CHARACTERS OF FINITE GROUPS.

ANDREI YAFAEV

As usual we consider a finite group G and the ground field $F = \mathbb{C}$. Let U be a $\mathbb{C}[G]$ -module and let $g \in G$. Then g is represented by a matrix [g] in a certain basis.

We define $\chi_U \colon G \longrightarrow \mathbb{C}$ by

$$\chi_U(g) = tr([g])$$

As 1 is represented by the identity matrix, we have

$$\chi(1) = \dim_{\mathbb{C}}(U)$$

The property tr(AB) = tr(BA) shows that $tr(P^{-1}[g]P) = tr([g])$ and hence χ_U is independent of the choice of the basis and that isomorphic representations have the same character.

Suppose that $U = \mathbb{C}[G]$ with its basis given by the elements of G. This is the regular representation. The entries of the matrix [g] are zeroes or ones and we get one on the diagonal precisely for those $h \in G$ such that gh = h. Therefore we have

$$\chi_U(g) = |\{h \in G : gh = h\}|$$

In particular we see that

$$\chi_U(1) = |G|$$
 and $\chi_U(g) = 0$ if $g \neq 1$

This character is called the **regular** character and it is denoted χ_{reg} . Let

$$\mathbb{C}[G] = S_1^{n_1} \oplus \cdots \oplus S_r^{n_r}$$

be the decomposition into simple modules. The characters $\chi_i = \chi_{S_i}$ are called **irreducible characters**. By convention $n_1 = 1$ and S_1 is the trivial representation. The corresponding character χ_1 is called **principal character**. A character of a one dimensional representation is called a **linear character**. A character of an irreducible representation (equivalently simple module) is called an **irreducible character**. As one-dimensional modules are simple, linear characters are irreducible.

Let us look at linear character a bit closer : let χ be a linear character arising from a one dimensional module U, we have for any $u \in U$:

$$\chi(gh)u = (gh)u = \chi(g)\chi(h)u$$

hence χ is a homomorphism from G to \mathbb{C}^* .

Conversely, given a homomorphism $\phi: G \longrightarrow \mathbb{C}^*$, one constructs a one dimensional module $\mathbb{C}[G]$ -module U by

$$gu = \phi(g)u$$

Linear characters are exactly the same as homomorphisms $\phi: G \longrightarrow \mathbb{C}^*$.

Here is a collection of facts about characters:

Theorem 0.1. Let U be a $\mathbb{C}[G]$ -module and let $\rho: G \longrightarrow \operatorname{GL}(U)$ be a representation corresponding to U. Let g be an element of G of order n. Then

- (1) $\rho(g)$ is diagonalisable.
- (2) $\chi_U(g)$ is the sum of eigenvalues of [g].
- (3) $\chi_U(g)$ is the sum of $\chi_U(1)$ nth roots of unity.
- (4) $\chi_U(g^{-1}) = \overline{\chi_U(g)}$
- (5) $|\chi_U(g)| \le \chi_U(1)$
- (6) $\{x \in G : \chi_U(x) = \chi_U(1)\}$ is a normal subgroup of G.
- *Proof.* (1) $x^n 1$ is split hence the minimal polynomial splits.
 - (2) trivial
 - (3) The eigenvalues are roots of $x^n 1$ hence are roots of unity. Then use that $\dim_{\mathbb{C}}(U) = \chi_U(1)$.
 - (4) If v is an eigenvactor for [g], then $gv = \lambda v$. By applying g^{-1} we see that $g^{-1}v = \lambda^{-1}v$. As eigenvalues are roots of unity, $\lambda^{-1} = \overline{\lambda}$. The result follows.
 - (5) $\chi_{(g)}$ is a sum of $\chi_U(1)$ roots of unity. Apply triangle inequality.
 - (6) Suppose $\chi_U(x) = \chi_U(1)$, then in the sum all eigenvalues must be one (they are roots of 1 and lie on one line and sum is real). Hence [g] is the identity matrix. Coversely, if [g] is the identity, then of couse $\chi_U(g) = \chi_U(1)$. Hence ker $(\rho) = \{x \in G : \chi_U(x) = \chi_U(1)\}$ is a normal subgroup of G.

1. INNER PRODUCT OF CHARACTERS.

Let α and β be two class functions on G, their **inner product** is defined as the complex number :

$$(\alpha, \beta) = \frac{1}{|G|} \sum_{g \in G} \alpha(g) \overline{\beta(g)}$$

One easily checks that (,) is indeed an inner product. Therefore :

(1) $(\alpha, \alpha) \ge 0$ and $(\alpha, \alpha) = 0$ if and only if $\alpha = 0$.

- (2) $(\alpha, \beta) = \overline{(\beta, \alpha)}.$
- (3) $(\lambda \alpha, \beta) = \lambda(\alpha, \beta)$ for all α, β and $\lambda \in \mathbb{C}$.
- (4) $(\alpha_1 + \beta_2) = (\alpha_1, \beta) + (\alpha_2, \beta)$

We have the following:

Proposition 1.1. Let r be the number of conjugacy classes of G with representatives g_1, \ldots, g_r . Let χ and ψ be two characters of G.

(1)

$$<\chi,\psi>=<\psi,\chi>=\frac{1}{|G|}\sum_{g\in G}\chi(g)\psi(g^{-1})$$

and this is a real number.

(2)

$$\langle \chi, \psi \rangle = \sum_{i=1}^{r} \frac{\chi_i(g_i)\overline{\psi(g_i)}}{|C_G(g_i)|}$$

Proof. We have $\overline{\psi(g)} = \psi(g^{-1})$, hence

$$\langle \chi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \chi_i(g_i) \overline{\psi(g_i^{-1})}$$

As $G = \{g^{-1} : g \in G\}$, we get the first formula. And the inner products of characters are real because $\langle \chi, \psi \rangle = \overline{\langle \psi, \chi \rangle}$.

The second formula is easy using the fact that characters are constant on conjugacy classes. $\hfill \Box$

We have seen already that irreducible characters form a basis of the space of class functions. We are now going to prove that it is in fact an **orthonormal** basis.

Let us write

$$\mathbb{C}[G] = W_1 \oplus W_2$$

where W_1 and W_2 have no simple submodule in common (we will say they do not have a common composition factor). Write $1 = e_1 + e_2$ with $e_1 \in W_1$ and $e_2 \in W_2$, uniquely determined.

Proposition 1.2. For all $w_1 \in W_1$ and $w_2 \in W_2$ we have

$$e_1w_1 = w_1, \ e_2w_2 = 0$$

 $e_2w_1 = 0, \ e_2w_2 = w_2$

In particular $e_1^2 = e_1$ and $e_2^2 = e_2$ and $e_1e_2 = e_2e_1 = 0$. These elements are called idempotent.

Proof. Let $x \in W_1$. The function $w \mapsto wx$ is a $\mathbb{C}[G]$ -homomorphism from W_2 to W_1 . But, as W_1 and W_2 do not have any common composition factor, by Shur's lemma, this morphism is zero.

Therefore, for **any** $w \in W_2$ and $x \in W_1$,

$$wx = 0$$

and simiplarly xw = 0.

It follows that

$$w_1 = 1w_1 = (e_1 + e_2)w_1 = e_1w_1$$

and

$$w_2 = 1w_2 = (e_1 + e_2)w_2 = e_2w_2$$

We can calculate e_1 :

Proposition 1.3. Let χ be the character of W_1 , then

$$e_1 = \frac{1}{|G|} \sum_{g \in G} \chi(g^{-1})g$$

Proof. Fix $x \in G$. The function

$$\phi \colon w \mapsto x^{-1}e_1w$$

is an endomorphism of $\mathbb{C}[G]$ (endomorphism of \mathbb{C} -vector spaces).

We have $\phi(w_1) = x^{-1}w_1$ and $\phi(w_2) = 0$. In other words, ϕ is the multiplication by x^{-1} on W_1 and zero on W_2 . It follows that

$$tr(\phi) = \chi(x^{-1})$$

Now write

$$e_1 = \sum_{g \in G} \lambda_g g$$

For $g \neq x$, the trace of $w \mapsto x^{-1}gw$ is zero and for g = x, this trace is |G|.

Now, $\phi(w) = \sum x^{-1} \lambda g w$ hence $tr(\phi) = \lambda_x |G|$, hence

$$\lambda_x = \frac{\chi(x^{-1})}{|G|}$$

Corollary 1.4. Let χ be the character of W_1 , then

$$\langle \chi, \chi \rangle = \chi(1) = \dim W_1$$

Proof. We have $e_1^2 = e_1$ hence the coefficients of 1 in e_1 and e_1^2 are equal. In e_1 , its $\frac{\chi(1)}{|G|}$ and in e_1^2 it's

$$\frac{1}{|G|^2} \sum_{g \in G} \chi(g^{-1}) \chi(g) = \frac{1}{|G|} < \chi, \chi >$$

We now prove the following:

Theorem 1.5. Let U and V be two non-isomorphic simple $\mathbb{C}[G]$ -modules with characters χ and ψ . Then

$$\langle \chi, \chi \rangle = 1$$
 and $\langle \chi, \psi \rangle = 0$

Proof. Write

$$\mathbb{C}[G] = W \oplus X$$

where W is the sum of all simple $\mathbb{C}[G]$ -submodules isomorphic to U (there are $m = \dim(U)$ of them) and X is the complement. In particular W and X have no common composition factor The character of W is $m\chi$. We have

$$\langle m\chi, m\chi \rangle = m\chi(1) = m^2$$
 because $\chi(1) = m$

It follows that

$$\langle \chi, \chi \rangle = 1$$

Let Y be the sum of all simple submodules isomorphic either to U or V and Z the complement of Y. Let $n = \dim(V)$. We have

$$\chi_Y = m\chi + n\psi$$

and we have

$$\begin{split} m\chi(1) + n\psi(1) = &< m\chi + n\psi, m\chi + n\psi > = m^2 < \chi, \chi > + n^2 < \psi, \psi > + mn(<\chi,\psi> + <\psi, \psi) \\ \text{We have} < \chi, \chi > = &< \psi, \psi > = 1 \text{ and } \chi(1) = m, \psi(1) = n, \text{ hence} \\ < \chi, \psi > + < \psi, \chi > = 2 < \chi, \psi > = 0 \\ \Box \end{split}$$

Let now S_1, \ldots, S_r be the complete list of non-isomorphic simple $\mathbb{C}[G]$ -modules. If χ_i is a character of S_1 , then

$$<\chi_i,\chi_j>=\delta_{ij}$$

(notice in particular that this imples that irreducible characters are distinct).

Let V be a $\mathbb{C}[G]$ -module, write

$$V = S_1^{k_1} \oplus \cdots \oplus S_r^{k_r}$$

We have

$$\chi_V = k_1 \chi_1 + \dots + k_r \chi_r$$

We have

$$\langle \chi_V, \chi_i \rangle = \langle \chi_i, \chi_V \rangle = k_i$$

and

$$<\chi_V,\chi_V>=k_1^2+\cdots+k_r^2$$

This gives a **criterion** to determine whether a given $\mathbb{C}[G]$ -module is simple.

Theorem 1.6. Let V be a $\mathbb{C}[G]$ -module. Then V is simple if and only if

$$\langle \chi_V, \chi_V \rangle = 1$$

Proof. The if part is already dealt with.

Suppose $\langle \chi_V, \chi_V \rangle = 1$. We have

$$1 = \langle \chi_V, \chi_V \rangle = k_1^2 + \dots + k_r^2$$

It follows that all k_i s but one are zero.

We also recover

Theorem 1.7. Let V and W be two $\mathbb{C}[G]$ -modules. Then $V \cong W$ if and only if $\chi_V = \chi_W$.

Proof. Write $V = S_1^{n_1} \oplus \cdots \oplus S_r^{n_r}$ and $W = S_1^{k_1} \oplus \cdots \oplus S_r^{k_r}$ and let, as usual χ_i s be the characters of S_i . Then we have $n_i = \langle \chi_V, \chi_i \rangle$ and $k_i = \langle \chi_W, \chi_i \rangle = \langle \chi_V, \chi_i \rangle = n_i$.

We see that characters form an **orthonormal** basis of the space of class functions.

We also obtain a way of decomposing the $\mathbb{C}[G]$ -module V into simple submodules.

Proposition 1.8. Let V be a $\mathbb{C}[G]$ -module and χ an irreducible character of G. Then

$$(\sum_{g\in G}\chi(g^{-1}g)V$$

is equal to the sum of those $\mathbb{C}[G]$ -submodules of V with character χ .

Proof. Write

$$\mathbb{C}[G] = S_1^{n_1} \oplus \cdots \oplus S_r^{n_r}$$

and write W_1 be the sum of those submodules S_i having character χ (recall that χ is an irreducible character). Notice that W_1 is some $S_i^{n_i}$. Note that $n_i = \chi(1)$. The character of W_1 is $n_i\chi$. Let W_2 be the

complement of W_1 . Let e_1 be as previously (idempotent corresponding to W_1). Then

$$e_1 = \frac{n_i}{|G|} \sum_{g \in G} \chi(g^{-1})g$$

Let V_1 be the sum of submodules of V having the character χ . Then $e_1V = V$ (recall $e_1v_1 = v_1$ for $v_1 \in V_1$), hence

$$V_1 = (\sum_{g \in G} \chi(g^{-1})g)V$$

This gives a procedure for decomposing a $\mathbb{C}[G]$ -module V into simple submodules (for example $\mathbb{C}[G]$ itself).

- (1) Choose a basis v_1, \ldots, v_n of V.
- (2) For each irreducible character χ of G calculate $(\sum_{g \in G} \chi(g^{-1}g)v_i)$ and let V_{χ} be the subspace generated by these vectors.
- (3) V is now the direct sum of the V_{χ} where χ runs over irreducible characters. The character of V_{χ} is a multiple of χ .

Let's take an example. Let G be S_n and χ the trivial character. Let V be the permutation module and v_1, \ldots, v_n its basis. Then

$$\left(\sum_{g\in G}\chi(g^{-1})g\right)V = Span(v_1 + \dots + v_n)$$

Hence V has a unique trivial $\mathbb{C}[G]$ submodule.

Character tables.

We now turn to character tables. Let G be a finite group, r the number of conjugacy classes and g_1, \ldots, g_r its representatives. There are exactly r irreducible characters, they are χ_1, \ldots, χ_r . The character table is the $r \times r$ matrix with entries $\chi_i(g_j)$. There is always a row consisting of 1s corresponding to the trivial one dimensional representation.

Proposition 1.9. The character table is invertible.

Proof. This is because the irreducible characters form a basis of class fuctions. \Box

Recall the orthogonality relations.

$$<\chi_r,\chi_s>=\delta_{rs}$$

Rewrite this as:

$$\sum_{i=1}^{k} \frac{\chi_r(g_i)\overline{\chi_s(g_i)}}{|C_G(g_i)|} = \delta_{rs}$$

This gives the **row orthogonality** conditions. Now,

$$\sum_{i=1}^{k} \chi_i(g_r) \overline{\chi_i(g_s)} = \delta_{rs} |C_G(g_r)| = \delta_{rs} |C_G(g_r)|$$

is the column orthogonality.

This needs proving.

Define class functions ψ_s for $1 \leq s \leq k$ by

$$\psi_s(g_r) = \delta_{rs}$$

As characters form a basis of the space of class functions, ψ_i s are linear combinations of χ_i . We have

$$\psi_s = \sum_{i=1}^k \lambda_i \chi_i$$

As we know that $\langle \chi_i, \chi_j \rangle = \delta_{ij}$, we have

$$\lambda_i = \langle \psi_s, \chi_i \rangle = \frac{1}{|G|} \sum_{g \in G} \psi_s(g) \overline{\chi_i(g)}$$

By definition of ψ_s , we know that $\psi_s(g) = 1$ if g is conjugate to g_s and $\psi_s(g) = 0$ otherwise. The number of elements of G conjugate to g_s is

$$|g_s^G| = \frac{|G|}{|C_G(g_s)|}$$

It follows that

$$\lambda_i = \frac{\chi_i(g_s)}{|C_G(g_s)|}$$

Now, using that $\delta_{rs} = \psi_s(g_r)$, we get the column orthogonality.

These relations are useful because sometimes they help to complete character tables.

Let S_3 be the symmetric group, it is isomorphic to D_6 by sending (1,2) to b and (1,2,3) to a. There are three conjugacy classes, they are $\{1\}, \{a, a^2\}, \{b, ab, a^2b\}$ of sizes 1, 2 and 3 repsectively. We have two linear characters χ_1 and χ_2 corresponding to the trivial representation and the nontrivial of degree one (the sign of a permutation or $a \mapsto 1$ and $b \mapsto -1$). Let χ_3 be the character of the non-trivial two dimensional.

$$egin{array}{ccccc} g_i & 1 & a & b \ |C_G(g_i)| & 6 & 3 & 2 \ \chi_1 & 1 & 1 & 1 \ \chi_2 & 1 & 1 & -1 \ \chi_3 & ? & ? & ? \end{array}$$

We want to find the values of χ_3 .

First of all, we already know that

$$6 = |G| = \chi_1(1)^2 + \chi_2(1)^2 + \chi_3(1)^2$$

which gives $\chi_3(1)^2 = 1$, it follows that $\chi_3(1) = 2$ (this is the degree of the representation).

Let us write column orthogonality

 $\chi_1(g_r)\chi_1(g_s) + \chi_2(g_r)\chi_2(g_s) + \chi_3(g_r)\chi_3(g_s) = \delta_{rs}|C_G(g_r)|$ Take $r = 2, g_2 = a$ and $s = 1, g_s = 1$ then

$$\chi_1(a)\chi_1(1) + \chi_2(a)\chi_2(1) + \chi_3(a)\chi_3(1) = 0$$

Then

$$1 + 1 + 2\chi_3(a) = 0$$

hence $\chi_3(a) = -1$.

Now take r = 3 and s = 1, we get

$$\chi_1(b)\chi_1(1) + \chi_2(b)\chi_2(1) + \chi_3(b)\chi_3(1) = 0$$

Hence $1 - 1 + 2\chi_3(b) = 0$.

We completely determined χ_3 and did not even need to use the sizes of conjugacy classes.

Another example which demonstrates the use of orthogonality.

Let G be a group of order 12 which has exactly four conjugacy classes. Suppose we are given the following characters χ_1 , χ_2 and χ_3 . Of course there is a fourth irreducible character χ_4 . The question is to determine χ_4 .

g_i	g_1	g_2	g_3	g_4
$ C_G(g_i) $	12	4	3	3
χ_1	1	1	1	1
χ_2	1	1	ω	ω^2
χ_3	1	1	ω^2	ω
_				(

Of course we always have : $1 + 1 + 1 + \chi_4(1)^2 = 12$, hence

$$\chi_4(1)^2 = 9$$

hence $\chi_4(1) = 3$ and the representation is 3-dimensional.

Now, we apply column orthogonality to the first and second column:

$$1 + 1 + 1 + 3\overline{\chi_4(g_2)} = 0$$

which gives $\chi_4(g_2) = -1$.

The orthogonality between columns one and 3 and 4 gives

$$\chi_3(g_3) = \chi_4(g_4) = 0$$

ANDREI YAFAEV

In what follows we will prove that the integers k_i that occur in the decomposition of $\mathbb{C}[G]$ actually divide G.

Recall that a complex number α is called **algebraic integer** if it is a root of a monic polynomial with integer coefficients. The set of algebraic integers is a subring of \mathbb{C} , in particular the sum an product of two of them is an algebraic integer.

The property we are groing to use is the following:

Lemma 1.10. Let $a = \frac{p}{q}$ be a rational number, we suppose that p and q are coprime. Suppose that a is an algebraic integer, then a is an integer.

Proof. By assumption a satisfies

$$x^{n} + a_{1}x^{n-1} + \dots + a_{n} = 0$$

where a_i s are integers.

This gives $p^n = q \times (*)$ where (*) is some integer. It follows that q = 1 because p and q are coprime.

Proposition 1.11. Let g_i be in G and let $c_i := [G : C_G(g_i)]$ be the index of the centraliser of g_i in G. Then for any character χ_j of G, the value

$$\frac{c_i \chi_j(g_i)}{\chi_j(1)}$$

is an algebraic integer.

Proof. Let χ_j be a character corresponding to S_j . Let K_i be the conjugacy class of g_i and a be the sum (in $\mathbb{C}[G]$) of all elements in K_i . Of course a is in the centre of $\mathbb{C}[G]$, therefore left multiplication by a is an endomorphism of $\operatorname{End}_{\mathbb{C}[G]}(S_j)$. But, by a version of Shur's lemma, we know that

$$as = cs$$

for some $c \in \mathbb{C}$ and all $s \in S_j$. It follows that the trace of a is $c\chi_j(1)$ (recall that $\chi_j(1) = \dim(S_j)$). On the other hand, the trace of the matrix defined by multiplication by a is $c_j\chi_j(g_i)$. We therefore have

$$c = \frac{c_i \chi_j(g_i)}{\chi_j(1)}$$

As a is central, left multiplication by a also defines a $\mathbb{C}[G]$ -endomorphism of $\mathbb{C}[G]$. Let M_a be the corresponding matrix. Each entry of M_a is an integer, as a is a sum of group elements, therefore $\det(xI - M_a)$ is a polynomal with integer coefficients. But c is an eigenvalue of a (the eigenspace is precisely S_j), hence c is a root of $\det(xI - M_a)$ and hence it's an algebraic integer. \Box

We can now prove:

Theorem 1.12. For any irreducible character χ_i , $\chi_i(1)$ divides |G|.

Proof. Let g_1, \ldots, g_r be the set of representatives of conjugacy classes. of G and let $c_i = [G : C_G(g_i)]$ be the size of the conjugacy class. As we have $\langle \chi_i, \chi_i \rangle = 1$, we have

$$\frac{1}{|G|} \sum_{g \in G} \chi_j(g) \overline{\chi_j(g)} = 1$$

It follows that

$$\frac{|G|}{\chi_j(1)} = \frac{1}{\chi_j(1)} \sum_{i=1}^r c_j \chi_j(g_i) \overline{\chi_j(g_i)}$$
$$= \sum_{i=1}^r \frac{c_i \chi_j(g_i)}{\chi_j(1)} \overline{\chi_j(g_i)}$$

and therefore $\frac{|G|}{\chi_j(1)}$ is an algebraic integer. But it is also a rational number, hence an integer.

As application, recall that A_4 has order 12 and 4 conjugacy classes. We have

$$1 + k_2^2 + k_3^2 + k_4^2 = 12$$

Divisors of 12 are 1, 2, 3, 4, 6, 12 but only 1, 2, 3 can occur as others squared are bigger than 12. Therefore the only possibility is 1, 1, 1, 3.

Look at S_4 . The order is 24, there are 5 conjugacy classes :

$$(1), (1, 2), (1, 2, 3), (1, 2)(3, 4), (1, 2, 3, 4)$$

and we have two irreducible representations of degree one : the trivial one and the sign.

We have therefore :

$$1 + 1 + k_3^2 + k_4^2 + k_5^2 = 24$$

and therefore $k_3^2 + k_4^2 + k_5^2 = 22$ and the possible divisors of 24 ate 1, 2, 3, 4, 6, 8, 12, 24. Only 1, 2, 3, 4 can occur, others squared are too large.

The only possibility is 3, 3, 2. The irreducible representations of S_4 are 1, 1, 2, 3, 3.

Our aim now is to prove the following theorem of Burnside:

Theorem 1.13 (Burnside). Let G be a finite group with $|G| = p^a q^b$ with p and q prime numbers. Then G is solvable.

Lemma 1.14. Let χ_i be an irreducible character of G corresponding to a representation ρ_i . If G has a conjugacy class K_j such that $|K_j|$ and $\chi_i(1)$ are relatively prime, then for any $g \in K_j$, either $\chi_i(g) = 0$ or $|\chi_i(g)| = \chi_i(1)$.

Proof. Suppose we are in the situation of the lemma. There exists integers m, n such that

$$m|K_j| + n\chi_i(1) = 1$$

Multiplying by $\frac{\chi_i(g)}{\chi_i(1)}$, we obtain

$$m|K_j|\frac{\chi_i(g)}{\chi_i(1)} + n\chi_i(g) = \frac{\chi_i(g)}{\chi_i(1)}$$

Therefore, $a = \frac{\chi_i(g)}{\chi_i(1)}$ is an algebraic integer. On the other hand, $\chi_i(g)$ is a sum of $\chi_i(1)$ roots of unity. Therefore *a* is an average of $\chi_i(1)$ roots of unity.

We apply the following lemma:

Lemma 1.15. Let c be a complex number that is an average of mth roots of unity. If c is an algebraic integer, then c = 0 or |c| = 1.

Proof. Write

$$c = \frac{a_1 + \dots + a_d}{d}$$

where a_i s are roots of $x^m - 1$. Since $|a_i| = 1$ for $1 \le i \le d$, the triangle inequality shows that

 $|c| \leq 1$

Now, we assumed that c is an algebraic integer.

Let G be the Galois group of $\mathbb{Q}(a_1, \ldots, a_d)/\mathbb{Q}$. Let $\sigma \in G$, all $\sigma(a_i)$ are *m*th roots of unity. It follows that

$$|\sigma(c)| \le 1$$

Let

$$b = \prod_{\sigma \in G} \sigma(c)$$

Of course all $\sigma(c)$ are algebraic integers and b is an algebraic integer. Of course $\sigma(b) = b$ hence $b \in \mathbb{Q}$ and algebraic integer hence $b \in \mathbb{Z}$. But $|c| \neq 1$ implies |b| < 1, therefore b = 0, this forces c = 0.

The lemma shows that either |a| = 1 or a = 0, therefore either $\chi_i(g) = 0$ or $|\chi_i(g)| = \chi_i(1)$.

We derive the following:

Theorem 1.16. Let G be a non-abelian simple group. Then $\{1\}$ is the only conjugacy class whose cardinality is a prime power.

Remark 1.17. If the conjugacy class has just one element (1 for example), then its cardinality is a prime power : p^0 .

Proof. Let $g \in G$, $g \neq 1$ such that g^G has order p^n with n > 0.

(if n is zero, then g is in the centre of G hence G is either not simple or abelian...)

By column orthogonality, we have

$$\sum_{i=1}^r \chi_i(g)\chi_i(1) = 0$$

where χ_i s are distinct irreducible characters of G with χ_1 being the character of the trivial representation.

We have

$$1 + \sum_{i=2}^{r} \chi_i(g)\chi_i(1) = 0$$

This gives

$$1/p = -\sum_{i=1}^{r} \frac{\chi_i(g)\chi_i(1)}{p}$$

Suppose p is a factor of $\chi_i(1)$ for all i > 1 such that $\chi_i(1) \neq 0$, then the relation above shows that 1/p is an alegebraic integer and this is not the case. Hence $\chi_i(g) \neq 0$ and p does not divide $\chi_i(1)$ for some i. Because $\chi_i(g) \neq 0$, and $|g^G| = p^m$ and $\chi_i(1)$ are coprime by what we have just seen above, the lemma above shows that $|\chi_i(g)| = \chi_i(1)$. But $\{g \in G : |\chi_i(g)| = \chi_i(1)\}$ is a normal subgroup of G (it is the kernel of the corresponding representation). As G is simple, g = 1. This finishes the proof. \Box

This theorem can be reformulated as follows: if the finite group G has a conjugacy class of order p^k , then G is not simple.

Before proving Burnside's theorem, let us recall some notions from group theory.

Let G be a finite group and p a prime number. A subgroup P is called a **Sylow** p-subgroup of G if $|P| = p^n$ for some integer $n \ge 1$ such that p^n is a divisor of |G| but p^{n+1} is not a divisor of |G|.

If p||G|, then Sylow's first theorem guarantees that G contains a Sylow *p*-subgroup.

A chain of subgroups $G = N_0 \supset N_1 \supset \cdots \supset N_n$ such that

(1) N_i is a normal subgroup in N_{i-1} for i = 1, 2, ..., n.

(2) N_{i-1}/N_i is simple for i = 1, 2, ..., n.

ANDREI YAFAEV

(3) $N_n = \{1\}.$

is called a **composition series**. The factors N_{i-1}/N_i are called **composition factors**. A group is called **solvable** if there exists a composition series with N_{i-1}/N_i **abelian**.

In Galois theory it is proved that a polynomial f(x) is solvable by radicals if and only if it's Galois group is solvable.

Theorem 1.18 (Burnside). If G is a finite group of order p^aq^b where p, q are prime, then G is solvable.

Proof. Let G_i be a composition factor. We need to show that G_i is abelian. By assumption G_i is simple and $|G_i|$ divides |G| therefore $|G_i| = p^{a'}q^{b'}$ for some $a' \leq a, b' \leq b$.

Let P be a p-Sylow of G_i . Any p-group has a non-trivial centre (*) and let g be a non-trivial element of the centre. Then $P \subset C_G(g)$ and $|P| = p^a$. It follows that $[G : C_G(g)]$ is not divisible by p and is therefore a power of q. But $[G : C_G(g)] = |g^G|$, this contradicts the theorem above unless G is abelian. \Box

(*) Any *p*-group has a non-trivial centre.

Indeed, let G be a group of order p^n . Each conjugacy class has order p^{k_i} dividing p^n , hence we get

$$p^n = |Z(G)| + \sum_i p^{k_i}$$

It follows that $|Z(G)| \equiv 0 \mod p$ hence is not trivial.