
CHARACTERS OF FINITE GROUPS.

ANDREI YAFAEV

As usual we consider a finite group G and the ground field F = C.
Let U be a C[G]-module and let g ∈ G. Then g is represented by a

matrix [g] in a certain basis.
We define χU : G −→ C by

χU(g) = tr([g])

As 1 is represented by the identity matrix, we have

χ(1) = dimC(U)

The property tr(AB) = tr(BA) shows that tr(P−1[g]P ) = tr([g])
and hence χU is independent of the choice of the basis and that iso-
morphic representations have the same character.

Suppose that U = C[G] with its basis given by the elements of G.
This is the regular representation. The entries of the matrix [g] are
zeroes or ones and we get one on the diagonal precisely for those h ∈ G
such that gh = h. Therefore we have

χU(g) = |{h ∈ G : gh = h}|

In particular we see that

χU(1) = |G| and χU(g) = 0 if g 6= 1

This character is called the regular character and it is denoted χreg.
Let

C[G] = Sn1

1 ⊕ · · · ⊕ Snr

r

be the decomposition into simple modules. The characters χi = χSi
are

called irreducible characters. By convention n1 = 1 and S1 is the
trivial representation. The corresponding character χ1 is called prin-

cipal character. A character of a one dimensional representation is
called a linear character. A character of an irreducible representation
(equivalently simple module) is called an irreducible character. As
one-dimensional modules are simple, linear characters are irreducible.

Let us look at linear character a bit closer : let χ be a linear character
arising from a one dimensional module U , we have for any u ∈ U :

χ(gh)u = (gh)u = χ(g)χ(h)u

hence χ is a homomorphism from G to C∗.
1
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Conversely, given a homomorphism φ : G −→ C∗, one constructs a
one dimensional module C[G]-module U by

gu = φ(g)u

Linear characters are exactly the same as homomorphisms

φ : G −→ C∗.

Here is a collection of facts about characters:

Theorem 0.1. Let U be a C[G]-module and let ρ : G −→ GL(U) be a
representation corresponding to U . Let g be an element of G of order
n. Then

(1) ρ(g) is diagonalisable.
(2) χU(g) is the sum of eigenvalues of [g].
(3) χU(g) is the sum of χU(1) nth roots of unity.

(4) χU(g−1) = χU(g)
(5) |χU(g)| ≤ χU(1)
(6) {x ∈ G : χU(x) = χU(1)} is a normal subgroup of G.

Proof. (1) xn − 1 is split hence the minimal polynomial splits.
(2) trivial
(3) The eigenvalues are roots of xn − 1 hence are roots of unity.

Then use that dimC(U) = χU(1).
(4) If v is an eigenvactor for [g], then gv = λv. By applying g−1

we see that g−1v = λ−1v. As eigenvalues are roots of unity,
λ−1 = λ. The result follows.

(5) χ(g) is a sum of χU(1) roots of unity. Apply triangle inequality.
(6) Suppose χU(x) = χU(1), then in the sum all eigenvalues must

be one (they are roots of 1 and lie on one line and sum is real).
Hence [g] is the identity matrix. Coversely, if [g] is the identity,
then of couse χU(g) = χU(1). Hence ker(ρ) = {x ∈ G : χU(x) =
χU(1)} is a normal subgroup of G.

�

1. Inner product of characters.

Let α and β be two class functions on G, their inner product is
defined as the complex number :

(α, β) =
1

|G|

∑

g∈G

α(g)β(g)

One easily checks that (, ) is indeed an inner product.
Therefore :

(1) (α, α) ≥ 0 and (α, α) = 0 if and only if α = 0.
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(2) (α, β) = (β, α).
(3) (λα, β) = λ(α, β) for all α, β and λ ∈ C.
(4) (α1 + β2) = (α1, β) + (α2, β)

We have the following:

Proposition 1.1. Let r be the number of conjugacy classes of G with
representatives g1, . . . , gr. Let χ and ψ be two characters of G.

(1)

< χ,ψ >=< ψ, χ >=
1

|G|

∑

g∈G

χ(g)ψ(g−1)

and this is a real number.
(2)

< χ,ψ >=
r∑

i=1

χi(gi)ψ(gi)

|CG(gi)|

Proof. We have ψ(g) = ψ(g−1), hence

< χ,ψ >=
1

|G|

∑

g∈G

χi(gi)ψ(g−1
i )

As G = {g−1 : g ∈ G}, we get the first formula. And the inner products
of characters are real because < χ,ψ >= < ψ, χ >.

The second formula is easy using the fact that characters are constant
on conjugacy classes. �

We have seen already that irreducible characters form a basis of the
space of class functions. We are now going to prove that it is in fact
an orthonormal basis.

Let us write

C[G] = W1 ⊕W2

where W1 and W2 have no simple submodule in common (we will say
they do not have a common composition factor). Write 1 = e1 + e2
with e1 ∈ W1 and e2 ∈W2, uniquely determined.

Proposition 1.2. For all w1 ∈ W1 and w2 ∈ W2 we have

e1w1 = w1, e2w2 = 0

e2w1 = 0, e2w2 = w2

In particular e21 = e1 and e22 = e2 and e1e2 = e2e1 = 0. These
elements are called idempotent.
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Proof. Let x ∈ W1. The function w 7→ wx is a C[G]-homomorphism
from W2 to W1. But, as W1 and W2 do not have any common compo-
sition factor, by Shur’s lemma, this morphism is zero.

Therefore, for any w ∈W2 and x ∈W1,

wx = 0

and simiplarly xw = 0.
It follows that

w1 = 1w1 = (e1 + e2)w1 = e1w1

and

w2 = 1w2 = (e1 + e2)w2 = e2w2

�

We can calculate e1 :

Proposition 1.3. Let χ be the character of W1, then

e1 =
1

|G|

∑

g∈G

χ(g−1)g

Proof. Fix x ∈ G. The function

φ : w 7→ x−1e1w

is an endomorphism of C[G] (endomorphism of C-vector spaces).
We have φ(w1) = x−1w1 and φ(w2) = 0. In other words, φ is the

multiplication by x−1 on W1 and zero on W2. It follows that

tr(φ) = χ(x−1)

Now write

e1 =
∑

g∈G

λgg

For g 6= x, the trace of w 7→ x−1gw is zero and for g = x, this trace is
|G|.

Now, φ(w) =
∑
x−1λgw hence tr(φ) = λx|G|, hence

λx =
χ(x−1)

|G|

�

Corollary 1.4. Let χ be the character of W1, then

< χ, χ >= χ(1) = dimW1
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Proof. We have e21 = e1 hence the coefficients of 1 in e1 and e21 are

equal. In e1, its χ(1)
|G|

and in e21 it’s

1

|G|2

∑

g∈G

χ(g−1)χ(g) =
1

|G|
< χ, χ >

�

We now prove the following:

Theorem 1.5. Let U and V be two non-isomorphic simple C[G]-
modules with characters χ and ψ. Then

< χ, χ >= 1 and < χ,ψ >= 0

Proof. Write
C[G] = W ⊕X

where W is the sum of all simple C[G]-submodules isomorphic to U
(there are m = dim(U) of them) and X is the complement. In partic-
ular W and X have no common composition factor The character of
W is mχ. We have

< mχ,mχ >= mχ(1) = m2 because χ(1) = m

It follows that
< χ, χ >= 1

Let Y be the sum of all simple submodules isomorphic either to U or
V and Z the complement of Y . Let n = dim(V ). We have

χY = mχ+ nψ

and we have

mχ(1)+nψ(1) =< mχ+nψ,mχ+nψ >= m2 < χ, χ > +n2 < ψ,ψ > +mn(< χ,ψ > + < ψ, χ

We have < χ, χ >=< ψ,ψ >= 1 and χ(1) = m,ψ(1) = n, hence

< χ,ψ > + < ψ, χ >= 2 < χ,ψ >= 0

�

Let now S1, . . . , Sr be the complete list of non-isomorphic simple
C[G]-modules. If χi is a character of S1, then

< χi, χj >= δij

(notice in particular that this imples that irreducible characters are
distinct).

Let V be a C[G]-module, write

V = Sk1

1 ⊕ · ⊕ Skr

r
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We have

χV = k1χ1 + · · · + krχr

We have

< χV , χi >=< χi, χV >= ki

and

< χV , χV >= k2
1 + · · · + k2

r

This gives a criterion to determine whether a given C[G]-module is
simple.

Theorem 1.6. Let V be a C[G]-module. Then V is simple if and only
if

< χV , χV >= 1

Proof. The if part is already dealt with.
Suppose < χV , χV >= 1. We have

1 =< χV , χV >= k2
1 + · · · + k2

r

It follows that all kis but one are zero. �

We also recover

Theorem 1.7. Let V and W be two C[G]-modules. Then V ∼= W if
and only if χV = χW .

Proof. Write V = Sn1

1 ⊕ · · · ⊕ Snr
r and W = Sk1

1 ⊕ · · · ⊕ Skr
r and let, as

usual χis be the characters of Si. Then we have ni =< χV , χi > and
ki =< χW , χi >=< χV , χi >= ni. �

We see that characters form an orthonormal basis of the space of
class functions.

We also obtain a way of decomposing the C[G]-module V into simple
submodules.

Proposition 1.8. Let V be a C[G]-module and χ an irreducible char-
acter of G. Then

(
∑

g∈G

χ(g−1g)V

is equal to the sum of those C[G]-submodules of V with character χ.

Proof. Write

C[G] = Sn1

1 ⊕ · · · ⊕ Snr

r

and write W1 be the sum of those submodules Si having character χ
(recall that χ is an irreducible character). Notice that W1 is some Sni

i .
Note that ni = χ(1). The character of W1 is niχ. Let W2 be the
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complement of W1. Let e1 be as previously (idempotent corresponding
to W1). Then

e1 =
ni

|G|

∑

g∈G

χ(g−1)g

Let V1 be the sum of submodules of V having the character χ. Then
e1V = V (recall e1v1 = v1 for v1 ∈ V1), hence

V1 = (
∑

g∈G

χ(g−1)g)V

�

This gives a procedure for decomposing a C[G]-module V into simple
submodules (for example C[G] itself).

(1) Choose a basis v1, . . . , vn of V .
(2) For each irreducible character χ of G calculate (

∑
g∈G χ(g−1g)vi

and let Vχ be the subspace generated by these vectors.
(3) V is now the direct sum of the Vχ where χ runs over irreducible

characters. The character of Vχ is a multiple of χ.

Let’s take an example. Let G be Sn and χ the trivial character. Let
V be the permutation module and v1, . . . , vn its basis. Then

(
∑

g∈G

χ(g−1)g)V = Span(v1 + · · · + vn)

Hence V has a unique trivial C[G] submodule.
Character tables.

We now turn to character tables. Let G be a finite group, r the
number of conjugacy classes and g1, . . . , gr its representatives. There
are exactly r irreducible characters, they are χ1, . . . , χr. The character
table is the r × r matrix with entries χi(gj). There is always a row
consisting of 1s corresponding to the trivial one dimensional represen-
tation.

Proposition 1.9. The character table is invertible.

Proof. This is because the irreducible characters form a basis of class
fuctions. �

Recall the orthogonality relations.

< χr, χs >= δrs

Rewrite this as:
k∑

i=1

χr(gi)χs(gi)

|CG(gi)|
= δrs



8 ANDREI YAFAEV

This gives the row orthogonality conditions.
Now,

k∑

i=1

χi(gr)χi(gs) = δrs|CG(gr)| = δrs|CG(gr)|

is the column orthogonality.
This needs proving.
Define class functions ψs for 1 ≤ s ≤ k by

ψs(gr) = δrs

As characters form a basis of the space of class functions, ψis are
linear combinations of χi. We have

ψs =
k∑

i=1

λiχi

As we know that < χi, χj >= δij, we have

λi =< ψs, χi >=
1

|G|

∑

g∈G

ψs(g)χi(g)

By definition of ψs, we know that ψs(g) = 1 if g is conjugate to gs and
ψs(g) = 0 otherwise. The number of elements of G conjugate to gs is

|gG
s | =

|G|

|CG(gs)|

It follows that

λi =
χi(gs)

|CG(gs)|

Now, using that δrs = ψs(gr), we get the column orthogonality.
These relations are useful because sometimes they help to complete

character tables.
Let S3 be the symmetric group, it is isomorphic to D6 by sending

(1, 2) to b and (1, 2, 3) to a. There are three conjugacy classes, they are
{1}, {a, a2}, {b, ab, a2b} of sizes 1, 2 and 3 repsectively. We have two
linear characters χ1 and χ2 corresponding to the trivial representation
and the nontrivial of degree one (the sign of a permutation or a 7→ 1 and
b 7→ −1). Let χ3 be the character of the non-trivial two dimensional.

gi 1 a b
|CG(gi)| 6 3 2
χ1 1 1 1
χ2 1 1 −1
χ3 ? ? ?



CHARACTERS OF FINITE GROUPS. 9

We want to find the values of χ3.
First of all, we already know that

6 = |G| = χ1(1)2 + χ
(
21)2 + χ3(1)2

which gives χ3(1)2 = 1, it follows that χ3(1) = 2 (this is the degree of
the representation).

Let us write column orthogonality

χ1(gr)χ1(gs) + χ2(gr)χ2(gs) + χ3(gr)χ3(gs) = δrs|CG(gr)|

Take r = 2, g2 = a and s = 1, gs = 1 then

χ1(a)χ1(1) + χ2(a)χ2(1) + χ3(a)χ3(1) = 0

Then
1 + 1 + 2χ3(a) = 0

hence χ3(a) = −1.
Now take r = 3 and s = 1, we get

χ1(b)χ1(1) + χ2(b)χ2(1) + χ3(b)χ3(1) = 0

Hence 1 − 1 + 2χ3(b) = 0.
We completely determined χ3 and did not even need to use the sizes

of conjugacy classes.
Another example which demonstrates the use of orthogonality.
LetG be a group of order 12 which has exactly four conjugacy classes.

Suppose we are given the following characters χ1, χ2 and χ3. Of course
there is a fourth irreducible character χ4. The question is to determine
χ4.

gi g1 g2 g3 g4

|CG(gi)| 12 4 3 3
χ1 1 1 1 1
χ2 1 1 ω ω2

χ3 1 1 ω2 ω

Of course we always have : 1 + 1 + 1 + χ4(1)2 = 12, hence

χ4(1)2 = 9

hence χ4(1) = 3 and the representation is 3-dimensional.
Now, we apply column orthogonality to the first and second column:

1 + 1 + 1 + 3χ4(g2) = 0

which gives χ4(g2) = −1.
The orthogonality between columns one and 3 and 4 gives

χ3(g3) = χ4(g4) = 0
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In what follows we will prove that the integers ki that occur in the
decomposition of C[G] actually divide G.

Recall that a complex number α is called algebraic integer if it
is a root of a monic polynomial with integer coefficients. The set of
algebraic integers is a subring of C, in particular the sum an product
of two of them is an algebraic integer.

The property we are groing to use is the following:

Lemma 1.10. Let a = p

q
be a rational number, we suppose that p and

q are coprime. Suppose that a is an algebraic integer, then a is an
integer.

Proof. By assumption a satisfies

xn + a1x
n−1 + · · · + an = 0

where ais are integers.
This gives pn = q × (∗) where (∗) is some integer. It follows that

q = 1 because p and q are coprime. �

Proposition 1.11. Let gi be in G and let ci := [G : CG(gi)] be the
index of the centraliser of gi in G. Then for any character χj of G, the
value

ciχj(gi)

χj(1)

is an algebraic integer.

Proof. Let χj be a character correspondig to Sj. Let Ki be the conju-
gacy class of gi and a be the sum (in C[G]) of all elements in Ki. Of
course a is in the centre of C[G], therefore left multiplication by a is
an endomorphism of EndC[G](Sj). But, by a version of Shur’s lemma,
we know that

as = cs

for some c ∈ C and all s ∈ Sj. It follows that the trace of a is cχj(1)
(recall that χj(1) = dim(Sj)). On the other hand, the trace of the
matrix defined by multiplication by a is cjχj(gi). We therefore have

c =
ciχj(gi)

χj(1)

As a is central, left multiplication by a also defines a C[G]-endomorphism
of C[G]. Let Ma be the corresponding matrix. Each entry of Ma is an
integer, as a is a sum of group elements, therefore det(xI −Ma) is a
polynomal with integer coefficients. But c is an eigenvalue of a (the
eigenspace is preciesely Sj), hence c is a root of det(xI−Ma) and hence
it’s an algebraic integer. �
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We can now prove:

Theorem 1.12. For any irreducible character χi, χi(1) divides |G|.

Proof. Let g1, . . . , gr be the set of representatives of conjugacy classes.
of G and let ci = [G : CG(gi)] be the size of the conjugacy class. As we
have < χi, χi >= 1, we have

1

|G|

∑

g∈G

χj(g)χj(g) = 1

It follows that

|G|

χj(1)
=

1

χj(1)

r∑

i=1

cjχj(gi)χj(gi)

=
r∑

i=1

ciχj(gi)

χj(1)
χj(gi)

and therefore |G|
χj(1)

is an algebraic integer. But it is also a rational

number, hence an integer. �

As application, recall that A4 has order 12 and 4 conjugacy classes.
We have

1 + k2
2 + k2

3 + k2
4 = 12

Divisors of 12 are 1, 2, 3, 4, 6, 12 but only 1, 2, 3 can occur as others
squared are bigger than 12. Therefore the only possibility is 1, 1, 1, 3.

Look at S4. The order is 24, there are 5 conjugacy classes :

(1), (1, 2), (1, 2, 3), (1, 2)(3, 4), (1, 2, 3, 4)

and we have two irreducible representations of degree one : the trivial
one and the sign.

We have therefore :

1 + 1 + k2
3 + k2

4 + k2
5 = 24

and therefore k2
3 + k2

4 + k2
5 = 22 and the possible divisors of 24 ate

1, 2, 3, 4, 6, 8, 12, 24. Only 1, 2, 3, 4 can occur, others squared are too
large.

The only possibility is 3, 3, 2. The irreducible representations of S4

are 1, 1, 2, 3, 3.
Our aim now is to prove the following theorem of Burnside:

Theorem 1.13 (Burnside). Let G be a finite group with |G| = paqb

with p and q prime numbers. Then G is solvable.
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Lemma 1.14. Let χi be an irreducible character of G corresponding
to a representation ρi. If G has a conjugacy class Kj such that |Kj|
and χi(1) are relatively prime, then for any g ∈ Kj, either χi(g) = 0
or |χi(g)| = χi(1).

Proof. Suppose we are in the situation of the lemma. There exists
integers m,n such that

m|Kj| + nχi(1) = 1

Multiplying by χi(g)
χi(1)

, we obtain

m|Kj|
χi(g)

χi(1)
+ nχi(g) =

χi(g)

χi(1)

Therefore, a = χi(g)
χi(1)

is an algebraic integer. On the other hand, χi(g) is

a sum of χi(1) roots of unity. Therefore a is an average of χi(1) roots
of unity.

We apply the following lemma:

Lemma 1.15. Let c be a complex number that is an average of mth
roots of unity. If c is an algebraic integer, then c = 0 or |c| = 1.

Proof. Write

c =
a1 + · · · + ad

d
where ais are roots of xm − 1. Since |ai| = 1 for 1 ≤ i ≤ d, the triangle
inequality shows that

|c| ≤ 1

Now, we assumed that c is an algebraic integer.
Let G be the Galois group of Q(a1, . . . , ad)/Q. Let σ ∈ G, all σ(ai)

are mth roots of unity. It follows that

|σ(c)| ≤ 1

Let

b =
∏

σ∈G

σ(c)

Of course all σ(c) are algebraic integers and b is an algebraic integer.
Of course σ(b) = b hence b ∈ Q and algebraic integer hence b ∈ Z. But
|c| 6= 1 implies |b| < 1, therefore b = 0, this forces c = 0. �

The lemma shows that either |a| = 1 or a = 0., therefore either
χi(g) = 0 or |χi(g)| = χi(1). �

We derive the following:
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Theorem 1.16. Let G be a non-abelian simple group. Then {1} is
the only conjugacy class whose cardinality is a prime power.

Remark 1.17. If the conjugacy class has just one element (1 for ex-
ample), then its cardinality is a prime power : p0.

Proof. Let g ∈ G, g 6= 1 such that gG has order pn with n > 0.
(if n is zero, then g is in the centre of G hence G is either not simple

or abelian...)
By column orthogonality, we have

r∑

i=1

χi(g)χi(1) = 0

where χis are distinct irreducible characters of G with χ1 being the
character of the trivial representation.

We have

1 +
r∑

i=2

χi(g)χi(1) = 0

This gives

1/p = −
r∑

i=1

χi(g)χi(1)

p

Suppose p is a factor of χi(1) for all i > 1 such that χi(1) 6= 0, then
the relation above shows that 1/p is an alegebraic integer and this is
not the case. Hence χi(g) 6= 0 and p does not divide χi(1) for some i.
Because χi(g) 6= 0, and |gG| = pm and χi(1) are coprime by what we
have just seen above, the lemma above shows that |χi(g)| = χi(1). But
{g ∈ G : |χi(g)| = χi(1)} is a normal subgroup of G (it is the kernel of
the corresponding representation). As G is simple, g = 1. This finishes
the proof. �

This theorem can be reformulated as follows: if the finite group G
has a conjugacy class of order pk, then G is not simple.

Before proving Burnside’s theorem, let us recall some notions from
group theory.

Let G be a finite group and p a prime number. A subgroup P is
called a Sylow p-subgroup of G if |P | = pn for some integer n ≥ 1
such that pn is a divisor of |G| but pn+1 is not a divisor of |G|.

If p||G|, then Sylow’s first theorem guarantees that G contains a
Sylow p-subgroup.

A chain of subgroups G = N0 ⊃ N1 ⊃ · · · ⊃ Nn such that

(1) Ni is a normal subgroup in Ni−1 for i = 1, 2, . . . , n.
(2) Ni−1/Ni is simple for i = 1, 2, . . . , n.
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(3) Nn = {1}.

is called a composition series. The factors Ni−1/Ni are called com-

position factors. A group is called solvable if there exists a compo-
sition series with Ni−1/Ni abelian.

In Galois theory it is proved that a polynomial f(x) is solvable by
radicals if and only if it’s Galois group is solvable.

Theorem 1.18 (Burnside). If G is a finite group of order paqb where
p, q are prime, then G is solvable.

Proof. Let Gi be a composition factor. We need to show that Gi is
abelian. By assumption Gi is simple and |Gi| divides |G| therefore
|Gi| = pa′

qb′ for some a′ ≤ a, b′ ≤ b.
Let P be a p-Sylow of Gi. Any p-group has a non-trivial centre (*)

and let g be a non-trivial element of the centre. Then P ⊂ CG(g)
and |P | = pa. It follows that [G : CG(g)] is not divisible by p and is
therefore a power of q. But [G : CG(g)] = |gG|, this contradicts the
theorem above unless G is abelian. �

(*) Any p-group has a non-trivial centre.

Indeed, let G be a group of order pn. Each conjugacy class has order
pki dividing pn, hence we get

pn = |Z(G)| +
∑

i

pki

It follows that |Z(G)| ≡ 0 mod p hence is not trivial.


