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1 Thermodynamic Systems

The system is the part of the universe in which we are interested ( e.g. an object, a
bulb of gas, a human being, the Earth, a galaxy etc). The surroundings ( or thermal
surroundings) are the rest of the universe. The universe is the systems plus the
surroundings (Fig. 1.1).

Several systems of interest may be treated as a single composite system (Fig.
1.2). An isolated system is one that has no interaction ( exchange of energy, matter,
momentum, etc.) with other systems or the surroundings.

System

Surroundings

Universe

Figure 1.1

A B C

Figure 1.2

2 Equilibrium

Consider an isolated composite system containing gas (Fig. 2.1). No matter how
complex the initial state, at long times the system will reach a state of equilibrium
with time independent macroscopic properties (Fig. 2.2). Two types of property:

• Intesive - property of part of the system is equal to that of the whole system,
e.g, p, T .

• Extensive - property of part of the system is different to that of the whole
system, e.g, V, n.

Intensive properties are uniform/homogeneous at equilibrium. Thermodynamic
variables are linked by equations of state:

pAVA = nARTA; pBTB = nBRTB
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A B

Internal walls or constraint

Figure 2.1

pA
TA
VA
nA

pB
TB
VB
nB

Figure 2.2: Here p, T , V , nmeans pressure,
temperature, volume, and number of moles,
respectively

3 Thermal Contact

If A,B are in thermal contact then at equilibrium TA = TB and A,B are said to be in
thermal equilibrium with each other. Thermal contact is allowed by diathermal walls
(Fig. 3.1) and prevented by adiabatic walls (Fig. 3.2). Diathermal walls allow the
transfer of energy in the form of heat ( thermal conduction, convection, radiation).
Adiabatic walls forbid it. At thermal equilibrium all heat flow ceases.

If two systems (A,C) are in thermal equilibrium with a third (B) then they are
in thermal equilibrium with each other. This is the zeroth law of thermodynamics
which ensures temperature can be consistently defined. Temperature is the property
that determines if systems are in thermal equilibrium with each other.

TA TB

Diathermal walls

TA = TB

Figure 3.1

TA TB

Adiabatic wall

TA 6= TB

Figure 3.2

A B C TA = TB

TB = TC

⇒ TA = TC

Figure 3.3
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4 Mechanical Contact

If A,B are in mechanical contact then at equilibrium pA = pB and A,B are said to
be in mechanical equilibrium with each other. Mechanical equilibrium is allowed by
movable walls (or flexible walls) and disallowed by immovable walls ( or inflexible
walls). Movable walls allow the transfer of energy in the form of work which is force
times displacement. All forces are balanced at equilibrium (pA = pB).

Movable walls

Figure 4.1

pA pB

pA = pB

Figure 4.2

5 Mass Contact

If A,B are in mass contact then mass can be exchanged between them, and they
come to ‘mass equilibrium’. A wall permeable to matter allows mass contact ( Fig.
5.1); a wall impermeable to matter prevents it.

At mass equilibrium the gas densities ρ become equal (Fig. 5.2). Note that
equilibrium ( in these simple cases) involves homogeneity of intensive properties -
T, p, ρ, etc.

Permeable walls

Figure 5.1

ρA ρB

ρA = ρB

Figure 5.2

6 The Basic Problem of Thermodynamics

Many thermodynamic problems can be expressed in the following way:
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What is the new equilibrium state reached after the removal of
internal constraints in an isolated composite system (Fig. 6.1)?

Later in the course we will give a completely general answer to this question.
But to start off with one will consider replacing an adiabatic wall with a diathermal

one so that heat can be exchanged.

Restrictive wall

? ?

Less restrictive wall

Figure 6.1

7 Heat Capacity C

System

T
Q

Figure 7.1: Energy added to the system in the form of heat (Q)

Say energy Q is added to the system in the form of heat (Fig. 7.1). The
temperature changes from T to T + ∆T and ∆T ∝ Q so that Q = C∆T . As a
differential,

C = lim
∆T→0

(
Q

∆T

)
=

d̄Q

dT

where the symbol d̄ will be explained later. Specific heat c is the heat capacity per
unit mass ( or per unit mole, etc):

Q = mc∆T

Specific heats are only approximately temperature independent. For gases we must
specify them for constant pressure or volume.
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8 The Final Temperature Problem

Object A at temperature TA is placed in thermal contact with object B at temperature
TB. What is the final temperature (Fig. 8.1)?

We can formulate this in terms of the ‘basic problem of thermodynamics’.
Solution: If TA > TB, heat flows from A to B:

QB > 0

QA < 0

}
heat added to the system is positive.

We have QA = −QB by conservation of energy. So

CA(Tf − TA) = −CB(Tf − TB)

and thus

Tf =
CATA + CBTB
CA + CB

or equivalently

Tf =
mAcATA +mBcBTB
mAcA +mBcB

which is a kind of ‘weighted averaged’ and can be used to compare heat capacities.

Adiabatic wall Diathermal wall

Tf TfTA TB

Figure 8.1

9 Thermal Reservoir

Suppose
CB
CA

=
mBcB
mAcA

= ε� 1.

Then

Tf =
TA + εTB

1 + ε
.
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As ε→ 0, Tf → TA.
A acts as a ‘thermal reservoir’ for B, or a ‘heat bath’. An object placed in contact

with it will adopt its temperature - this is how we control temperature!
Often the thermal surroundings are pictured as a thermal reservoir, and also as a

‘pressure bath’ which fix {p, T} for the system.

System

p, T, Surroundings

psys = Tsurr

psys = Tsurr

Figure 9.1

10 Latent Heat

1 2

273 373
T (K)

p

1 atm

l

g

s

Figure 10.1: 1. Solid to liquid Lfus (melting) 2. liquid to gas Lvap (boiling).

At phase changes ( solid to liquid, liquid to gas) it takes finite heat to melt or
boil a given mass with no change in temperature.

Q = Lm or d̄Q = L dm.

Here L is latent heat (units J kg−1).
One example is water (Fig 10.1). Heat 1kg of ice at 1 atm (cice = 2.1k JK−1kg−1, cwater =

4.kJK−1kg−1, Lfusion = 333kJkg−1, Lvap = 2260kJkg−1).
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0◦C

100◦C

2260kJ333kJ Q

Phase coexistence

1/c

T

Figure 10.2

11 Thermal Conduction

Consider a rectangular parallelepiped (Fig. 11.1). We have

d̄Q

dt
= −kAdT

dt
= +kA

Thot − Tcold

l

at steady state. Here k is the thermal conductivity in Wm−1K−1. Suppose a hot
source is a cooling object at temperature T , heat capacity C. Then

d̄Q = −C dT

d̄Q

dt
= −C dT

dt
.

So
dT

dt
= −kA

Cl
(T − Tcold).

Objects cool according to e−
kA
Cl
t. The ‘relaxation method’ for comparing heat capacities

or specific heats.

area A

flux
dQ

dt

TcoldThot
x

l

Figure 11.1
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12 Joule’s Paddle-Wheel Experiment (1843)

The work done by weight w = mgh converted to heat in water W = Q, Q = C∆T
which implies

mgh = C∆T

This established the equivalence of heat and work. Doing work ( mechanical or
electrical ) gives a third method of measuring heat capacity - but this time on an
absolute scale.

water

∆T

m

Paddle wheel h

Figure 12.1

13 Interal Energy and the First Law

Processes Thermodynamics predicts that the result of a change between two equilib-
rium states A,B. The passage form A to B is called a process. A quasistatic process

pivot

Figure 13.1: Slow raising of pendulum:
quasistatic and ( almost) reversible

friction

Figure 13.2: Pushing weight along table:
quasistatic, but irreversible
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involves a succession of equilibrium states. A reversible process is a quasistatic process
in which no dissipative (e.g. frictional) forces act (Fig. 13.1). The opposite is an
irreversible process (Fig. 13.2).

During a process, energy may be transferred between system and surroundings in
different ways. We consider heat and work. A statement of energy conservation:

∆U = Q+W

This is the first law of thermodynamics. Here Q the is heat added to the system, W
is the work done on the system, and ∆U is the change in the system’s interal energy.

U is extensive and a function of the thermodynamic variables, called a state
function:

U = U(p, T, n) = nu(p, T )

or nu(p, V )

where u is the internal energy per mole. For an ideal gas internal energy per mole
depends on one independent variable– T :

u = u(T ), U = nu(T )

Using differentials:
dU =d̄Q+d̄W.

Here d̄ denotes an inexact differential (Sect. 19).

14 pV Work

F
F ′

gas p, V

x

Figure 14.1

The set up is in Fig. 14.1. Assume the process is quasistatic so F = F ′ at all
points. Assume the process is reversible so all work goes into the gas ( there is no
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friction). Then

d̄W = −F dx

= −F ′ dx
= −pA dx

= −p dV .

Note the sign on F acts to reduce V . Work is done on the gas when dx < 0 so
d̄W = 0. Note we have expressed d̄W in terms of the system properties p, V .

The expression works equally in expansion, so dV > 0 so d̄W < 0 – the gas
does work. We can call this “pV ” work. It applies to liquids and also solids under
‘hydrostatic’ pressure ( equal from all sides) – not just gases.

15 Redefinition on Heat Capacity

The heat capacity CV is at constant volume:

CV =
d̄QV

dT

where d̄QV is the heat added at constant volume. The first law:

dU =d̄Q+d̄W

=d̄Q− p dV

=d̄QV

therefore (
∂U

∂T

)
V

=
d̄QV

dT
.

So

CV =

(
∂U

∂T

)
V

The heat capacity Cp is at constant pressure

Cp =
d̄Qp

dT
.

The first law:

dU =d̄Q+d̄W

=d̄Qp − p dV
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so
d̄Qp = dU + p dV = cp dT .

Now we can define the enthalpy

H = U + pV,

dH = dU + p dV + V dp .

At constant p: dH = dU + p dV = Cp dT . So

Cp =

(
∂H

∂T

)
p

.

H, like U , is a state function and extensive:

H = nh(p, V ), U = nu(p, V ).

Here h is the molar entropy.

16 The Case of an Ideal Gas

For an ideal gas U = nu(T ) so

CV = n

(
∂u

∂T

)
V

= u
du

dT

therefore

dU = CV dT =

= ncV dT .

Consider the first law for a reversible change:

dU =d̄Q+d̄W

CV dT =d̄Q− p dV

so
d̄Q = CV dT + p dV

and

Cp =
d̄Qp

dT
= CV + p

(
∂V

∂T

)
p

. (16.1)
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Now, for an ideal gas, pV = nRT , so V = nRT/p and(
∂U

∂T

)
p

=
nR

p

From 16.1,

Cp = CV + p

(
nR

p

)
and so

Cp = CV + nR

This is true for all gases at sufficiently low pressure. In fact, for a monatomic gas,
U = 3

2
nRT so

CV =
3

2
nR, Cp =

5

2
nR (heat capacity)

cv =
3

2
R, cp =

5

2
R (specific heat per mole)

17 Temperature Dependence on U and H

The temperature dependence can be found by measuring CV , Cp as a function of T (
at fixed n).

CV =
d̄QV

dT
=

(
∂U

∂T

)
V

so ∫ T2

T1

CV dT = U(T2)− U(T1) = ∆U

and

Cp =
d̄Qp

dT
=

(
∂H

∂T

)
p

so ∫ T2

T1

Cp dT = H(T2)−H(T1) = ∆H.

Let ∆V = V (T2)− V (T1). Then ∆H = ∆U + p∆V. It is easier to fix pressure than
volume, so measure ∆H and ∆V, then infer ∆U .

Both H(T ) and U(T ) increase with T , with ‘jumps’ at phase transitions (Fig
17.1). ∆V is finite at the transition. It is not possible to experimentally determine
U(T = 0) and H(T = 0).
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T

H

solid liquid

cp

latent heat L = ∆H

Figure 17.1

18 State Functions

At fixed n, U = U(p, V ). Changes in a state function like U depend only on the start
and end points, not on the path or process:

∆U = U(pB, VB)− U(pA, VA).

But ∆U = Q+W and W does depend on the path, so Q =
∫

d̄Q must also depend
on the path (Fig. 18.1). Therefore Q and W are not state functions. We cannot
write Q(p, V ) or W (p, V ). We can discuss “energy in a system” but not “heat or
work in a system”. Heat and work are forms of energy transfer.

V

p

A

B

process A→ B

area
∫

path
p dV = −

∫
d̄W = −W

Figure 18.1
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19 Notes

In mathematics if f = f(x, y) (an ‘explicit function’ of x and y), then

df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy .

Here df is an “exact differential”:
∫

df is path-independent. Hence dU is an exact
differential of U(p, V ). But d̄Q and d̄W are not. They are inexact differentials –
hence the bar.

On (p, V ) diagrams we will represent reversible processes as full lines and irre-
versible processes as dashed lines.

V

p

reversible

Figure 19.1: All states equilibrium states.

V

p

irreversible

Figure 19.2: Only end points equilibrium
states.

20 Thermodynamic Processes in an Ideal Gas

The adiabatic free expansion is irreversible because intermediate states are not
equilibrium state ( nonuniform density, pressure, etc). From the first law ∆U = Q+W .
The work W is zero as there is no opposing force and the heat Q is zero as the process
is adiabatic. Thus ∆U = 0. Since for an ideal gas U = U(T ), T is constant. From
pV = nRT , pV is a constant. For example, V doubles and p halves.

21 Reversible Processes with a Fixed Parameter ( constant
n)

Types of processes:

• Isobaric - constant pressure

• Isovolumetric - constant volume

17



gas empty

Adiabatic walls

gas

Figure 20.1

• Isothermal - constant temperature

The work W is

W =

∫
d̄W =

∫ Vf

Vi

−p dV

where Vi and Vf are the initial and final volumes, respectively. For an isobaric process:

W = −p
∫ Vf

Vi

dV = −p(Vf − Vi).

Isovolumetric:

W = −
∫
p dV = 0.

Isothermal:

W = −
∫ Vf

Vi

nRT

V
dV = −nRT ln

(
Vf
Vi

)
.

Since U = 3
2
nRT = 3

2
pV for a monatomic ideal gas,

∆U =
3

2
(pfVf − piVi).

We then use ∆U = Q+W to work out Q.
Isothermal case:

U = U(T ), so ∆U = 0; Q+W = 0, so Q = −W

and so

Q = +nRT ln

(
Vf
Vi

)
.

In an expansion the gas absorbs heat and converts it all to work. In a compression
work is all converted to heat.
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22 Reversible Adiabatic Expansion / Compression

Proof that pV γ is a constant for an adiabatic expansion/compression, where γ =
Cp/CV . From the first law:

dU =d̄Q+d̄W,

dU =d̄W (adiabatic),

CV dT = −p dV (ideal gas),

CV dT + p dV = 0 (reversible).

Since pV = nRT ,

CV + nRT
dV

V
= 0.

Dividing by T ,

CV
dT

T
+ nR

dV

V
= 0.

As Cp − CV = nR,

CV
dT

T
+ (Cp − CV )

dV

V
= 0.

This becomes, by γ = Cp/CV ,

dT

T
+ (γ − 1)

dV

V
= 0

Integrating
lnT + (γ − 1) lnV = K ′′

so
TV γ−1 = K

where K is a constant. Using T = pV/nR,

p

nR
· V · V γ−1 = pV γ = K

for fixed n. For a monatomic ideal gas: CV = 3
2
nR,Cp = 5

2
nR, so

γ =
5

3

and so
pV 5/3 = K.

19



V

p adiabat adiabat

TA isotherm

TB isotherm

pV δ = TV δ−1 = K

Figure 23.1

23 Interpretation

Adiabats are steeper than isotherms (Fig 23.1). The gas cools on adiabatic expansion
and gas warms on aiabatic compression. Since U = U(T ) ( increasing function),
∆U < 0 for an expansion and by the first law ∆U = Q+W with Q = 0,

∆U = W

{
W < 0 for an expansion

W > 0 for a compression.

Therefore, for an adiabatic expansion (W < 0) internal energy is converted to work.
For an adiabatic compression work is converted to internal energy.

24 Heat Engines and the Second Law

Hot

Cold

Work

Figure 24.1

Heat flows from hot to cold. A heat engine (Fig 24.1) (or engine, steam engine,
etc.) diverts some of this energy to do work. Note the non-standard sign convention
in the figure. Question: how efficient can a heat engine be?
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Hot

Cold

W

Qh

Qc

cyclical
process

Figure 24.2: Qh heat extracted from hot
reservoir per cycle, Qc heat delivered to
reservoir per cycle, W work done per cycle

Hot

Cold

W

Qh

Qc

cyclical
process

Figure 24.3

Carnot (1824) realised that the most efficient possible engine must be reversible.
Otherwise friction diverts energy straight into the surroundings and misses an op-
portunity to do work. A Carnot engine is a hypothetical heat engine that (Fig.
24.2)

• has 2 thermal reservoirs (hot/cold)

• operates in a cycle with a working substance

• is reversible

An engine can be run in reverse to divert heat from cold to hot (Fig. 24.3)!

25 The Carnot Cycle

Consider a working substance which is an ideal gas with the cycle in Fig. 25.1.
From the first law

∆U = 0 (cycle, state function),

∆U = Qh −Qc −W.
Note the non-standard sign convention. Define the efficiency as

η =
W

Qh

=
Qh −Qc

Qh

so that

η = 1− Qc

Qh

.
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V

p

adiabat

adiabat

isotherm

Qh → W

W → Qc

isotherm

∆V → W

W → ∆V Th

Tc

Figure 25.1

26 Carnot’s Theorem

Hot

Cold

Qh

Qc = Qh

Figure 26.1

Hot

Cold

W = Qh

Qh

Figure 26.2

Historically this implied the second law. Here we postulate the second law and
derive Carnot’s theorem. Second law statements:

• Clausius: It is impossible to transfer heat spontaneously from cold to hot
without causing other changes.

• Thomson ( also known as Kelvin or Kelvin-Plank): A process whose only effect
is the complete conversion of heat to work is impossible.

The application to cyclical processes is shown in Fig. 26.1 and Fig. 26.2. It can
be shown the two statements are equivalent. Suppose we have two identical Carnot
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engines, one driving the other in reverse (Fig. 26.3). The net effect is |Qh| = |Q′h|.
Now suppose that we have an engine that is more efficient than a Carnot engine (Fig.
26.4) it supplies the same work but extracts less heat Q′′h to do so. The net effect is
Qh −Q′′h > 0 and Qc −Q′′c > 0 which is in violation of the Clausius statement!

Carnot’s theorem:

No engine operating between two thermal reservoirs can be more
efficient than a Carnot Engine operating between the same two reservoirs

Corollary: all Carnot (reversible) engines operating between (Tc, Th) are equally
efficient.

There is a fundamental limit on the efficiency of heat engines that depends on
(Tc, Th) and not on the details of engineering or the type of working substance:

ηmax = ηmax(Tc, Th)

27 Kelvin’s Absolute Thermodynamic Temperature

Since ηmax(Tc, Th) = 1−Qc/Qh, let us try defining temperature such that

Tc
Th

=
Qc

Qh

.

Then

η = 1− Tc
Th
.

By considering the Carnot cycle for an ideal gas we can show that this definition is
consistent with the gas scale definition T

gas
= nR/pV. But this definition of temperature

Hot

Cold

W

Qh

Qc

Q′h

Q′c

Figure 26.3
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Hot

Cold

W

Q′′h

Q′′c

Q′h

Q′c

Figure 26.4

Q = 0

Q = 0

Qh > 0

Qc < 0

1

2

3

4

Figure 28.1

Q = 0

Q = 0

free Qh = 0

Qc < 0

1

2

3

4

Figure 28.2

is independent of any particular substance or device ( later we will find a definition
that is independent of hypothetical engines as well).

28 Clausius Inequality

Consider two Carnot cycles (Fig. 19.1 and 28.2), one with the isothermal expansion
replaced by an adiabatic free expansion ( irreversible). Use conventional signs:

−Qh

Qc

=
Th
Tc

and so
Qh

Th
+
Qc

Th
= 0.

Therefore ∑
i

Qi

Ti
= 0.
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Clausius argued that any cycle can be represented as the sum of Carnot cycles (Fig.
28.3). Making the sum an integral: ∮

d̄Q

T
≤ 0

which is the Clausius inequality for a system doing work. The equality applies to a
reversible cycle.

29 Entropy

Now consider a reversible process (Fig. 29.1) ( d̄Qrev)∫ f

i

d̄Qrev

T︸ ︷︷ ︸
Path 1

+

∫ i

f

d̄Qrev

T︸ ︷︷ ︸
Path 2

= 0,

∫ t

i

d̄Qrev

T
−
∫ t

i

d̄Qrev

T
= 0,

so [∫ t

i

d̄Qrev

T

]
path 1

=

[∫ t

i

d̄Qrev

T

]
path 2

and so the integral is path independent! There exists a state function for which
changes are given by:

∆S = Sf − Si =

∫ f

i

d̄Qrev

T

and S is called the entropy. We can write

dS =
d̄Qrev

T

where dS is an exact differential.

Figure 28.3
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f

path 2

path 1

Figure 29.1

30 Law of Increase of Entropy

Compare a reversible change with a irreversible one ( Fig. 30.1)∮
d̄Q

T
≤ 0

implies ∫ f

i

d̄Q

T
+

∫ i

f

d̄Qrev

T
≤ 0∫ t

i

d̄Q

T
−
∫ t

i

d̄Qrev

T
≤ 0.

Then

∆S =

∫ t

i

d̄Qrev

T
≥
∫ f

i

d̄Q

T

For an infinitesimal process

dS ≥ d̄Q

T
(equality denotes reversibility).

For an isolated system d̄Q = 0 and so

dS ≥ 0.

This answer the ‘basic problem’ (Sect. 6). The final equilibrium state in an isolated
system is that which maximises the entropy. Extending the isolated system to
encompass the universe:

dSuniverse ≥ 0

for an real process (Clausius).

26



V

p
i

f

irreversible

reversible

Figure 30.1

31 Equivalent Reversible Process

Previously we saw that a free expansion connects the same two equilibrium states as
an isothermal expansion. Isothermal:

Q = nRT ln

(
Vf
VI

)
and

∆S =

∫
d̄Qrev

T
=
Q

T
= nR ln

Vf
Vi
.

Adiabatic free: Q = 0 and

∆S ≥
∫

d̄Q

T

and so ∆S ≥ 0. This is all we can say, but since S is a state function, ∆S must be
the same for the two processes. Hence for ∆S = nR ln(Vf/Vi) ≥ 0.

Many real processes ( all irreversible) have an equivalent reversible process from
which we can calculate the entropy.

32 Statistical Interpretation of Entropy

Consider an adiabatic free expansion where one mole of an ideal gas doubles its
volume (Fig. 32.1). Since ∆S = R ln(Vf/Vi), ∆S = R ln 2. Boltzmann associated
the entropy increase with a transition from a less probable to a more probable state
(Fig. 32.2). To quantify, divide the box into 2m cells. Let Ω be the number of ways
of arranging N atoms throughout the cells. Ω1 = mN (state 1); Ω2 = m2N (state 2).
Let S = k ln Ω, so ∆S = k ln(2m)N − k ln(m)N = Nk ln 2. Then

∆S = R ln 2

which is the same as above.
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V
2V

V → 2V

∆U = 0

Figure 32.1

“Entropy is the number of ways of arranging the insides, such that
the outside remain the same.”

—Richard Feynmann

Less probable More probable

Figure 32.2

33 Temperature Dependence of Entropy at Fixed Pressure

Single phase:

dS =
d̄Qrev

T
= Cp

dT

T
At phase transition, ∆S = Qrev/T = L/T where L is the latent heat. In general:

∆S(Ti → Tf ) =

∫ Tf

Ti

Cp(T )

T
dT +

∑
phase changes

L

T

Hence from Cp(T ) measurements S(T ) can be found (Fig. 32.3). There is experimental
evidence that S(T = 0) = 0. Hence S(T ) can be put on an absolute scale ( unlike
U(T ) or H(T )). Also, S is extensive so we can define the molar entropy s = S/n. In
general, s(gas) > s(liquid) > s(solid) > s(soft solid) > s(hard solid). E.g. for lead,
s = 15.5JK−1mol−1 and for diamond s = 0.6JK−1mol−1.
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34 The Fundamental Equation

We can write the internal energy as a function of the extensive thermodynamic
variables. For fixed n:

U = U(S, V )

and so

dU =

(
∂U

∂S

)
V

dS +

(
∂U

∂V

)
S

dV (34.1)

But from the first law:
dU =d̄Q+d̄W

and so
dU = T dS − p dV (34.2)

which is the ‘central equation’ for reversible changes (i.e. dS =d̄Qrev/T . Comparing
34.1 and 34.2, we see that

T =

(
∂U

∂S

)
V

; p = −
(
∂U

∂V

)
S

which is our final and best (?) definition of temperature. The fundamental equation
can also be written

S = S(U, V ).

All thermodynamic relations can be derived from this, but the actual form of the
equation depends on the system. In practice 34.2 is more useful.
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35 The Fundamental Equation for an Ideal Monatomic Gas

From the first law

d̄Q = dU −d̄W,

T dS = dU + p dV

dS =
dU

T
+
p

T
dV .

Using the equations of state pV = nRT , U = 3
2
nRT and so

dS =
3

2
nR

dU

U
+ nR

dV

V
.

Integrating we have

S =
3

2
nR ln

(
U

U0

)
+ nR ln

(
V

V0

)
+ S0

where U0, S0, and V0 define a reference state. This is the entropy fundamental equation
for an ideal monatomic gas. Rearranging:

U

U0

=

(
V

V0

)−2/3

e(2/3nR)(S−S0).

Application: (
∂U

∂S

)
V

= T =

(
2

3nR

)
U

and so

U =
3

2
nRT.

Also, (
∂U

∂V

)
S

= −p =

(
− 2

3V

)
U

and so

p =
nRT

V
.

Now, instead of two equations of state, we have one single fundamental equation for
the gas.
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36 Helmholtz and Gibbs Free Energies

Consider a finite process in a system in contact with a thermal reservoir at temperature
T . From second law, ∆Ssys + ∆Ssurr ≥ 0. But as T = Tsurroundings is fixed the addition
of heat to the surroundings is reversible:

∆Ssurr =

∫
d̄Qrev

T
=
Qsurr

T
.

With V fixed ( no work), ∆Usys = Qsys = −Qsurr and so

∆Ssurr = −∆Usys

T
.

Then

∆Ssys −
∆Usys

T
≥ 0

or
∆[Usys − T∆Ssys] ≤ 0

for the system with constant T . Define F = U −TS as the Helmholtz free energy and
then ∆F ≤ 0. This is the system focused version of the second law for constrained T
and V .

The case of fixed pressure:

∆Hsys = Qsys = −Qsurr

and so

∆Ssurr = −∆H

T
.

Thus
∆[H − TS] ≤ 0

for a system with T constrained. Define G = H − TS and then ∆G ≤ 0. This is the
Gibbs Free energy. It is the system focused version of the second law for fixed p and
T .

We could also write

∆G = ∆(U + pV − TS)

= ∆U + p∆V − T∆S

= ∆F + p∆V

= ∆F +W
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and so ∆G ≤ 0 implies ∆F +W ≤ 0 or

W ≤ −∆F.

The maximum work available from a process ( at constant T ) is −∆F , not −∆U .
Hence the name “free” energy – the energy available to do work.

37 Natural Variables

In W = −p dV we have to express p as a function of V to integrate. Similarly, in
dU = T dS− p dV , S and V are ‘natural variables’ but usually we would prefer (V, T )
or (p, T ).

Start with dU = T dS − p dV , and substitute:

F = U − TS,

dF = dU − T dS − S dT

and so
dF = −S dT − p dV

so T and V are the natural variables. For the Gibbs free energy

G = H − TS = U + pV − TS,

dG = dU + p dV + V dp− T dS − S dT

and so
dG = V dp− S dT

and here p and T are the natural variables.
These are useful equations when we required natural variables V, T and p, T ,

respectively.
Transformations like

F = U − TS, G = H − TS, H = U + pV

are called Legendre Transforms.
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38 Maxwell Relations

If we have an exact differential of f(x, y)

df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy = A dx+B dy

then it follows that (
∂A

∂y

)
x

=

(
∂B

∂x

)
y

.

Let’s choose one of the above relations, e.g. dF = −p dV − S dT ,(
∂p

∂T

)
V

=

(
∂S

∂V

)
T

which is a “Maxwell Relation”. It is completely general – it applies to all systems. In
an experiment if we want to know how entropy changes with volume, we could get it
by measuring (∂p/∂T )V .

39 Thermodynamics – A Final Word

Thermodynamics boils down to just two equations:

dU =d̄Q+d̄W,

dS ≥ d̄Q

T
.

For reversible ( or equivalent reversible) processes we can write dS =d̄Qrev/T and
derive ( at fixed n):

dU = T dS − p dV .

To be clear - this equation is true for all changes between equilibrium states, not just
reversible ones, because it follows from U = U(S, V ).

Using Legendre transforms like H = U + pV , F = U − TS, G = H − TS, we can
derive equations like

dF = −p dV − S dT

etc. From these, we can get other usual equations. Finally, note the similarity between
d̄Qrev = T dS and d̄W = −p dV . Just as pressure is the thermodynamic variable
conjugate to volume, so temperature is the thermodynamic conjugate to entropy.
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40 Kinetic Theory

From thermodynamics, the details of any system are inserted by specifying either
the form of the ‘fundamental equation’ or ( equivalently) two equations of state. For
example, for an ideal gas ( monatomic)

pV = nRT, U =
3

2
nRT.

Let’s write these in the form of a ‘mechanical’ equation

pV =
2

3
U

and a ‘thermal’ equation

U =
3

2
nRT

and try to derive these from a microscopic theory of gas ‘molecules’ ( strictly atoms
in this case).

A
c1

l

Figure 40.1

41 ‘Heuristic’ Argument for Gas Pressure

Assume that:

• The molecules are elastic point masses,
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• There are negligible intermolecular interactions,

• The time of collision is negligible compared to time between collisions.

A cube with N molecules of mass m. Molecule 1, speed c, moves towards face A
(Fig. 40.1). The momentum change on impact is is mc− (−mc) = 2mc. The number
of impacts per second is c/l. The momentum change per second is 2mc2/l which is
the force. On average, N/6 molecules maintain pressure on face A. The average force

F̄ =
N

6

2m 〈c2〉
l

=
1

3

Nm 〈c2〉
l

so

p = F/A =
1

3

nm 〈c2〉
l3

=
1

3

nm 〈c2〉
V

.

Finally

pV =
1

3
nm

〈
c2
〉
.

But U is the total energy which is N times the average kinetic energy per molecule.
So

U =
1

2
nm

〈
c2
〉

or

pV =
2

3
U.

We have derived pV = 2
3
U , but not U = 3

2
NkT. However, if we accept U = 3

2
NkT

then it follows 1
2
Nm 〈c2〉 = 3

2
NkT and so

〈E〉 =
3

2
kT

where 〈E〉 is the average kinetic energy per molecule. We have

1

2
m
〈
v2
〉

=
3

2
kT

or
1

2
m
〈
v2
x + v2

y + v2
z

〉
=

3

2
kT.

Now because gas is isotropic 〈
v2
x

〉
=
〈
v2
y

〉
=
〈
v2
z

〉
=
kT

m
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and

〈Ex〉 = 〈Ey〉 = 〈Ez〉 =
1

2
kT

where Ex = 1
2
mv2

x etc.
To calculate averages we need a probability distribution. Here we give a simple

argument for the Boltzmann distribution, based on S = k ln Ω. Imagine N atoms,
each with 2 energy levels E = 0 and E = ε. With n exited atoms U = nε. Hence the
probability an atom is excited is P (E = ε) = n/N . Now, excite one extra atom, n
becomes n+ 1 and

Ωbefore =
N !

n!(N − n)!
; Ωafter =

N !

(n+ 1)!(N − n− 1)!

so
Ωafter

Ωbefore

=
N − n
n+ 1

≈ N − n
n

=
N

n
− 1

if n� 1. So

∆S = k ln Ωafter − k ln Ωbefore = k ln

(
N

n
− 1

)
.

Thus, as ∆U = ε,

T =
∆U

∆S
=

ε

k ln(N/n− 1)

so that
N

n
− 1 = eε/kT

and
n

N
=

1

1 + eε/kT
=

e−ε/kT

1 + e−ε/kT
=

eE1/kT∑
i e
−Ei/kT

where E0 = 0, E1 = ε. Thus

n

N
= P (E = Ei) =

e−Ei/kT∑
i=0,1

e−Ei/kT
.

It can be shown that this relation is general:

P (E = Ei) =
e−Ei/kT∑
j e
−Ej/kT

.
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This is the Boltzmann distribution for the probability of occupation of the ith level
out of a set of j levels. More simply

Pi ∝ e−Ei/kT

or
Pi = C(T )e−Ei/kT

where C(T ) is a constant that normalises the distribution.
Armed with the Boltzmann distribution, we will go on to prove our second equation

of state

U =
3

2
nRT

vx

vx
vz

v

vy

vx

vz

Figure 41.1

42 Molecular Velocity Distribution

Write the velocity of a gas ‘molecule’ (here an atom) as

v = (vx, vy, vz)

Represent the possible velocities on an graph (Fig. 41.1).
The energy of a state E(vx, vy, vz) = 1

2
mv2 = 1

2
m(v2

x + v2
y + v2

z). The probability
of occupying a state (Boltzmann):

P (vx, vy, vz) ∝ e−(1/2)m(v2x+v2y+v2z)/kT
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P (vx, vy, vz) = ce−(1/2)m(v2x+v2y+v2z)/kT

The constant c can be found by ‘normalising’ the distribution ( density function),
such that the integral over all ‘velocity space’ is unity:∫

all space

p(vx, vy, vz) dvx dvy dvz = 1

so that

c =
( m

2πkT

)3/2

The physical interpretation is p(vx, vy, vz) dvx dvy dvz proportionla to the number of
molecules with velocities in the range (vx, vy, vz) to (vx + dvx , vy + dvy , vz + dvz).
This is the “Maxwell-Boltzmann distribution of molecular velocities” (Fig. 42.1).

p(vx)

vx

Figure 42.1: Gaussian or normal curve.

43 Molecular Speeds Distribution

This speed is s = |v| = |(vx, vy, vz)| =
√
v2
x + v2

y + v2
z . Since p(vx, vy, vz) ∝ e−

1
2
m(v2x+v2y+v2z)/kT ,

we could write p(s) ∝ e−
1
2
ms2/kT , but this does not recognise that many different

velocities share the same speed (Fig. 43.1). It follows that p(s) ∝ s2e−
1
2
s2/kT =

c′s2e−
1
2
ms2/kT . Normalising: ∫ ∞

0

c′s2e−
1
2
ms2/kT = 1
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so that

c′ =

(
2

π

)1/2 ( m
kT

)3/2

.

A fraction p(s) ds of molecules have speeds in the range s to s + ds. This is the
“Maxwell speeds distribution” (Fig. 43.2).

vy

vx

vz

Figure 43.1: 4πs2 ds ‘velocity states’ share
the same speed.

most probable speed (mode)
mean speed 〈s〉

root mean square speed 〈s2〉

p(s)

s

Figure 43.2

44 Mean Square Speed and Internal Energy

In maths, given a probability density function p(x), the mean of another function
f(x) is:

〈f(x)〉 =

∫
f(x)p(x) dx .

Here we calculate 〈s2〉:〈
s2
〉

=

∫ ∞
0

s2p(s) =

∫ ∞
0

c′s4e
1
2
ms2/kT ds .

So 〈
s2
〉

= 3kT/m

Now energy U = N × (1
2
m 〈s2〉) and thus

U =
3

2
NkT =

3

2
nRT

as required. We have finally proved both of the ideal gas equations of state, assuming
that S = k ln Ω and the concept of ‘velocity states’ ( later justified by quantum
mechanics).
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45 The Energy Distribution

Is the energy distributed as broadly as the speed?

E =
1

2
ms2;

ds

dE
=

1√
2mE

; s2 = 2E/m

and so

P (E) = p(s)

∣∣∣∣dEds
∣∣∣∣−1

= c′
(

2E

m

)
1√

2mE
e−E/kT .

Thus
P (E) = c′E1/2e−E/kT .

This is for one molecule, it is a broad distribution, but U = E1 + E2 + E3 . . .+ En.
For N molecules, the curve sharpens with respect to its most probable value, a
consequence of the central limit theorem of statistics (Fig. 45.1). In fact, the ‘width’
∆U is given by ∆U/ 〈U〉 ∼ 1/

√
N.

p(U)

U/Umax

N molecules

1 molecule

Figure 45.1

Here U is effectively not distributed, and we wirte it as U and not 〈U〉, as in
thermodynamics. The large N limit is hence called the ‘thermodynamic limit’.

46 Equipartition Principle

By integrating the speeds distribution we showed that the average kinetic energy of a
molecule is 3

2
kT . If we write

〈E〉 =
1

2
m
〈
v2
x + v2

y + v2
z

〉
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then

〈Ex〉 =
1

2
m
〈
v2
x

〉
=

1

2
kT,

〈Ey〉 =
1

2
m
〈
v2
y

〉
=

1

2
kT,

〈Ez〉 =
1

2
m
〈
v2
z

〉
=

1

2
kT,

found directly by integrating the velocity distribution.
Suppose we had a Hooke’s law E = 1

2
kx2 where k is the force constant and x is

the displacement. Assuming the ‘states’ are uniformly distributed in coordinate x,
the maths is the same but with different symbols!

〈EHooke〉 =
1

2
kT

Each “squared term” of a velocity (momentum) or coordinate in the energy contributes
1
2
kT to the average energy. This is called the classical equipartition.

47 Degrees of Freedom

Consider a molecule of M atoms. The number of degrees of freedom ( d.o.f.) is
the number of coordinates needed to describe the positions of all the particles, i.e.
(x, y, z)×M = 3M .

• The centre of mass needs three coordinates, so there are three translational
d.o.f.

• For a linear molecule, rotation requires two angles (θ, φ) angles, so three
rotational d.o.f.

• For a nonlinear molecule, rotation requires one more angle, so three rotational
d.o.f.

• The remainder of the 3M d.o.f. is accounted for by vibrations.

48 Application to Molecular Energies

The motion of molecules can be seperated into three components:

• Translations
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• Rotations

• Vibrations

Each contributes “squared terms” to the energy.

• Translations: Three d.o.f.,

Three squared terms ( 1
2
m(v2

x + v2
y + v2

z),

〈Etrans〉 = 3
2
kT .

• Rotations: One squared term per rotational d.o.f., e.g. E = 1
2
Iω2,

〈Erot〉 = 1
2
kT per rotational d.o.f.

• Vibrations: Two squared terms ( i.e. potential energy, kinetic energy),

〈Evib〉 = kT per vibrational d.o.f.

49 Recipe for Calculating Energy

M atoms in a molecule, so there are 3M d.o.f.. (Fig. 49.1).

3 translational

nonlinear

linear

3 rotational → 3M − 6 vibrational

2 rotational → 3M − 5 vibrational

Figure 49.1
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Linear Nonlinear

Translational 3/2kT (3/2)kT
Rotational kT (3/2)kT
Vibrational (3m− 5)kT (3m− 6)kT

Example of water vapour. We have M = 3 so 9 d.o.f.We have

〈Etrans〉 =
3

2
kT, Utrans =

3

2
nRT

〈Erot〉 =
3

2
kT, Urot =

3

2
nRT

〈Evib〉 = 3kT, Uvib = 3nRT,

So that U = 6nRT . Also, Ctrans
V = 3

2
nR, Crot

V = 3
2
nR, Cvib

V = 3nR. An experiment
is shown in Fig. 49.2.

3
2

3

6

CV /nR

T
Room
temp

trans

rot

vib

Figure 49.2

The vibrational d.o.f. are dormant at room temperature. This is not in classical
physics! Errors comes from approximating discrete energy levels as a continuous
spectrum.

According to Pi ∝ e−Ei/kT , level will accept no energy if kT � Ei.

50 Discussion

Such breakdowns of classical equipartition were discovered in specific heats of gases,
crystals ( ‘Dulong-Petit Law’) and thermal radiation ( Planck spectrum). It con-
tributed to the birth of quantum mechanics.

43



In quantum mechanics, the more ‘confined’ a motion, the larger its ‘quantum’
(energy-level spacing) and the higher a temperature is required to ‘turn on’ the specific
heat.

Specific heat of internal motions of an atom ( electronic, nuclear) is measurable
only at T � 300K. The complexity of U(T ) for the ‘average’ molecule explains why
physicists were so slow to embrace the chemists’ atomic model.

Final note:
〈kinetic energy〉 ∝ T

is only true of an ideal gas- not general!

44


	Thermodynamic Systems
	Equilibrium
	Thermal Contact
	Mechanical Contact
	Mass Contact
	The Basic Problem of Thermodynamics
	Heat Capacity C
	The Final Temperature Problem
	Thermal Reservoir
	Latent Heat
	Thermal Conduction
	Joule's Paddle-Wheel Experiment (1843)
	Interal Energy and the First Law
	pV Work
	Redefinition on Heat Capacity
	The Case of an Ideal Gas
	Temperature Dependence on U and H
	State Functions
	Notes
	Thermodynamic Processes in an Ideal Gas
	Reversible Processes with a Fixed Parameter ( constant n)
	Reversible Adiabatic Expansion / Compression
	Interpretation
	Heat Engines and the Second Law
	The Carnot Cycle
	Carnot's Theorem
	Kelvin's Absolute Thermodynamic Temperature
	Clausius Inequality
	Entropy
	Law of Increase of Entropy
	Equivalent Reversible Process
	Statistical Interpretation of Entropy
	Temperature Dependence of Entropy at Fixed Pressure
	The Fundamental Equation
	The Fundamental Equation for an Ideal Monatomic Gas
	Helmholtz and Gibbs Free Energies
	Natural Variables
	Maxwell Relations
	Thermodynamics – A Final Word
	Kinetic Theory
	`Heuristic' Argument for Gas Pressure
	Molecular Velocity Distribution
	Molecular Speeds Distribution
	Mean Square Speed and Internal Energy
	The Energy Distribution
	Equipartition Principle
	Degrees of Freedom
	Application to Molecular Energies
	Recipe for Calculating Energy
	Discussion

