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TUTORIAL (5): INTRODUCTION TO STRAIN AND STRESS 

Aims and Objectives 
1. To give you an understanding of scalar, vector and tensor quantities, and also of 

vector calculus. 
2. To introduce you to strain as preparation for insar crustal strain practical. 
3. To introduce you to stress as preparation for lectures on faulting 

 
You are required to actually solve any equations: this should allow you to concentrate on the 
relationship between mathematical structure and real physical quantities and processes. 
Although the practical is rather technical, the examples uses are drawn from geological 
systems. The tools developed here are essential for a range of problems in geodynamics. 
 
Please have patience if it seems a bit easy and obvious to start with. On the other hand, you 
will be doing very well if you grasp all the details in one sitting. It should take about 3 hours. 
 

1 Cartesian coordinates 
 
You already know what Cartesian coordinates are; this is just a check on basic concepts 
notation. In Cartesian coordinates, we first define an origin at a fixed point  in space, and then 
the directions of three mutually perpendicular coordinate axes. Here we will number these 
directions (1, 2, 3) instead of say, x, y, z. This turns out to be more convenient. It is handy to 
define it unit vectors corresponding to the coordinates directions: 
 
 
 
 
 

(1, 2, 3) 
 

The position of an object in this coordinate system may be represented by a vector joining the 
origin to the object.  This is commonly represented using various favours of vector notation, 
such as x, x etc. However, when it comes to actually putting in numbers, we always deal with 
individual components of vectors, resolved into the coordinate directions: 
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This is a  pretty simple vector equation but is nonetheless a bit cumbersome. It is tidier to 
represent the vector simply as  
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or concisely but unambiguously, as 
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where the suffix i takes the values 1, 2 or 3, corresponding to the coordinate directions. We 
can use this compact suffix notation because we have already agreed what coordinate system 
to use. 
 
EXERCISE 1:  make a sketch showing Cartesian coordinate axes, unit vectors and an 
arbitrary position vector x . Show projections of x onto the axes and the components xi . 
 
 

2 Scalars, vectors and tensors 
 
How do we represent physical quantities with the space we have now defined? This depends 
on the quantity. We will now develop a taxonomy based on two criteria: 
 
(i) Is the quantity constant, or a spatial variable, and, 
(ii) Is the quantity a scalar, vector or tensor? (later we will simply ask what the tensor rank of 
the quantity is). 
 

2.1 Scalar constants 
 
These are the simplest quantities. There are of course absolute constants like the speed of 
light c. In the humble world of geodynamics we are more likely to encounter quantities that 
could n principle vary, but which are effectively constant in a given scenario. For example, in 
heat flow problems we often regard the thermal conductivity K as a constant. 
 

2.2 Scalar variables 
 
These are quantities, such as temperature T, which can be represented by a single number at 
each point in space. To indicate that temperature is a scalar function of position (which is a 
vector), we use the notation T(x) or T(xi). The difference between scalar constants and 
variables is most obviously when we start taking spatial derivatives, which are always zero 
for constants. 
 

2.3 Vector constants 
 
These are unusual, but an important example is acceleration due to gravity. (As discussed 
above, gravity is not an absolute constant, but is effectively constant in certain scenarios.) 
The magnitude of gravity is often indicated by the scalar g, but gravitational force of course 
acts in a particular direction so we should use a vector g or gi .If the 3-direction is chosen to 
be downwards, we can write: 
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           (7) 
or 
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           (8) 
Note that the presence or absence of the suffix i is starting to take on some real meaning: 
scalars have no suffix, whereas vectors have a single suffix. 
 

2.4 Vector variables 
 
We have already been using one of these: the position vector x or xi . This is rather a special 
case because position is what other quantities vary with respect to (think about it). A more 
representative example is the displacement field for a deformed continuum, u or ui , which 
you will see in the section on strain. To indicated that displacement is a vector function of 
position we use the notation u(x) or ui(x) . (We deliberately avoid the notation ui(xi) , for 
reasons that should become clear by the end of the tutorial). 
 
 

2.5 Tensor constants 
 
Vector quantities are, geometrically, one step more complicated than scalars. Consequently, 
the mathematical representation of vectors is more complex than that of scalars. In a similar 
way, some physical quantities are a further geometrical step more complicated than vector 
quantities, and are called tensor quantities. The mathematical representation of tensor 
quantities is also a step more complex. 
 
We will start with tensor constants (with the usual caveat about non-absolute constants). A 
nice example is permeability, a property of rocks in aquifers or reservoirs through which 
water or oil can flow. Permeability relates two vector variables: the flow velocity of the fluid 
wi and the pressure gradient, which we will call Pi’ . If the rock is isotropic, we can get away 
with using a scalar permeability k, as follows: 
 

'
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           (9) 
where η is the viscosity of the fluid (usually a scalar constant). This equation (which is called 
“Darcy’s Law”) is actually shorthand for three equations, one for each value of the suffix i: 
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          (10, 11, 12) 
 

Hence we are saying that each component of flow depends only on the corresponding 
component of pressure gradient, e.g., if the pressure gradient is entirely vertical, only vertical 
flow will occur. This is fine for a rock with a nice isotropic pore structure (like a sponge). If, 
however the rock has a system of aligned cracks, the flow will be deflected along the cracks 
even if the pressure gradient acts in some oblique direction. To describe this anisotropy, we 



need components of permeability that relate, for example, the 1-component of flow to all 
three components of pressure gradients. 
 
This produces an augmented version of the above equations: 
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         (13, 14, 15) 
 
The permeability k has sprouted two suffices! The first refers to the component of flow, the 
second to the component of pressure gradient. We refer to this new object as the permeability 
tensor kij, where the suffices i and j are independent and can each take the values 1, 2 or 3. 
 
EXERCISE 2: In two dimensions ( 1 and 2) sketch coordinate axes and a square rock with 
some parallel cracks crossing it, oblique to the axes. Indicate how you would expect flow 
driven by a pressure gradient in the 1-direction to be deflected along the 2-direction by the 
cracks. What is the sign of k21 ? By considering a pressure gradient in the 2-direction, decide 
whether k12 has the same sign. 
 
EXERCISE 3:  Rewrite the 3 equations (13-15) as a single equation by grouping the kij  terms 
into a 3 x 3 matrix. 
 
Later we will see how this set of equations can be written more clearly and concisely. For the 
time being, note that anisotropic permeability is the rule rather than the exception in real 
rocks, and we have to use a tensor to describe it. 
 

2.6 Tensor variables 
 
Stress and strain, which are the bread and butter of much of geodynamics, are both 
represented by tensor variables. This is because both, like the permeability tensor kij , depend 
on the choice of two independent directions at each point in space. 
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You will already be familiar with the general notion of stress as force-per-unit-area (Nm-2 or 
Pa), and with the fact that forces is a vector f(x) . The second independent vector that comes 
into the definition of stress is the normal to an element of surface area, ni . Suffice to say that 
to fully describe the forces acting within a continuum requires a tensor σij(x) , which is the 
force acting in the i – direction on a surface with normal in the j – direction, at the position x . 
The nine components of the stress tensor can be written as: 
 
 
 

   (16) 
In fact, the stress tensor is always symmetric, which means that σ12  = σ21, σ13 = σ31, σ23 = 
σ32. This reduced the number of independent components of the stress tensor to six. 
 
The strain tensor describes the deformation of a continuum is obtained by considering 
gradients in the displacement field ui (x) (a vector of course). The second independent vector 
arise from the fact that the gradient in displacement can be taken in any direction, i.e.,. ∂/∂x1, 
∂/∂x2, ∂/∂x3. The strain tensor εij (x) is related to the gradient in the j-direction, of 
displacement in the i-direction, at the position x. 
 
EXERCISE 4: Write out the components of the strain tensor εij in the matrix form, using the 
fact that is symmetric (like σij ) to reduce the number of independent numbers from 9 to 6. 
 

2.7 The rank of a tensor 
 
You should now be aware that, when using the suffix notation, scalars have no suffix, vectors 
have one suffix and tensors have two suffices. In general, the number of suffices is called the 
rank of a tensor. 
 
Scalars are also “0th-rank” tensors. 
Vectores are also “1st-rank” tensors 
Tensors like stress and strain are really “2nd-rank tensors. (If you just say “Tensor”, it is 
implicit that you mean 2nd-rank.) 
 
There are also (just when you thought matters were in control) tensors of higher rank. We 
will work with a 3rd-rank tensor later on (3 suffices). For the moment, it is reasonably easy to 
understand the need for a 4th-rank tensor constant (4 suffices) in elasticity. To write down 
equations describing the deformation of an elastic solid due to certain applied forces, we must 
consider the relationship between stress and strain. Both of these are already 2nd-rank tensors. 
Now, recall the permeability tensor, which was introduced to provide a general relationship 
between two vector variables. If each of the components of stress is to be independently 
related to each component of strain, we need equations like the following: 
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This looks pretty intimidating, but all we have done is to permit a particular component of 
stress σ 11 to depend on all nine components of strain. The elastic constants are components 
of a 4th-rank tensor Cijkl , wherein the first pair of suffices (ij) identify the component of 
stress, and the second pair (kl) identify the components of strain. This equation is in fact a 
component of the general form of Hooke’s law. 
 
EXERCISE 5: Write out the component of Hooke’s law relating σ 12 to the nine components 
of strain. 
 
The elastic modulus tensor has, at first sight, 3 x 3 x 3 x 3 = 81 independent components, but 
various symmetries reduce this to 21. This is still too many for most mortals to contemplate. 
Fortunately, is an elastic materials is isotropic, further symmetries reduce the number of 
independent elastic moduli to two, which you may already know as the shear modulus 
(termed G or µ) and the bulk modulus, K. For an isotropic material, equation (17) reduces to: 
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3. Manipulation of tensors 

3.1  The summation convention 
You would not have been very appreciative if Exercise 5 had asked for all nine of the 
equations of Hooke’s law. You are not alone; a certain A. Einstein also realised that this was 
a waste of time and paper, and devised a compact notation for tensor equations. As you will 
see, the beauty of Einstein’s summation convention is that it is easy to recover the full 
equation when you need it, with the components written out. 
 
Look back to equations (13, 14 & 15), which represent Darcy’s law for an anisotropic 
material. A more compact notation for the equations is: 
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           (19) 
This equation says that, for a given value of i , the RHS consists of the sum of three terms, 
one for each value of j. 
 
EXERCISE 6: By setting i = 1 in equation (19), reproduce equation (13). 
 
Now for the touch of genius. We can make equation (19) one step more concise by leaving 
out the summation sign completely: 

'
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           (20) 
How do you interpret this rather minimal-looking equation? 
 
First, note that these are two terms containing quantities that are multiplied together: on the 
LHS we have ηwi , and on the RHS we have kij Pj’. 
 



There are two rules you need to remember, which have to do with the number of times a 
particular suffix appears in each term. There are only two possibilities allowed: a suffix may 
appear once or twice. 
 
Rule 1: If a suffix appears once, it is called a free suffix. All terms in the equation must have 
the same free suffix (or suffices). (In equation (20), both terms have i as a free suffix.) 
 
Rule 2: If a suffix appears twice, it is called a summed suffix. A summation sign for that 
suffix is then implicitly placed in front of the term. (In equation (20), the term on the RHS 
terms has j as a summed suffix.) 
 
Applying these rules takes practise, but once you get the hang of it you will never look back. 
The idea may seem rather innocuous, but it greatly simplifies the manipulation of vectors and 
tensors. The beauty of equations like (20) is that you can see, at a glance, the general 
structure: flow and pressure gradient are related through the permeability. You can also 
quickly write out the gory details when you have to plug in some real numbers. The various 
kinds of vector notation also show the structure, but tend to be less clear on the details. 
 
EXERCISE 7: Write down the scalar (or dot) product of two vectors a and b using the 
summation convention: 
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           (21) 
 
EXERCISE 8: Write down the general expression for the terms in Hooke’s law, of which 
equation (17) is an example. The relationship should involve σij , ekl and Cijkl , and two 
summations. First use explicit summation (cf. equation (19)), then make the summation 
implicit (cf. equation (20)). Identify the free and summed indices in the equation you have 
written. 
 
(At this point you may be realising why it is best to avoid writing down ui (xi), when you 
wish to show that the vector u is a function of position x. It makes i look like a summed 
suffix, when it is not.)  
 

3.2 The Kronecker delta 
This useful 2nd-rank tensor is a constant and is defined as follows: 
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In matrix notation, δij, is simply the identity matrix: 
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As an example of the effect of δij ,  consider the term g δi3 . This will clearly be zero unless i 
= 3., regardless of the value of g. The term is therefore a vector of magnitude g in the 3-
direction. 
 
As a second example, consider ai δij. This will be zero unless i = j, so effect is to replace i 
with  j, i.e.,  

jiji aa =δ  
           (24) 
EXERCISE 9: Show that is you set kij = k δij in Darcy’s law for a general, anisotropic 
material (20), you reproduce Darcy’s law for an isotropic material (9). (This shows that a 
scalar permeability is really a tensor with a very simple structure. 
 

3.3. The 3rd-rank antisymmetric tensor 
This is another “useful” tensor constant, this time of 3rd rank. It is defined as follows: 
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Hence, only 6 of 27 components of εijk are non-zero. 
This tensor is used to produce vector (or cross) products when using suffix notation: 
 

( ) kjijki baba ε=×  
 
We can obtain, for example, the i = 1 component of a x b by requiring that (for εijk to be non-
zero) j and k share the values 2 and 3 between them. If we set j = 2 and k = 3. εijk will be 
positive and vice versa. Hence,  
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           (27) 
 

4. Vector calculus 
You should work through this section if you have already encountered an operator called ∇, 
which is used in vector notation to represent various kinds of spatial derivative. In this section 
we will show how suffix notation and the summation convention can be used to make vector 
calculus more transparent. 
 
In general, the differential operator ∇ is defined as a vector of partial derivatives: 
 
 
 
 
           (28) 
This shows how to replace ∇ when using suffix notation, so we can now re-visit the main 
applications of ∇ and see how they look with the new notation. 
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4.1 The gradient operator 
Say we have a scalar variable such as T(x). The gradient of this scalar field is a vector gthat 
gives the direction in which T changes most quickly, as well as the rate of change: 
 
 
 
 

 

           (29) 
You will also sometimes see the notation grad T. The suffix notation version gives a compact 
form that makes it clear what you actually need to do when using real numbers. 
 

4.2 The divergence operator 
The divergence of a vector field ui

 (x) is a measure of the rate of flow of material into or out 
of an element of volume around the point x (easiest to imagine if ui is the flow velocity of a 
compressible fluid). It is defined as: 
 
 
 
    
           (30) 

 
You will also sometimes see the notation div u. 
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4.3 The curl operator 
The curl of a vector field ui (x) is a measure of the maximum rate of rotation of material 
around the point x, also giving the direction of the axis of the maximum rotation (easiest to 
image if ui is the flow of a fluid that has vortices). It is defined as: 
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          (31) 
You will also sometimes see the notation curl u. 
 
EXERCISE 10:  Notice that we have identified three “flavours” of first derivative operator: 
the gradient, the divergence and the curl. By examining the free and fixed suffices in the 
suffix notation version of each, decide what kind of quantity (scalar or vector) each operates 
on, and what kind of quantity is produced/ 



5. Analysis of strain 
When a continuous body is deformed, a point initially at x moves by an amount u(x) (e.g, u1 

in the x1 direction).  If u is constant, the entire body is in uniform translation. If an adjacent 
point (∆x2 away) moves by a small additional increment ∆u1 then the body is being strained. 
We therefore consider how all those additional increments add up as we move incrementally 
across the body, i.e., we consider gradients in displacement 
 
 
Displacement of neighbouring points. Difference ∆u1 is the component of strain and rotation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1 Displacement gradient tensor 
 
There are three independent components of the displacement vector at any point (u1, u2, u3), 
and three independent directions in which they can change (x1, x2, x3). Hence there are nine 
independent values of displacement gradient, which can be assembled into a displacement 
gradient tensor Dij(x): 

 
Or writing the displacement gradient tensor out in full:    (32) 
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5.2 Rotation and strain 
We want to deal with rotations and strain separately, so we can separate out the rigid body 
rotations of plates from how they are deforming. So we separate out the displacement 
gradient tensor Dij into strains and rotations:  

 
           (34) 
The first term eij is the strain tensor, and describes the internal deformation of the material. 
This tensor is symmetric, i.e. ∂ui/∂uj=∂uj/∂xi. It has 6 independent components in 3-D. The 
second, antisymmetric term wij is called the rotation tensor, and has 3 independent 
components in 3-D. 
 

5.3 Strain kinematics 
 
The strain-rate and rotation-rate tensors are defined by: 
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(35, 36) 

These are the formal definitions of strain and rotation and should be learnt 
 
εij has 9 components in 3-D, because each of i and j can take the values 1, 2 and 3 
independently. 
 
However, εij is symmetric, i.e., εij = εji 
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           (37) 
Hence, only 6 components are independent: 
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ωij also has 9 components in 3-D. 
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The three diagonal components are always zero. 
 

e.g., 0
2
1

1

1

1

1
11

.
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=
x
v

x
v

ω  

           (38) 
 
The remaining components are antisymmetric, i.e., ωij = -ωji 
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           (39) 
Hence, only 3 components are independent: 
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5.4 Analysis of Rotation 
 
Consider the 2-D displacement gradient tensor describing a positive rotation of an angle ∆θ 
about the x3-direction: 
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Hence, 
 
 

 
           (41,42,43) 
 
This is antisymmetric , i.e., ∂ui/∂xj = -∂uj/∂xi. 
 
 
 
 
EXERCISE 11:  The motion between two plates is accommodated in a fault zone of width L. 
Surveys across this zone have been fitted by the following velocity field: 
 

 
 
 
 
 
 
 
 

(44, 45) 
 

where x1 and x2 are horizontal coordinates measuring distance across and along the zone, and 
V is the strike-slip component of relative plate motion. Sketch the variation of velocity with 
position across the fault zone. Calculate the two-dimensional strain-rate and rotation-rate 
tensors for the material in the fault zone. Assuming that the material is incompressible, 
calculate the vertical component of strain rate (ε33). 
 
The San Andreas Fault is a major strike-slip plate boundary but is also marked by a series of 
small mountain ranges. In certain places, motion between the plates is accommodated across 
a broad zone rather than by discrete faults 
 
EXERCISE 12:  To apply this model to the San Andreas, assume that L = 30 km and V = 
30mm/yr.  What is the maximum uplift that could be produced after 1 Myr in the fault zone if 
the plates are 20 km thick?  Why would you expect the observed uplift to be less than this? 
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