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SECTION A. Attempt answers to all questions.

A1 Give the definition of linear independence for a set of M vectors {u1,u2, · · · ,uM}. Use the
definition to determine whether the following pairs of vectors are linearly independent.

u1 =

(

2
1

)

, u2 =

(

1
0

)

u1 =





1
0
−1



 , u2 =





0
1
−1





[5]

A2 Calculate the Matrix product AB for

A =





1 2 0
1 1 0
0 1 1



 , B =





2 1 1
2 0 1
0 2 1





[5]

A3 For a matrix A, the inverse A−1 obeys AA−1 = A−1A = 1. The transpose of a matrix A is
denoted by AT . Use the fact that (AB)T = BT AT to show that (AT )−1 = (A−1)T . [5]

A4 For the inner product between wavefunctions defined by

(Ψ1, Ψ2) =

∫

∞

−∞

Ψ∗

1(x)Ψ2(x)dx

show that P = i d
dx

is a hermitian operator, i.e, it obeys (Ψ1, PΨ2) = (PΨ1, Ψ2). You may
assume that the wavefunctions vanish at ±∞. [5]

A5 Prove that

L =
d2

dx2
+ P (x)

d

dx

is a linear operator. [5]

A6 L is taken to be defined as in the previous question. The inhomogeneous equation

Ly(x) = F (x)

is solved by the particular solution yp(x). yc(x) is a complementary function solving
the corresponding homogeneous equation. Show that yp(x) + yc(x) is also a solution of
the inhomogeneous equation. Show also that for a fixed yp(x), this form gives the most
general solution of the inhomogenous equation. [5]

A7 Solve the differential equation

x2
dy

dx
+ xy2 = 5y2

[5]



A8 By extremizing

I =

∫ t2

t1

L(x, ẋ, t)dt

under variations of of the paths x(t) subject to the condition that δx(t1) = δx(t2) = 0,
derive the Euler-Lagrange equation

∂L

∂x
=

d

dt

∂L

∂ẋ

[5]

A9 For the Hermite differential equation

d2y

dx2
− 2x

dy

dx
+ 2αy = 0

where α is a constant, consider the series solution ansatz y =
∑

∞

n=0
anx

k+n and derive
the indicial equation k(k − 1) = 0. [5]

A10 Derive the contour integrals

∮

dz

z
= 2πi

∮

dz

z2
= 0

where the contour is a unit circle in the complex plane, centred at the origin. [5]



SECTION B. Answer only TWO of the four questions in this section.

B1

(a) For two vectors in C
N ,

v =















v1

v2

v3

...
vN















, w =













w1

w2

w3

· · ·
wN













the standard inner product is

(v,w) =
N

∑

i=1

v∗

i wi

Show that the following properties of inner products hold :

(v, λw) = λ(v,w) for any λ ∈ C

(λv,w) = λ∗(v,w)

[4+4]

(b) A linear operator H is said to be hermitian if

(v, Hw) = (Hv,w)

for any pair of vectors v,w.

An eigenvector v of H, with eigenvalue λ obeys the equation

Hv = λv

Prove that eigenvalues of hermitian operators are real, and that two eigenvectors with distinct
eigenvalues are orthogonal. [5+7]

(c) A unitary operator U obeys

(v, Uw) = (U−1v,w)

for any pair of vectors v,w. The matrix elements of the operator U with respect to an or-
thonormal basis {ei} are defined by

Uei =
∑

j

Ujiej

Show that U−1

ij = U∗

ji. [5]



B2

The Dirac delta function obeys the property

∫

∞

−∞

F (x)δ(x − x′)dx = F (x′)

Prove the following properties of the Dirac delta function :

(i)

δ(x) = δ(−x)

[3]

(ii)

xδ(x) = 0

[3]

(iii)

xδ′(x) = −δ(x)

[4]

(iv)

δ(ax) =
1

|a|
δ(x) for real a 6= 0

[5]

(v) Calculate the integral

∫

∞

x=−∞

∫

∞

y=−∞

∫

∞

z=−∞

(z + 1) sin(x + z) cos(y)δ(x −
π

2
)δ(y − π)δ(z)dxdydz

[5]

(vi) By considering the regions on the x-axis near the roots of the polynomial (x + 2)(x2 − 1),
calculate

∫

∞

−∞

dx δ((x + 2)(x2 − 1))

[5]



B3

The equation governing heat flow in one space dimension is

∂2u(x, t)

∂x2
=

1

α

∂u(x, t)

∂t

where α > 0 is a constant related to the thermal conductivity.

(i) Use separation of variables to obtain a general form for the solutions. [5]

(ii) A metal bar is placed along the x-axis so that its ends are located at x = 0 and x = L.
Both ends are kept at zero temperature at all times

u(0, t) = u(L, t) = 0

Given these (Dirichlet) boundary conditions, find the most general solution for u(x, t), express-
ing it as an infinite sum. [5]

(iii) For integers m,n > 0, prove the result

∫ L

0

dx sin(
nπx

L
) sin(

mπx

L
) =

L

2
δn,m

[7]

(iv) Given the temperature distribution at time t = 0 is given by u(x, 0) = δ(x− L
4
)+δ(x− 3L

4
),

what will be the temperature of the bar at a later time t ? [8]



B4

(i) Given a differential equation

d2y

dx2
+ P (x)

dy

dx
+ Q(x)y = F (x)

for y(x) defined in the interval a ≤ x ≤ b, the Green’s Function is required to satisfy

[
d2

dx2
+ P (x)

d

dx
+ Q(x)]G(x, x′) = δ(x − x′)

Show that

y(x) =

∫ b

a

G(x, x′)F (x′)dx′

is a particular integral. [5]

(ii) For the above differential equation, with boundary conditions y(a) = y(b) = 0, the Green’s
function is known to be :

G(x, x′) =
y2(x

′)y1(x)

W (x′)
for x < x′

G(x, x′) =
y1(x

′)y2(x)

W (x′)
for x > x′

where W (x′) = y1(x
′)y′

2(x
′) − y2(x

′)y′

1(x
′). and y1(x), y2(x) are solutions of the homogeneous

equation.

Show that

y(x) = y2(x)

∫ x

a

y1(x
′)F (x′)

W (x′)
dx′ + y1(x)

∫ b

x

y2(x
′)F (x′)

W (x′)
dx′

solves the differential equation. [5]

Show, using the conditions y1(a) = y2(b) = 0, that y(x) satisfies the boundary conditions. [5]

(iii) For the equation

(x2 + 1)
d2y

dx2
− 2x

dy

dx
+ 2y = (x2 + 1)2

in the interval 0 ≤ x ≤ 1, obtain the solution obeying the boundary conditions y(0) = y(1) = 0.
You may use the fact that x and (1 − x2) are solutions of the homogeneous equation. [10]


