface, the no-slip condition must
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Figure 5.11: Schematic for flat plate boundary layer problem.

be enforced, which will give rise to a zone of adjustment where the fluid’s velocity changes
from zero at the plate surface to its freestream value. This zone is called the boundary layer.

Considering first the velocity field, we find, assuming the flow is steady as well, that the
dimensionless two-dimensional Navier-Stokes equations are as follows

ou Ov

2 = 2
o+ 5 0, (5.257)
ou  Ou op 1 [(0*u 0O%u
Yor T8y T Tor ' Re (%*@) (5.258)
ov ov op 1 [0%v 0%
Yor T'ay T oy Re (%*@) (5.259)

The dimensionless boundary conditions are

u(z,y — o00) = 1, (5.260)
v(x,y —o0) = 0, (5.261)
p(x,y > o00) = 0, (5.262)
u(z,0) = 0, (5.263)
o(z,0) = 0. (5.264)

In this section, we are dispensing with the *’s and assuming all variables are dimensionless.
In fact we have assumed a scaling of the following form, where dim is a subscript denoting
a dimensional variable.

Udim, o Vdim T dim Ydim _ Pdim — po‘ (5265)

U = ’ v = ) T = ’ = ’
Uy Uy L J L p pu?

CC BY-NC-ND. 26 July 2019, J. M. Powers.


http://creativecommons.org/licenses/by-nc-nd/3.0/

5.2. SIMILARITY SOLUTIONS 317

Note for our flat plate of semi-infinite extent, we do not have a natural length scale. This
suggests that we may find a similarity solution which removes the effect of L.

Now let us consider that for Re — oo, we have an outer solution of u = 1 to be valid
for most of the flow field sufficiently far away from the plate surface. In fact the solution
u=1,v=0, p=0, satisfies all of the governing equations and boundary conditions except
for the no slip condition at y = 0. Because in the limit as Re — oo, we effectively ignore the
high order derivatives found in the viscous terms, we cannot expect to satisfy all boundary
conditions for the full problem. We call this the outer solution, which is also an inviscid
solution to the equations, allowing for a slip condition at the boundary.

Let us rescale our equations near the plate surface y = 0 to

bring back the effect of the viscous terms,

bring back the no-slip condition, and

e match our inviscid outer solution to a viscous inner solution.

This is the first example of the use of the method of matched asymptotic expansions as
introduced by Prandtl and his student Blasius in the early twentieth century.

With some difficulty, we could show how to choose the scaling, let us simply adopt a
scaling and show that it indeed achieves our desired end. So let us take a scaled y distance
and velocity, denoted by a~ superscript, to be

v =V Re v, y=VRey. (5.266)

With this scaling, assuming the Reynolds number is large, when we examine small y or
v, we are examining an order unity y or v. Our equations rescale as

ou 1/ Re0dv

Ou 1/VEReOs 5.267
dxr  1/v/Re 0y ( )

Ou 1/v/Re _Ou dp 1 [u 0%u
gv VIS - (28 2
u8x+1/ Revﬁﬂ 8:C+Re <8x2 +R68g2), (5.268)
1 u@+(1/\/Re)(1/\/Re)6@ 1 op
VRe Oz 1/vVRe dy 1/vRe 0y
2~ /oo A2
c L (L0 UVRETT) (5 5g0)
Re \ \/Re 022 1/Re 0y?
Simplifying, this reduces to
ou  0v
e A (5.270)
ou _Ou op 1 0%u 0%*u
St - 2, SR UY 271
Y9x5 or | Reor® T o2 (5:271)
oo _0v op 1 0% 0?0
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Now in the limit as Re — oo, the rescaled equations reduce to the well known boundary
layer equations:

ou  0v
—F+ = =0 5.273
o o5 (5.273)
ou ou op  0*u
e = T 5.274
Yoz Vo5 or o (5:274)
0 = 8_]3 (5.275)
9y
To match the outer solution, we need the boundary conditions which are
u(z,j — o00) = 1, (5.276)
o(x, g — o0) = 0, (5.277)
p(z, g — o00) = 0, (5.278)
u(z,0) = 0, (5.279)
o(x,0) = 0. (5.280)
The ¥ momentum equation gives us
p =p(x). (5.281)

In general, we can consider this to be an imposed pressure gradient which is supplied by
the outer inviscid solution. For general flows, that pressure gradient dp/dz will be non-zero.
For the Blasius problem, we will choose to study problems for which there is no pressure
gradient. That is we take

p(z) =0, for Blasius flat plate boundary layer. (5.282)

So called Falkner-Skan solutions consider flows over curved plates, for which the outer inviscid
solution does not have a constant pressure. This ultimately affects the behavior of the fluid
in the boundary layer, giving results which differ in important features from our Blasius

problem.
With our assumptions, the Blasius problem reduces to
ou  0v
—+—= =0 5.283
oz ey (5.283)
ou _Ou 0%u
— 4+ U= = ) 5.284
Yoz T'a; T o (5:284)

u(z, g — o00) = 1, (5.285)
3(z,§ — 00) = 0, (5.286)
u(xz,0) = 0, (5.287)
o(z,0) = 0. (5.288)
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Now to simplify, we invoke the stream function v, which allows us to satisfy continuity
automatically and eliminate v and v at the expense of raising the order of the differential
equation. So taking

===, f=-——, (5.289)
J

. 2 2
we find that mass conservation reduces to 2% — 2
0zdy g0z

associated boundary conditions become

oY O O O 1)

= 0. The x momentum equation and

359555 T~ B (5.290)
g—lg(:c,gj%oo) = 1, (5.291)
g—f(x,g]%oo) = 0, (5.292)

g—g(z,()) = 0, (5.293)
g—f(x,()) = 0. (5.294)

Let us try stretching all the variables of this system to see if there are stretching transforma-
tions under which the system exhibits symmetry; that is we seek a stretching transformation
under which the system is invariant. Take

~

&= ez, j = ey, P = e (5.295)

Under this transformation, the z-momentum equation and boundary conditions transform
to

ea+2b—2cg_@§aa;gg_ea+2b—2cg@£g?§ _ 63b—cgs_?;§’ (5.296)
eb_cg—g(:i",?)%oo) = 1, (5.297)
e“_cg—i(i’,gj%oo) = 0, (5.298)

eb_cg—g(i,O) = 0, (5.299)
e“_cgi(i,O) = 0. (5.300)

If we demand b = ¢ and a = 2¢, then the transformation is invariant, yielding

o Py W 0%
oy 0x0y 0% 092 0y3’

(5.301)
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gl%(:i",j&%oo) -1, (5.302)

Y

g—i(:)ﬁ",yj%oo) — 0, (5.303)
?g(i,o) Y (5.304)
gﬁﬁ(;ﬁ,()) — 0. (5.305)
T

Now our transformation is reduced to

i=e¥*r,  j=¢G, = (5.306)
Since ¢ does not appear explicitly in either the original equation set nor the transformed
equation set, the solution must not depend on this stretching. Eliminating ¢ from the

transformation by e¢ = /& /x we find that
z
- \/; (5.307)

v_JY v _ (5.308)

Vi VI Vi JE

Thus motivated, let us seek solutions of the form

z
= )
s

NaFRINSN
<<

or

>

Yo
N (\/5) . (5.309)
That is taking .
- Y
n= Nk (5.310)
we seek
b=z fn). (5.311)

Let us check that our similarity variable is independent of L our unknown length scale.

n= i V Re Yy v Re ydzm/L . uoL Ydim \/Z . E Ydim
Ve VT /Taim/ L V. v L \[Taim V \/Tdim
So indeed, our similarity variable is independent of any arbitrary length scale we happen to

have chosen.
With our similarity transformation, we have

(5.312)

on _ 1. -3/2 _ In

o = o7 =—3 (5.313)
on 1

— = —. 314
NG (5:314)
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Now we need expressions for Oy /0x, O /0y, 0*/0x0y, 0?1 /0y?, and 93 /0y3. First, con-
sider the partial derivatives of the stream function . Operating on each partial derivative,
we find

o _ 9 dfon 11
or  Ox (\/Ef(n)) fdnax * 2 :Ef’ (5.315)
AT S P S
_\/§<2 18 3Rt - I(f ndn), (5.316)
o df
SO 0= NG <f — nd_ﬁ . (5.317)
N 0 G, df On af 1 df
o _ 9 _ 72 i Bl i R 31
_% _df
SO u= o5 dn (5.319)
2 2 2
v _ 0 (00 _ 0 (4 _&fon_ 1 & 50
0xdy Ox \ 0y Ox \ dn dn? Ox 2z " dn?
O _ 0 (0N _ 0 (df\ _dfon _ 1 d&Ff (5.321)
05> 0y \og) 9y \dn) dpPdj Jxdp? '
O _ 0 (PN _0 (LN 1O (BN LSO a0
oyt oy \o0y*) oy \Vadp*) xog\dp) rdpoy
_ & (5.323)
- xdnd '
Now we substitute each of these expressions into the £ momentum equation and get
df 1 d*f 1 a\ 1 d&f  1df
af &*f afr\ a@f &S
d*f 3 f
_fd—n? - Qd—ﬁ?” (5.326)
af 1. .d*f
e + §fd—n2 = 0. (5.327)

This is a third order non-linear ordinary differential equation for f(n). We need three
boundary conditions. Now at the surface § = 0, we have n = 0. And as § — oo, we have
1n — oo. To satisfy the no-slip condition on u at the plate surface, we require
df
dn

= 0. (5.328)

n=0
For no-slip on v, we require

30)=0 — —% (f _7’3_{;) , (5.320)
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0 = f0)—0=2| | (5.330)

f(0) = o. (5.331)
And to satisfy the freestream condition on u as 7 — oo, we need

4

=1 332
ar (5.332)

n—0o0

The most standard way to solve non-linear ordinary differential equations of this type is to
reduce them to systems of first order ordinary differential equations and use some numerical
technique, such as a Rungeﬁ—Kutta integration. We recall that Runge-Kutta techniques, as
well as most other common techniques, require a well-defined set of initial conditions to
predict the final state. To achieve the desired form, we define

df d*f
= — h=—:. .
g a e (5.333)
Thus the x momentum equation becomes
dh 1
— 4+ =fh=0. 5.334
o ol (5.334)

But this is one equation in three unknowns. We need to write our equations as a system of
three first order equations, along with associated initial conditions. They are

4

w =9 =0 (5.335)
dg _ _

dh 1

= gl ho= (5.337)

Everything is well-defined except we do not have an initial condition on h. We do however
have a far-field condition on g which is g(oco) = 1. One viable option we have for getting a
final solution is to use a numerical trial and error procedure, guessing h(0) until we find that
g(00) — 1. We will use a slightly more efficient method here, which only requires one guess.

To do this, let us first demonstrate the following lemma: If F'(n) is a solution to d® f /dn3+
Sf(d*f/dn?) = 0, then aF(an) is also a solution. The proof is as follows. Take w(n) =

"Carl David Tolme Runge, 1856-1927, German mathematician and physicist, close friend of Max Planck,
studied spectral line elements of non-Hydrogen molecules, held chairs at Hanover and Goéttingen, entertained
grandchildren at age 70 by doing handstands.
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aF(an). Then we have

w = aF(an), (5.338)
sz_: _ az%;m), (5.339)
Z%’ - a3d2§7§g"), (5.340)
OC%’ _ a4d3§7$’7). (5.341)

Substituting these expressions into the £ momentum equation, we find

d*F(an) 1 d*F(an)
4 4 _
i e Pl =g et = 0, (5.342)
d*F(an) 1 d*F(an)
il 0. (5.343)

But we know this to be true as F'(an) is a solution. Hence aF'(an) is also a solution.
So to solve our non-linear system, let us first solve the following related system:

dF

- F(0) = .344
o =G Fo=o (5.344)
dG

- H = .34
a , G(0) =0, (5.345)
dH 1
d—ﬁ = —§FH, H(0) =1. (5.346)

After one numerical integration, we find that with this guess for H(0) that
G(00) = 2.08540918... (5.347)

Now our numerical solution also gives us F', and so we know that f = aF'(an) is also a
solution. Moreover

df o dl (an) .
a7 a o that is (5.348)
g(n) = azG(an). (5.349)

Now we want g(oo) = 1, so take 1 = a*G(0), so a®> = 1/G(c). So

1
G(o0)

(5.350)

a =
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Figure 5.12: Velocity profile for Blasius boundary layer.

Now

f
dn?
f

dn? =0

>
a)

>
(=)

>

(0)
(0)
(0)
(0)

>

3d2F(an)
dn?
a3 d*F (an)
dn® |,
*H(0),
3 1 7
= G7(o0),
(2.08540918...)7%/2 = 0.332057335...

a

—~
~—

a
a
a

This is the proper choice for the initial condition on A. Numerically integrating once more,
we get the behavior of f, g, and h as functions of  which indeed satisfies the condition at
oo. A plot of u = df /dn as a function of 7 is shown in Figure 5121 From this plot, we see
that when n = 5, the velocity has nearly acquired the freestream value of v = 1. In fact,
examination of the numerical results shows that when n = 4.9, that the u component of
velocity has 0.99 of its freestream value. As the velocity only reaches its freestream value at
0o, we define the boundary layer thickness, dg.99, as that value of y4,, for which the velocity
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has 0.99 of its freestream value. Recalling that
Uo  Ydim
=, /2 5.357
7 S i (5.357)
we say that
Uy 00,99
4.9 =4/ — . 5.3H8
V \/Zdim ( )
Rearranging, we get
0
09— 49,/ (5.359)
Ldim, UoT dim,
= 4.9Re; ', (5.360)
Here we have taken a Reynolds number based on local distance to be
Re,,, = —otdim (5.361)
v

This formula is valid for laminar flows, and has been seen to be valid for Re,, < 3 x 10°.
For greater lengths, there can be a transition to turbulent flow. For water flowing a 1 m/s
and a downstream distance of 1 m, we find dg.99 = 0.5 ¢m. For air under the same conditions,
we find dg99 = 1.9 em. We also note that the boundary layer grows with the square root
of distance along the plate. We further note that higher kinematic viscosity leads to thicker

boundary layers, while lower kinematic viscosity lead to thinner boundary layers.

Now let us determine the shear stress at the wall, and the viscous force acting on the

wall. So let us find

audim
Tw =
s aydlm

Ydim=0

Consider
o _ Fv_ 1
0y g2 rdnp?

0 () 1 df

Midim ou, 1 d*f
Waim uo\/jx/m dn?’
i [puopn d®f
T Maydim — Ldim d—772’
2
1 = Cf = 2 a ﬂ(0)>
3PU; V' ptioaim dn?

(5.362)

(5.363)

(5.364)

(5.365)
(5.366)

(5.367)
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d2
Cf = Q(Rel‘dz‘m)_l/2 —f

dn?
.664...
c, — Q064 (5.369)

V Rexdim

We notice that at xg4;,,, = 0 that the stress is infinite. This seeming problem is seen not to be
one when we consider the actual viscous force on a finite length of plate. Consider a plate
of length L and width 6. Then the viscous force acting on the plate is

(0), (5.368)

L
Fo= / T dA, (5.370)
0
L
= / (J;dwrm O)b dxdzma (5371)
" 1
= / £ (0)uor/Plight A din, (5.372)
Ldim
dxdzm

= bf"(0)u W/ (5.373)

= bf"(0)tor/Plioft (2y/Tdim )y (5.374)
= 2bf"(0)toy/pUonV'L, (5.375)

F . .
= Cp=A4f"(0) — 4f"(0)Re;"* = 1.328Re; *. (5.376)

1pu2Lb

puoL

Now let us consider the thermal boundary layer. Here we will take the boundary condi-
tions so that the wall and far field are held at a constant fixed temperature Ty;,, = T,. We
need to do the scaling on the energy equation, so let us start with the steady incompressible
two-dimensional dimensional energy equation:

aT‘dim airclim 62 Tdim 62 Tdim
- im = k 5.377
P <Ud O gim T aydim) ( 0%, * Y im ( )
audim ? aUclim 2 audim a'Udim ?
2 2 .

Taking as before,

im im T im TO im im
l':xcz? y:yza T = d 3 UZUd ) U:Ud . (5378)

Making these substitutions, we get

pepu Ty (0T 9T\ kT, PT  0°T
. (u 5w tay) = 7 gt o (5.379)
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cts (o (0N o (00T (Ou 00y
L? Ox oy dy Ox ’
orT orT k o*T  0*T
— — = 5.380
e +U@y PCpUoL (01’2 * 8y2) ( )
2 2 2
Tz ou ov ou Ov
2( ) +2( = ) ).
pc, LT, ( (01’) * <0y) * <0y * Oz
(5.381)
Now we have
k ku 11
= = 5.382
pcyuoL cpppu, L Pr Re’ ( )
2
IS [T T Ec
— = —. 5.383
pc, LT,  pu,Lc,T, Re ( )
So the dimensionless energy equation with boundary conditions can be written as
orT orT 1 0?T  0*T
—t+v— = 5.384
Yor " oy PrRe <8x2 * 8y2) ( )
Re ox oy oy Ox ’
T(x,0) = 0, T(x,00) = 0. (5.385)

Now as Re — oo, we see that T = 0 is a solution that satisfies the energy equation and
all boundary conditions. For finite Reynolds number, non-zero velocity gradients generate
a temperature field. Once again, we rescale in the boundary layer using v = v/ Re v, and

y =V Re y. This gives

or, L 1 o _ 1 (0T, p 0T (5.380)
Yor T VRel/VRe 0§  PrRe\dz2 0 '
Ec ou\? ot 2 ou 1 05\?
“Re (2 (5:) +2(5) + (VP55 + o) )
or 0T 1 1 0T O°T
_|_E i @ 2_|_i @ 2_|_ a_u_i_i@ ’
“\ &e \ oz Re \ 0y 0y ReOx '
as Re — oo, (5.388)
or T 1 82T ou\?
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Now take T' = T'(n) with n = y/v/z as well as u = df /dn, v =

and Ou /0y = (1/+/z)(d*f/dn?*). We also have for derivatives, that

or  dron dTr 1n
i d_n%_d_n<_§§)’

or  dron dT 1

W @ v

T 0 [T\ 0 ( 1dT\ _
BRI

The energy equation is then rendered as

)« (o (7

1 dfdT

LT
Ve dn

)
(-t

df

df

i

dn

1ndT

2x dn

1 9dr  1d°T
0y dy  x dn?
o L18T B
~ Przdn? x
_1aT
~ Pr dn
_lar
~ Pr d77 dn?
= —PrFEc ( )
= 0,

—(1/(2vx)) (f = n(df /dn))

(5.390)
(5.391)
(5.392)
A
%) (5.393)
) . (5.394)
f ) . (5.395)
(5.396)
(5.397)

Now for Fc — 0, we get T = 0 as a solution which satisfies the governing differential
equation and boundary conditions. Let us consider a solution for non-trivial Ec, but for
Pr = 1. We could extend this for general values of Pr as well. Here, following Reynolds
analogy, when thermal diffusivity equals momentum diffusivity, we expect the temperature
field to be directly related to the velocity field. For Pr = 1, the energy equation reduces to

&T 1 ,dT 2\
LI — _Eel =L 5.398
ar 3l ‘ <d?72) ’ (5:3%)
T00) = 0, T(o0) =0. (5.399)
Here the integrating factor is
el 20 d (5.400)
Multiplying the energy equation by the integrating factor gives
2T 1150 adT - A
f LIt dt Jo 5 f@) dt _E sf@) dt [ & J 5.401
ap f dn e (dn2) ’ o401
d (g udT Wiy d2f\?
o (e 0 2/ d_n) — —Eceldz (d—rﬁ . (5.402)
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Now from the z momentum equation, f” + £ f f” = 0, we have

f‘///
f= —27 (5.403)
So we can rewrite the integrating factor as
" "
Tir0 dt _ S @ _ () _ f7(0) (5.404)

frn)

So the energy equation can be written as

L(EOITY - (B0 (51) .

= —Ecf"(0 s f (5.406)
f"(0)dT °f
—_ = —= ds Cl, .
f//(n) dn / ds? + (5 407)
ar fo[rdf d f
- d_/ T s O (5.408)
I A f
— — _FEec = ( ar w) + 0 o (5.409)
L Prd &
= _Ecd—’)72d_1’] Cld o (5410)
B df > f
- —Ecd—n (2 (dn) ) Cld -, (5.411)
_ Ec (df\® df
T = —— (d_n) +Cld—n+02, (5.412)
7(0) = o:-%(@)2+q@+@, (5.413)
=0 =0
Cy = 0, (5.414)
T(oo) = 0= ——X(f(0a) + O f'(o0), (5.415)
=1 =1
C, = % (5.416)
Ecd d
T(n) = {d—{; <1—d—{7), (5.417)
1)
T() = —ulm)(l—uln)), (5.418)

A plot of the temperature profile for Pr =1 and Fc =1 is given in Figure 5.13
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Figure 5.13: Temperature profile for Blasius boundary layer, Fc =1, Pr = 1.
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