SPA5218 Mathematical Techniques 3 Exercise Sheet 6

1. For the homogeneous equation with constant coefficients,

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=0
$$

show that the trial solution $y=e^{\lambda x}$ leads to the auxiliary equation

$$
\lambda^{2}+P \lambda+Q=0 .
$$

Hence find the most general solution for the case $P^{2} \neq 4 Q$, giving an expression for $y(x)$ containing the parameters P and Q.
In the case where $P^{2}=4 Q$, verify that the most general solution has the form

$$
y=A e^{\lambda x}+B x e^{\lambda x} .
$$

Write λ in terms of P in this case.
2. The exponential function $y(x)=e^{x}$ may be defined as the function whose value at the origin is 1 , i.e. $y(0)=1$, and whose derivative at a point x is equal to its value at that point, i.e.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=y
$$

The series expansion

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

can be derived by considering the series solution

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

with $a_{0}=1$. Taking this solution, calculate the derivative of the series and substitute in the equation $\mathrm{d} y / \mathrm{d} x=y$. Hence derive the recursion relation

$$
a_{n+1}=\frac{a_{n}}{(n+1)}
$$

and use this to obtain expressions for a_{1}, a_{2}, a_{3} and a_{4}.
3. The solution of the Hermite differential equation by the series method involves the recursion relation

$$
a_{m+2}=\frac{2(m-\alpha)}{(m+1)(m+2)} a_{m}
$$

(a) Use the recursion relation to calculate a_{2}, a_{4} and a_{6} in terms of a_{0}. (b) For a general even number $2 j \geq 2$, the expression for the coefficient is

$$
a_{2 j}=\frac{2^{j}(-\alpha)(-\alpha+2) \cdots(-\alpha+2 j-2)}{(2 j)!} a_{0}
$$

Prove this result by the method of induction, i.e. first assume that the equation is true for some $j=J$ and then use the recursion relation to show that it is also true for $j=J+1$. To complete the proof show that the above result is true in the case $2 j=2$.
4. Find the general solution of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}-x y=0
$$

as a power series of the form $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ about the point $x=0$. You should derive explicit expressions for the coefficients $a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}$ and a_{10} in terms of the coefficients a_{0} and a_{1}.
5. Find the general solution of the differential equation

$$
\left(x^{2}+1\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0
$$

as a power series of the form $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ about the point $x=0$.
6. Laguerre's differential equation is

$$
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+(1-x) \frac{\mathrm{d} y}{\mathrm{~d} x}+\lambda y=0
$$

where λ is a constant. By writing

$$
y(x)=\sum_{j=0}^{\infty} a_{j} x^{j+c}
$$

show that $c=0$ is a solution of the indicial equation. Taking $c=0$, derive the recursion relation for the coefficients a_{j} and use the relation to find explicit expressions for the coefficients a_{1}, a_{2}, a_{3} and a_{4} in terms of a_{0} and λ. Show that when λ is a positive integer the series terminates. Taking $a_{0}=1$, find the explicit form of the resulting solutions $y(x)=L_{\lambda}(x)$, called Laguerre polynomials, for the fixed values $\lambda=0,1,2$ and 3 .

