CHARACTERS OF FINITE GROUPS.

ANDREI YAFAEV

As usual we consider a finite group G and the ground field $F=\mathbb{C}$.
Let U be a $\mathbb{C}[G]$-module and let $g \in G$. Then g is represented by a matrix $[g]$ in a certain basis.

We define $\chi_{U}: G \longrightarrow \mathbb{C}$ by

$$
\chi_{U}(g)=\operatorname{tr}([g])
$$

As 1 is represented by the identity matrix, we have

$$
\chi(1)=\operatorname{dim}_{\mathbb{C}}(U)
$$

The property $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ shows that $\operatorname{tr}\left(P^{-1}[g] P\right)=\operatorname{tr}([g])$ and hence χ_{U} is independent of the choice of the basis and that isomorphic representations have the same character.

Suppose that $U=\mathbb{C}[G]$ with its basis given by the elements of G. This is the regular representation. The entries of the matrix $[g]$ are zeroes or ones and we get one on the diagonal precisely for those $h \in G$ such that $g h=h$. Therefore we have

$$
\chi_{U}(g)=|\{h \in G: g h=h\}|
$$

In particular we see that

$$
\chi_{U}(1)=|G| \text { and } \chi_{U}(g)=0 \text { if } g \neq 1
$$

This character is called the regular character and it is denoted $\chi_{\text {reg }}$.
Let

$$
\mathbb{C}[G]=S_{1}^{n_{1}} \oplus \cdots \oplus S_{r}^{n_{r}}
$$

be the decomposition into simple modules. The characters $\chi_{i}=\chi_{S_{i}}$ are called irreducible characters. By convention $n_{1}=1$ and S_{1} is the trivial representation. The corresponding character χ_{1} is called principal character. A character of a one dimensional representation is called a linear character. A character of an irreducible representation (equivalently simple module) is called an irreducible character. As one-dimensional modules are simple, linear characters are irreducible.

Let us look at linear character a bit closer : let χ be a linear character arising from a one dimensional module U, we have for any $u \in U$:

$$
\chi(g h) u=(g h) u=\chi(g) \chi(h) u
$$

hence χ is a homomorphism from G to \mathbb{C}^{*}.

Conversely, given a homomorphism $\phi: G \longrightarrow \mathbb{C}^{*}$, one constructs a one dimensional module $\mathbb{C}[G]$-module U by

$$
g u=\phi(g) u
$$

Linear characters are exactly the same as homomorphisms

 $\phi: G \longrightarrow \mathbb{C}^{*}$.Here is a collection of facts about characters:
Theorem 0.1. Let U be a $\mathbb{C}[G]$-module and let $\rho: G \longrightarrow \mathrm{GL}(U)$ be a representation corresponding to U. Let g be an element of G of order n. Then
(1) $\rho(g)$ is diagonalisable.
(2) $\chi_{U}(g)$ is the sum of eigenvalues of $[g]$.
(3) $\chi_{U}(g)$ is the sum of $\chi_{U}(1)$ nth roots of unity.
(4) $\chi_{U}\left(g^{-1}\right)=\overline{\chi_{U}(g)}$
(5) $\left|\chi_{U}(g)\right| \leq \chi_{U}(1)$
(6) $\left\{x \in G: \chi_{U}(x)=\chi_{U}(1)\right\}$ is a normal subgroup of G.

Proof. (1) $x^{n}-1$ is split hence the minimal polynomial splits.
(2) trivial
(3) The eigenvalues are roots of $x^{n}-1$ hence are roots of unity. Then use that $\operatorname{dim}_{\mathbb{C}}(U)=\chi_{U}(1)$.
(4) If v is an eigenvactor for $[g]$, then $g v=\lambda v$. By applying g^{-1} we see that $g^{-1} v=\lambda^{-1} v$. As eigenvalues are roots of unity, $\lambda^{-1}=\bar{\lambda}$. The result follows.
(5) $\left.\chi_{(} g\right)$ is a sum of $\chi_{U}(1)$ roots of unity. Apply triangle inequality.
(6) Suppose $\chi_{U}(x)=\chi_{U}(1)$, then in the sum all eigenvalues must be one (they are roots of 1 and lie on one line and sum is real). Hence $[g]$ is the identity matrix. Coversely, if $[g]$ is the identity, then of couse $\chi_{U}(g)=\chi_{U}(1)$. Hence $\operatorname{ker}(\rho)=\left\{x \in G: \chi_{U}(x)=\right.$ $\left.\chi_{U}(1)\right\}$ is a normal subgroup of G.

1. Inner product of characters.

Let α and β be two class functions on G, their inner product is defined as the complex number :

$$
(\alpha, \beta)=\frac{1}{|G|} \sum_{g \in G} \alpha(g) \overline{\beta(g)}
$$

One easily checks that (,) is indeed an inner product.
Therefore :
(1) $(\alpha, \alpha) \geq 0$ and $(\alpha, \alpha)=0$ if and only if $\alpha=0$.
(2) $(\alpha, \beta)=\overline{(\beta, \alpha)}$.
(3) $(\lambda \alpha, \beta)=\lambda(\alpha, \beta)$ for all α, β and $\lambda \in \mathbb{C}$.
(4) $\left(\alpha_{1}+\beta_{2}\right)=\left(\alpha_{1}, \beta\right)+\left(\alpha_{2}, \beta\right)$

We have the following:
Proposition 1.1. Let r be the number of conjugacy classes of G with representatives g_{1}, \ldots, g_{r}. Let χ and ψ be two characters of G.
(1)

$$
<\chi, \psi>=<\psi, \chi>=\frac{1}{|G|} \sum_{g \in G} \chi(g) \psi\left(g^{-1}\right)
$$

and this is a real number.
(2)

$$
<\chi, \psi>=\sum_{i=1}^{r} \frac{\chi_{i}\left(g_{i}\right) \overline{\psi\left(g_{i}\right)}}{\left|C_{G}\left(g_{i}\right)\right|}
$$

Proof. We have $\overline{\psi(g)}=\psi\left(g^{-1}\right)$, hence

$$
<\chi, \psi>=\frac{1}{|G|} \sum_{g \in G} \chi_{i}\left(g_{i}\right) \overline{\psi\left(g_{i}^{-1}\right)}
$$

As $G=\left\{g^{-1}: g \in G\right\}$, we get the first formula. And the inner products of characters are real because $\langle\chi, \psi\rangle=\overline{\langle\psi, \chi\rangle}$.

The second formula is easy using the fact that characters are constant on conjugacy classes.

We have seen already that irreducible characters form a basis of the space of class functions. We are now going to prove that it is in fact an orthonormal basis.

Let us write

$$
\mathbb{C}[G]=W_{1} \oplus W_{2}
$$

where W_{1} and W_{2} have no simple submodule in common (we will say they do not have a common composition factor). Write $1=e_{1}+e_{2}$ with $e_{1} \in W_{1}$ and $e_{2} \in W_{2}$, uniquely determined.

Proposition 1.2. For all $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$ we have

$$
\begin{aligned}
& e_{1} w_{1}=w_{1}, \quad e_{2} w_{2}=0 \\
& e_{2} w_{1}=0, \quad e_{2} w_{2}=w_{2}
\end{aligned}
$$

In particular $e_{1}^{2}=e_{1}$ and $e_{2}^{2}=e_{2}$ and $e_{1} e_{2}=e_{2} e_{1}=0$. These elements are called idempotent.

Proof. Let $x \in W_{1}$. The function $w \mapsto w x$ is a $\mathbb{C}[G]$-homomorphism from W_{2} to W_{1}. But, as W_{1} and W_{2} do not have any common composition factor, by Shur's lemma, this morphism is zero.

Therefore, for any $w \in W_{2}$ and $x \in W_{1}$,

$$
w x=0
$$

and simiplarly $x w=0$.
It follows that

$$
w_{1}=1 w_{1}=\left(e_{1}+e_{2}\right) w_{1}=e_{1} w_{1}
$$

and

$$
w_{2}=1 w_{2}=\left(e_{1}+e_{2}\right) w_{2}=e_{2} w_{2}
$$

We can calculate e_{1} :

Proposition 1.3. Let χ be the character of W_{1}, then

$$
e_{1}=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{-1}\right) g
$$

Proof. Fix $x \in G$. The function

$$
\phi: w \mapsto x^{-1} e_{1} w
$$

is an endomorphism of $\mathbb{C}[G]$ (endomorphism of \mathbb{C}-vector spaces).
We have $\phi\left(w_{1}\right)=x^{-1} w_{1}$ and $\phi\left(w_{2}\right)=0$. In other words, ϕ is the multiplication by x^{-1} on W_{1} and zero on W_{2}. It follows that

$$
\operatorname{tr}(\phi)=\chi\left(x^{-1}\right)
$$

Now write

$$
e_{1}=\sum_{g \in G} \lambda_{g} g
$$

For $g \neq x$, the trace of $w \mapsto x^{-1} g w$ is zero and for $g=x$, this trace is $|G|$.

Now, $\phi(w)=\sum x^{-1} \lambda g w$ hence $\operatorname{tr}(\phi)=\lambda_{x}|G|$, hence

$$
\lambda_{x}=\frac{\chi\left(x^{-1}\right)}{|G|}
$$

Corollary 1.4. Let χ be the character of W_{1}, then

$$
<\chi, \chi>=\chi(1)=\operatorname{dim} W_{1}
$$

Proof. We have $e_{1}^{2}=e_{1}$ hence the coefficients of 1 in e_{1} and e_{1}^{2} are equal. In e_{1}, its $\frac{\chi(1)}{|G|}$ and in e_{1}^{2} it's

$$
\frac{1}{|G|^{2}} \sum_{g \in G} \chi\left(g^{-1}\right) \chi(g)=\frac{1}{|G|}<\chi, \chi>
$$

We now prove the following:
Theorem 1.5. Let U and V be two non-isomorphic simple $\mathbb{C}[G]$ modules with characters χ and ψ. Then

$$
<\chi, \chi>=1 \text { and }<\chi, \psi>=0
$$

Proof. Write

$$
\mathbb{C}[G]=W \oplus X
$$

where W is the sum of all simple $\mathbb{C}[G]$-submodules isomorphic to U (there are $m=\operatorname{dim}(U)$ of them) and X is the complement. In particular W and X have no common composition factor The character of W is $m \chi$. We have

$$
<m \chi, m \chi>=m \chi(1)=m^{2} \text { because } \chi(1)=m
$$

It follows that

$$
<\chi, \chi>=1
$$

Let Y be the sum of all simple submodules isomorphic either to U or V and Z the complement of Y. Let $n=\operatorname{dim}(V)$. We have

$$
\chi_{Y}=m \chi+n \psi
$$

and we have
$\left.m \chi(1)+n \psi(1)=<m \chi+n \psi, m \chi+n \psi>=m^{2}<\chi, \chi>+n^{2}<\psi, \psi\right\rangle+m n(<\chi, \psi\rangle+<\psi$,
We have $\langle\chi, \chi\rangle=<\psi, \psi\rangle=1$ and $\chi(1)=m, \psi(1)=n$, hence

$$
<\chi, \psi>+<\psi, \chi>=2<\chi, \psi>=0
$$

Let now S_{1}, \ldots, S_{r} be the complete list of non-isomorphic simple $\mathbb{C}[G]$-modules. If χ_{i} is a character of S_{1}, then

$$
<\chi_{i}, \chi_{j}>=\delta_{i j}
$$

(notice in particular that this imples that irreducible characters are distinct).

Let V be a $\mathbb{C}[G]$-module, write

$$
V=S_{1}^{k_{1}} \oplus \cdot \oplus S_{r}^{k_{r}}
$$

We have

$$
\chi_{V}=k_{1} \chi_{1}+\cdots+k_{r} \chi_{r}
$$

We have

$$
<\chi_{V}, \chi_{i}>=<\chi_{i}, \chi_{V}>=k_{i}
$$

and

$$
<\chi_{V}, \chi_{V}>=k_{1}^{2}+\cdots+k_{r}^{2}
$$

This gives a criterion to determine whether a given $\mathbb{C}[G]$-module is simple.

Theorem 1.6. Let V be $a \mathbb{C}[G]$-module. Then V is simple if and only if

$$
<\chi_{V}, \chi_{V}>=1
$$

Proof. The if part is already dealt with.
Suppose $<\chi_{V}, \chi_{V}>=1$. We have

$$
1=<\chi_{V}, \chi_{V}>=k_{1}^{2}+\cdots+k_{r}^{2}
$$

It follows that all $k_{i} \mathrm{~s}$ but one are zero.
We also recover
Theorem 1.7. Let V and W be two $\mathbb{C}[G]$-modules. Then $V \cong W$ if and only if $\chi_{V}=\chi_{W}$.
Proof. Write $V=S_{1}^{n_{1}} \oplus \cdots \oplus S_{r}^{n_{r}}$ and $W=S_{1}^{k_{1}} \oplus \cdots \oplus S_{r}^{k_{r}}$ and let, as usual $\chi_{i} \mathrm{~s}$ be the characters of S_{i}. Then we have $n_{i}=<\chi_{V}, \chi_{i}>$ and $k_{i}=<\chi_{W}, \chi_{i}>=<\chi_{V}, \chi_{i}>=n_{i}$.

We see that characters form an orthonormal basis of the space of class functions.

We also obtain a way of decomposing the $\mathbb{C}[G]$-module V into simple submodules.

Proposition 1.8. Let V be a $\mathbb{C}[G]$-module and χ an irreducible character of G. Then

$$
\left(\sum_{g \in G} \chi\left(g^{-1} g\right) V\right.
$$

is equal to the sum of those $\mathbb{C}[G]$-submodules of V with character χ.
Proof. Write

$$
\mathbb{C}[G]=S_{1}^{n_{1}} \oplus \cdots \oplus S_{r}^{n_{r}}
$$

and write W_{1} be the sum of those submodules S_{i} having character χ (recall that χ is an irreducible character). Notice that W_{1} is some $S_{i}^{n_{i}}$. Note that $n_{i}=\chi(1)$. The character of W_{1} is $n_{i} \chi$. Let W_{2} be the
complement of W_{1}. Let e_{1} be as previously (idempotent corresponding to W_{1}). Then

$$
e_{1}=\frac{n_{i}}{|G|} \sum_{g \in G} \chi\left(g^{-1}\right) g
$$

Let V_{1} be the sum of submodules of V having the character χ. Then $e_{1} V=V$ (recall $e_{1} v_{1}=v_{1}$ for $v_{1} \in V_{1}$), hence

$$
V_{1}=\left(\sum_{g \in G} \chi\left(g^{-1}\right) g\right) V
$$

This gives a procedure for decomposing a $\mathbb{C}[G]$-module V into simple submodules (for example $\mathbb{C}[G]$ itself).
(1) Choose a basis v_{1}, \ldots, v_{n} of V.
(2) For each irreducible character χ of G calculate $\left(\sum_{g \in G} \chi\left(g^{-1} g\right) v_{i}\right.$ and let V_{χ} be the subspace generated by these vectors.
(3) V is now the direct sum of the V_{χ} where χ runs over irreducible characters. The character of V_{χ} is a multiple of χ.
Let's take an example. Let G be S_{n} and χ the trivial character. Let V be the permutation module and v_{1}, \ldots, v_{n} its basis. Then

$$
\left(\sum_{g \in G} \chi\left(g^{-1}\right) g\right) V=\operatorname{Span}\left(v_{1}+\cdots+v_{n}\right)
$$

Hence V has a unique trivial $\mathbb{C}[G]$ submodule.

Character tables.

We now turn to character tables. Let G be a finite group, r the number of conjugacy classes and g_{1}, \ldots, g_{r} its representatives. There are exactly r irreducible characters, they are $\chi_{1}, \ldots, \chi_{r}$. The character table is the $r \times r$ matrix with entries $\chi_{i}\left(g_{j}\right)$. There is always a row consisting of 1 s corresponding to the trivial one dimensional representation.

Proposition 1.9. The character table is invertible.
Proof. This is because the irreducible characters form a basis of class fuctions.

Recall the orthogonality relations.

$$
<\chi_{r}, \chi_{s}>=\delta_{r s}
$$

Rewrite this as:

$$
\sum_{i=1}^{k} \frac{\chi_{r}\left(g_{i}\right) \overline{\chi_{s}\left(g_{i}\right)}}{\left|C_{G}\left(g_{i}\right)\right|}=\delta_{r s}
$$

This gives the row orthogonality conditions.
Now,

$$
\sum_{i=1}^{k} \chi_{i}\left(g_{r}\right) \overline{\chi_{i}\left(g_{s}\right)}=\delta_{r s}\left|C_{G}\left(g_{r}\right)\right|=\delta_{r s}\left|C_{G}\left(g_{r}\right)\right|
$$

is the column orthogonality.
This needs proving.
Define class functions ψ_{s} for $1 \leq s \leq k$ by

$$
\psi_{s}\left(g_{r}\right)=\delta_{r s}
$$

As characters form a basis of the space of class functions, ψ_{i} s are linear combinations of χ_{i}. We have

$$
\psi_{s}=\sum_{i=1}^{k} \lambda_{i} \chi_{i}
$$

As we know that $<\chi_{i}, \chi_{j}>=\delta_{i j}$, we have

$$
\lambda_{i}=<\psi_{s}, \chi_{i}>=\frac{1}{|G|} \sum_{g \in G} \psi_{s}(g) \overline{\chi_{i}(g)}
$$

By definition of ψ_{s}, we know that $\psi_{s}(g)=1$ if g is conjugate to g_{s} and $\psi_{s}(g)=0$ otherwise. The number of elements of G conjugate to g_{s} is

$$
\left|g_{s}^{G}\right|=\frac{|G|}{\left|C_{G}\left(g_{s}\right)\right|}
$$

It follows that

$$
\lambda_{i}=\frac{\overline{\chi_{i}\left(g_{s}\right)}}{\left|C_{G}\left(g_{s}\right)\right|}
$$

Now, using that $\delta_{r s}=\psi_{s}\left(g_{r}\right)$, we get the column orthogonality.
These relations are useful because sometimes they help to complete character tables.

Let S_{3} be the symmetric group, it is isomorphic to D_{6} by sending $(1,2)$ to b and $(1,2,3)$ to a. There are three conjugacy classes, they are $\{1\},\left\{a, a^{2}\right\},\left\{b, a b, a^{2} b\right\}$ of sizes 1,2 and 3 repsectively. We have two linear characters χ_{1} and χ_{2} corresponding to the trivial representation and the nontrivial of degree one (the sign of a permutation or $a \mapsto 1$ and $b \mapsto-1)$. Let χ_{3} be the character of the non-trivial two dimensional.

g_{i}	1	a	b
$\left\|C_{G}\left(g_{i}\right)\right\|$	6	3	2
χ_{1}	1	1	1
χ_{2}	1	1	-1
χ_{3}	$?$	$?$	$?$

We want to find the values of χ_{3}.
First of all, we already know that

$$
\left.6=|G|=\chi_{1}(1)^{2}+\chi_{2}^{(} 1\right)^{2}+\chi_{3}(1)^{2}
$$

which gives $\chi_{3}(1)^{2}=1$, it follows that $\chi_{3}(1)=2$ (this is the degree of the representation).

Let us write column orthogonality

$$
\chi_{1}\left(g_{r}\right) \chi_{1}\left(g_{s}\right)+\chi_{2}\left(g_{r}\right) \chi_{2}\left(g_{s}\right)+\chi_{3}\left(g_{r}\right) \chi_{3}\left(g_{s}\right)=\delta_{r s}\left|C_{G}\left(g_{r}\right)\right|
$$

Take $r=2, g_{2}=a$ and $s=1, g_{s}=1$ then

$$
\chi_{1}(a) \chi_{1}(1)+\chi_{2}(a) \chi_{2}(1)+\chi_{3}(a) \chi_{3}(1)=0
$$

Then

$$
1+1+2 \chi_{3}(a)=0
$$

hence $\chi_{3}(a)=-1$.
Now take $r=3$ and $s=1$, we get

$$
\chi_{1}(b) \chi_{1}(1)+\chi_{2}(b) \chi_{2}(1)+\chi_{3}(b) \chi_{3}(1)=0
$$

Hence $1-1+2 \chi_{3}(b)=0$.
We completely determined χ_{3} and did not even need to use the sizes of conjugacy classes.

Another example which demonstrates the use of orthogonality.
Let G be a group of order 12 which has exactly four conjugacy classes. Suppose we are given the following characters χ_{1}, χ_{2} and χ_{3}. Of course there is a fourth irreducible character χ_{4}. The question is to determine χ_{4}.

$$
\begin{array}{ccccc}
g_{i} & g_{1} & g_{2} & g_{3} & g_{4} \\
\left|C_{G}\left(g_{i}\right)\right| & 12 & 4 & 3 & 3 \\
\chi_{1} & 1 & 1 & 1 & 1 \\
\chi_{2} & 1 & 1 & \omega & \omega^{2} \\
\chi_{3} & 1 & 1 & \omega^{2} & \omega
\end{array}
$$

Of course we always have : $1+1+1+\chi_{4}(1)^{2}=12$, hence

$$
\chi_{4}(1)^{2}=9
$$

hence $\chi_{4}(1)=3$ and the representation is 3-dimensional.
Now, we apply column orthogonality to the first and second column:

$$
1+1+1+3 \overline{\chi_{4}\left(g_{2}\right)}=0
$$

which gives $\chi_{4}\left(g_{2}\right)=-1$.
The orthogonality between columns one and 3 and 4 gives

$$
\chi_{3}\left(g_{3}\right)=\chi_{4}\left(g_{4}\right)=0
$$

In what follows we will prove that the integers k_{i} that occur in the decomposition of $\mathbb{C}[G]$ actually divide G.

Recall that a complex number α is called algebraic integer if it is a root of a monic polynomial with integer coefficients. The set of algebraic integers is a subring of \mathbb{C}, in particular the sum an product of two of them is an algebraic integer.

The property we are groing to use is the following:
Lemma 1.10. Let $a=\frac{p}{q}$ be a rational number, we suppose that p and q are coprime. Suppose that a is an algebraic integer, then a is an integer.

Proof. By assumption a satisfies

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0
$$

where a_{i} s are integers.
This gives $p^{n}=q \times(*)$ where $(*)$ is some integer. It follows that $q=1$ because p and q are coprime.
Proposition 1.11. Let g_{i} be in G and let $c_{i}:=\left[G: C_{G}\left(g_{i}\right)\right]$ be the index of the centraliser of g_{i} in G. Then for any character χ_{j} of G, the value

$$
\frac{c_{i} \chi_{j}\left(g_{i}\right)}{\chi_{j}(1)}
$$

is an algebraic integer.
Proof. Let χ_{j} be a character correspondig to S_{j}. Let K_{i} be the conjugacy class of g_{i} and a be the sum (in $\mathbb{C}[G]$) of all elements in K_{i}. Of course a is in the centre of $\mathbb{C}[G]$, therefore left multiplication by a is an endomorphism of $\operatorname{End}_{\mathbb{C}[G]}\left(S_{j}\right)$. But, by a version of Shur's lemma, we know that

$$
a s=c s
$$

for some $c \in \mathbb{C}$ and all $s \in S_{j}$. It follows that the trace of a is $c \chi_{j}(1)$ (recall that $\chi_{j}(1)=\operatorname{dim}\left(S_{j}\right)$). On the other hand, the trace of the matrix defined by multiplication by a is $c_{j} \chi_{j}\left(g_{i}\right)$. We therefore have

$$
c=\frac{c_{i} \chi_{j}\left(g_{i}\right)}{\chi_{j}(1)}
$$

As a is central, left multiplication by a also defines a $\mathbb{C}[G]$-endomorphism of $\mathbb{C}[G]$. Let M_{a} be the corresponding matrix. Each entry of M_{a} is an integer, as a is a sum of group elements, therefore $\operatorname{det}\left(x I-M_{a}\right)$ is a polynomal with integer coefficients. But c is an eigenvalue of a (the eigenspace is preciesely $\left.S_{j}\right)$, hence c is a root of $\operatorname{det}\left(x I-M_{a}\right)$ and hence it's an algebraic integer.

We can now prove:
Theorem 1.12. For any irreducible character $\chi_{i}, \chi_{i}(1)$ divides $|G|$.
Proof. Let g_{1}, \ldots, g_{r} be the set of representatives of conjugacy classes. of G and let $c_{i}=\left[G: C_{G}\left(g_{i}\right)\right]$ be the size of the conjugacy class. As we have $\left\langle\chi_{i}, \chi_{i}\right\rangle=1$, we have

$$
\frac{1}{|G|} \sum_{g \in G} \chi_{j}(g) \overline{\chi_{j}(g)}=1
$$

It follows that

$$
\begin{aligned}
\frac{|G|}{\chi_{j}(1)} & =\frac{1}{\chi_{j}(1)} \sum_{i=1}^{r} c_{j} \chi_{j}\left(g_{i}\right) \overline{\chi_{j}\left(g_{i}\right)} \\
& =\sum_{i=1}^{r} \frac{c_{i} \chi_{j}\left(g_{i}\right)}{\chi_{j}(1)} \overline{\chi_{j}\left(g_{i}\right)}
\end{aligned}
$$

and therefore $\frac{|G|}{\chi_{j}(1)}$ is an algebraic integer. But it is also a rational number, hence an integer.

As application, recall that A_{4} has order 12 and 4 conjugacy classes. We have

$$
1+k_{2}^{2}+k_{3}^{2}+k_{4}^{2}=12
$$

Divisors of 12 are $1,2,3,4,6,12$ but only $1,2,3$ can occur as others squared are bigger than 12 . Therefore the only possibility is $1,1,1,3$.

Look at S_{4}. The order is 24 , there are 5 conjugacy classes :

$$
(1),(1,2),(1,2,3),(1,2)(3,4),(1,2,3,4)
$$

and we have two irreducible representations of degree one : the trivial one and the sign.

We have therefore :

$$
1+1+k_{3}^{2}+k_{4}^{2}+k_{5}^{2}=24
$$

and therefore $k_{3}^{2}+k_{4}^{2}+k_{5}^{2}=22$ and the possible divisors of 24 ate $1,2,3,4,6,8,12,24$. Only $1,2,3,4$ can occur, others squared are too large.

The only possibility is $3,3,2$. The irreducible representations of S_{4} are $1,1,2,3,3$.

Our aim now is to prove the following theorem of Burnside:
Theorem 1.13 (Burnside). Let G be a finite group with $|G|=p^{a} q^{b}$ with p and q prime numbers. Then G is solvable.

Lemma 1.14. Let χ_{i} be an irreducible character of G corresponding to a representation ρ_{i}. If G has a conjugacy class K_{j} such that $\left|K_{j}\right|$ and $\chi_{i}(1)$ are relatively prime, then for any $g \in K_{j}$, either $\chi_{i}(g)=0$ or $\left|\chi_{i}(g)\right|=\chi_{i}(1)$.

Proof. Suppose we are in the situation of the lemma. There exists integers m, n such that

$$
m\left|K_{j}\right|+n \chi_{i}(1)=1
$$

Multiplying by $\frac{\chi_{i}(g)}{\chi_{i}(1)}$, we obtain

$$
m\left|K_{j}\right| \frac{\chi_{i}(g)}{\chi_{i}(1)}+n \chi_{i}(g)=\frac{\chi_{i}(g)}{\chi_{i}(1)}
$$

Therefore, $a=\frac{\chi_{i}(g)}{\chi_{i}(1)}$ is an algebraic integer. On the other hand, $\chi_{i}(g)$ is a sum of $\chi_{i}(1)$ roots of unity. Therefore a is an average of $\chi_{i}(1)$ roots of unity.

We apply the following lemma:
Lemma 1.15. Let c be a complex number that is an average of mth roots of unity. If c is an algebraic integer, then $c=0$ or $|c|=1$.

Proof. Write

$$
c=\frac{a_{1}+\cdots+a_{d}}{d}
$$

where a_{i} s are roots of $x^{m}-1$. Since $\left|a_{i}\right|=1$ for $1 \leq i \leq d$, the triangle inequality shows that

$$
|c| \leq 1
$$

Now, we assumed that c is an algebraic integer.
Let G be the Galois group of $\mathbb{Q}\left(a_{1}, \ldots, a_{d}\right) / \mathbb{Q}$. Let $\sigma \in G$, all $\sigma\left(a_{i}\right)$ are m th roots of unity. It follows that

$$
|\sigma(c)| \leq 1
$$

Let

$$
b=\prod_{\sigma \in G} \sigma(c)
$$

Of course all $\sigma(c)$ are algebraic integers and b is an algebraic integer. Of course $\sigma(b)=b$ hence $b \in \mathbb{Q}$ and algebraic integer hence $b \in \mathbb{Z}$. But $|c| \neq 1$ implies $|b|<1$, therefore $b=0$, this forces $c=0$.

The lemma shows that either $|a|=1$ or $a=0$., therefore either $\chi_{i}(g)=0$ or $\left|\chi_{i}(g)\right|=\chi_{i}(1)$.

We derive the following:

Theorem 1.16. Let G be a non-abelian simple group. Then $\{1\}$ is the only conjugacy class whose cardinality is a prime power.

Remark 1.17. If the conjugacy class has just one element (1 for example), then its cardinality is a prime power : p^{0}.

Proof. Let $g \in G, g \neq 1$ such that g^{G} has order p^{n} with $n>0$.
(if n is zero, then g is in the centre of G hence G is either not simple or abelian...)

By column orthogonality, we have

$$
\sum_{i=1}^{r} \chi_{i}(g) \chi_{i}(1)=0
$$

where $\chi_{i} \mathrm{~s}$ are distinct irreducible characters of G with χ_{1} being the character of the trivial representation.

We have

$$
1+\sum_{i=2}^{r} \chi_{i}(g) \chi_{i}(1)=0
$$

This gives

$$
1 / p=-\sum_{i=1}^{r} \frac{\chi_{i}(g) \chi_{i}(1)}{p}
$$

Suppose p is a factor of $\chi_{i}(1)$ for all $i>1$ such that $\chi_{i}(1) \neq 0$, then the relation above shows that $1 / p$ is an alegebraic integer and this is not the case. Hence $\chi_{i}(g) \neq 0$ and p does not divide $\chi_{i}(1)$ for some i. Because $\chi_{i}(g) \neq 0$, and $\left|g^{G}\right|=p^{m}$ and $\chi_{i}(1)$ are coprime by what we have just seen above, the lemma above shows that $\left|\chi_{i}(g)\right|=\chi_{i}(1)$. But $\left\{g \in G:\left|\chi_{i}(g)\right|=\chi_{i}(1)\right\}$ is a normal subgroup of G (it is the kernel of the corresponding representation). As G is simple, $g=1$. This finishes the proof.

This theorem can be reformulated as follows: if the finite group G has a conjugacy class of order p^{k}, then G is not simple.

Before proving Burnside's theorem, let us recall some notions from group theory.

Let G be a finite group and p a prime number. A subgroup P is called a Sylow p-subgroup of G if $|P|=p^{n}$ for some integer $n \geq 1$ such that p^{n} is a divisor of $|G|$ but p^{n+1} is not a divisor of $|G|$.

If $p||G|$, then Sylow's first theorem guarantees that G contains a Sylow p-subgroup.

A chain of subgroups $G=N_{0} \supset N_{1} \supset \cdots \supset N_{n}$ such that
(1) N_{i} is a normal subgroup in N_{i-1} for $i=1,2, \ldots, n$.
(2) N_{i-1} / N_{i} is simple for $i=1,2, \ldots, n$.
(3) $N_{n}=\{1\}$.
is called a composition series. The factors N_{i-1} / N_{i} are called composition factors. A group is called solvable if there exists a composition series with N_{i-1} / N_{i} abelian.

In Galois theory it is proved that a polynomial $f(x)$ is solvable by radicals if and only if it's Galois group is solvable.
Theorem 1.18 (Burnside). If G is a finite group of order $p^{a} q^{b}$ where p, q are prime, then G is solvable.
Proof. Let G_{i} be a composition factor. We need to show that G_{i} is abelian. By assumption G_{i} is simple and $\left|G_{i}\right|$ divides $|G|$ therefore $\left|G_{i}\right|=p^{a^{\prime}} q^{b^{\prime}}$ for some $a^{\prime} \leq a, b^{\prime} \leq b$.

Let P be a p-Sylow of G_{i}. Any p-group has a non-trivial centre (${ }^{*}$) and let g be a non-trivial element of the centre. Then $P \subset C_{G}(g)$ and $|P|=p^{a}$. It follows that $\left[G: C_{G}(g)\right]$ is not divisible by p and is therefore a power of q. But $\left[G: C_{G}(g)\right]=\left|g^{G}\right|$, this contradicts the theorem above unless G is abelian.

$\left(^{*}\right)$ Any p-group has a non-trivial centre.

Indeed, let G be a group of order p^{n}. Each conjugacy class has order $p^{k_{i}}$ dividing p^{n}, hence we get

$$
p^{n}=|Z(G)|+\sum_{i} p^{k_{i}}
$$

It follows that $|Z(G)| \equiv 0 \bmod p$ hence is not trivial.

