## Mathematical Techniques 3 Vector spaces, linear operators, and matrices

Alston J. Misquitta

Queen Mary University of London

September 25, 2018

<ロト <回ト < 国ト < 国ト = 国

These are not lecture notes!

These slides are merely an outline of what we will cover in the lectures. Use them as a guide, solve the problems indicated here, and follow-up on reading the material highlighted in the reference texts.

< ロ > < 同 > < 回 > < 回 >

## Outline of the Talk

#### Goals of MT3

- 2) Vector Spaces
- 3 Norm of a vector
- 4 Gram–Schmidt Orthogonalization
- 5 Linear Operators
- 6 Matrices
- Operations on matrices
- Function Spaces & Fourier Transforms

#### Goals

#### Goals of MT3 I

- Vector spaces
  - Vector spaces
  - Linear operators
  - Matrices
  - Basis functions
  - Function spaces
  - Fourier expansions (an example of a function space)
- Differential equations
  - Ordinary differential equations
  - 2 Green's function methods
  - Partial differential equations
- The Variational Principle

## Outline of the Talk

#### Goals of MT3



- 3 Norm of a vector
- 4 Gram–Schmidt Orthogonalization
- 5 Linear Operators
- 6 Matrices
- Operations on matrices
  - Function Spaces & Fourier Transforms

#### Vector Spaces I

Defn: A set of objects  $\mathbf{a}, \mathbf{b}, \mathbf{c}$ , etc. is said to form a linear vector space  $\mathcal{V}$  if:

• The set is closed under commutative and associative addition:

$$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$$
  
 $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$ 

- The set is closed under multplication by a scalar, i.e.,  $\lambda \mathbf{a} \in \mathcal{V} \ \forall \lambda \in \mathbb{C}.$
- Multplication by a scalar is both distributive and associative:

$$\lambda(\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b}$$
  
 $\lambda(\mu \mathbf{a}) = (\lambda \mu) \mathbf{a}.$ 

• There exists a null vector  $\mathbf{0}$  s.t.  $\mathbf{a} + \mathbf{0} = \mathbf{a}$ .

#### Vector Spaces II

- Multplication by the unit scalar leaves any vector unchanged: 1a = a.
- $\forall \mathbf{a} \in \mathcal{V} \exists -\mathbf{a} \text{ s.t. } \mathbf{a} + (-\mathbf{a}) = \mathbf{0}.$

See RHB §8.1 for more details.

イロト 不得 トイヨト イヨト

#### Vector Spaces III

#### Linear dependencies

If  $\nexists \alpha_i \neq 0$  s.t.  $\sum_i^N \alpha_i \mathbf{a}_i = \mathbf{0}$  then the set  $\{\mathbf{a}_i\}$  of *N* vectors is said to from a *linearly independent* set.

#### Dimension

In a space  $\mathcal{V}$ , if there are no more than N linearly independent vectors  $\{\mathbf{a}_i\}$  then the space is said to have dimension N.

< ロ > < 同 > < 回 > < 回 >

#### Vector Spaces IV

#### **Basis sets**

If  $\mathcal{V}$  is an *N*-dimensional vector space then *any* set of *N* linearly independent vectors  $\{\mathbf{e}_i\}$  forms a basis for  $\mathcal{V}$ .

If x is an arbitrary vector in  $\mathcal{V}$  than the set  $\{x, \{e_i\}\}$  must be linearly dependent. I.e., we must have

$$\sum_{i}^{N} \alpha_{i} \mathbf{e}_{i} + \beta \mathbf{x} = \mathbf{0},$$

where not all  $\alpha_i = 0$ , and  $\beta \neq 0$ .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

September 25, 2018

#### Vector Spaces V

Since  $\beta \neq 0$ , we can define  $x_i = -\alpha_i / \beta$  giving

$$\mathbf{x} = \sum_{i}^{N} x_i \mathbf{e}_i.$$

Q: Show that given a basis  $\{e_i\}$ , the coefficients  $\{x_i\}$  are unique.

See RHB §8.1.1 for more details.

September 25, 2018

## Outline of the Talk

#### Goals of MT3

Vector Spaces

#### Orm of a vector

- 4 Gram–Schmidt Orthogonalization
- 5 Linear Operators
- 6 Matrices
- Operations on matrices
- Function Spaces & Fourier Transforms

## The Norm I

#### **Inner product**

The inner product of two vectors results in a scalar  $\langle {\bf a} | {\bf b} \rangle$  with the properties

• 
$$\langle \mathbf{a} | \mathbf{b} \rangle = \langle \mathbf{b} | \mathbf{a} \rangle^*$$
, and

• 
$$\langle \mathbf{a} | \lambda \mathbf{b} + \mu \mathbf{c} \rangle = \lambda \langle \mathbf{a} | \mathbf{b} \rangle + \mu \langle \mathbf{a} | \mathbf{c} \rangle.$$

Q: Show that:  

$$\langle \lambda \mathbf{a} + \mu b | \mathbf{c} \rangle = \lambda^* \langle \mathbf{a} | \mathbf{c} \rangle + \mu^* \langle \mathbf{b} | \mathbf{c} \rangle$$

Q: Show that:  
$$\langle \lambda \mathbf{a} | \mu \mathbf{b} \rangle = \lambda^* \mu \langle \mathbf{a} | \mathbf{b} \rangle$$

・ロト ・ 四ト ・ ヨト ・ ヨト

September 25, 2018

э

#### The Norm II

#### **Orthogonal vectors**

 $\mathbf{a}, \mathbf{b} \in \mathcal{V}$  are orthogonal iff  $\langle \mathbf{a} | \mathbf{b} \rangle = 0$ .

iff = if and only if

#### Norm of a vector

 $\|\mathbf{a}\| = \sqrt{\langle \mathbf{a} | \mathbf{a} \rangle}.$ 

A *normalized* vector is one with has a unit norm. Any vector can be normalized as follows:

$$\mathbf{a} o \frac{\mathbf{a}}{\|\mathbf{a}\|}.$$

The inner product  $\langle a|a\rangle$  can have any sign. If we restrict it, as we will now do, to have  $\langle a|a\rangle \geq 0$ , then we get the Euclidean, or positive semi-definite norm.

・ロト ・四ト ・ヨト ・ヨト

## The Norm III

#### **Orthonormal basis**

This is a basis set of orthogonal and normalised basis functions  $\{\hat{\mathbf{e}}_i\}$  that satisfies

 $\langle \mathbf{\hat{e}}_i | \mathbf{\hat{e}}_j \rangle = \delta_{ij},$ 

where  $\delta_{ij}$  is the *Kronecker delta function* that is defined as

$$\delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$

イロン イ理 とく ヨン イヨン

September 25, 2018

3

#### The Norm IV

#### Components of a vector:

Any vector  $\mathbf{a} \in \mathcal{V}$  can be written as

$$\mathbf{a} = \sum_{i}^{N} a_i \hat{\mathbf{e}}_i,$$

where the components of a are the  $\{a_i\}$  which are defined as

 $a_i = \langle \mathbf{\hat{e}}_i | \mathbf{a} \rangle$ 

Q: Demonstrate this!

**Q:** Show that: 
$$\langle a|b\rangle = \sum_{i=1}^{N} a_i^* b_i$$
.

Compare this defn of the inner product with the dot product.

AJMisquitta (QMUL)

September 25, 2018 15 / 68

< 日 > < 同 > < 回 > < 回 > < □ > <

#### The Norm V

What is the basis vectors are normalized but not orthogonal? I.e.,  $\langle \hat{\bf e}_i | \hat{\bf e}_j \rangle = 1$ , but

$$\langle \hat{\mathbf{e}}_i | \hat{\mathbf{e}}_j \rangle = \begin{cases} 1, & \text{if } i = j, \\ G_{ij}, & \text{if } i \neq j. \end{cases}$$

**Q:** Show that 
$$\langle a|b\rangle = \sum_{ij}^{N} a_i^* G_{ij} a_j$$
.

Q: Show that if the norm of a vector is real, i.e, if  $||\mathbf{a}|| \in \mathbb{R}$ , then  $G_{ij} = G_{ji}^*$ .

#### See RHB §8.1.2 for more details.

## Outline of the Talk

- Goals of MT3
- 2 Vector Spaces
- 3 Norm of a vector
- 4 Gram–Schmidt Orthogonalization
- Linear Operators
- 6 Matrices
- Operations on matrices
  - Function Spaces & Fourier Transforms

<ロト <回ト < 国ト < 国ト < 国ト 三 国

#### Orthogonalization I

Given a basis  $\{e_i\}$  of not necessarily normalization or orthogonalized vectors, we can create an orthogonalized basis  $\{\hat{e}'_i\}$  as follows:

$$\begin{aligned} \hat{\mathbf{e}}_1' &= \frac{\mathbf{e}_1}{\|\mathbf{e}_1\|} \\ \hat{\mathbf{e}}_2' &= \frac{\mathbf{e}_2 - \langle \hat{\mathbf{e}}_1 | \mathbf{e}_2 \rangle \hat{\mathbf{e}}_1}{\|\mathbf{e}_2 - \langle \hat{\mathbf{e}}_1 | \mathbf{e}_2 \rangle \hat{\mathbf{e}}_1\|} \\ \hat{\mathbf{e}}_3' &= \frac{\mathbf{e}_3 - \langle \hat{\mathbf{e}}_1 | \mathbf{e}_3 \rangle \hat{\mathbf{e}}_1 - \langle \hat{\mathbf{e}}_2 | \mathbf{e}_3 \rangle \hat{\mathbf{e}}_2}{\|\mathbf{e}_3 - \langle \hat{\mathbf{e}}_1 | \mathbf{e}_3 \rangle \hat{\mathbf{e}}_1 - \langle \hat{\mathbf{e}}_2 | \mathbf{e}_3 \rangle \hat{\mathbf{e}}_2\|} \\ \cdots &= \cdots \end{aligned}$$

#### See 2016 lecture notes for more details.

| AJMisc     | uitta ( | (OMUL)    | ١ |
|------------|---------|-----------|---|
| , 10111100 | antica  | CALL OF L | , |

イロト イヨト イヨト イヨト

## Outline of the Talk

- Goals of MT3
- 2 Vector Spaces
- 3 Norm of a vector
- 4 Gram–Schmidt Orthogonalization
- Linear Operators
- 6 Matrices
- Operations on matrices
- Function Spaces & Fourier Transforms

#### Linear Operators (RHB §8.2) I

A linear operator  $\hat{A}$  on a vector space  $\mathcal{V}$  associates every vector  $\mathbf{x} \in \mathcal{V}$  with another vector  $\mathbf{y} \in \mathcal{V}'$ :

$$\mathbf{y} = \hat{A}\mathbf{x}$$

such that

• For  $\mathbf{a}, \mathbf{b} \in \mathcal{V}$  and scalars  $\lambda, \mu \in \mathbb{R}$ ,

$$\hat{A}(\lambda \mathbf{a} + \mu \mathbf{b}) = \lambda \hat{A} \mathbf{a} + \mu \hat{A} \mathbf{b}.$$

- $(\hat{A} + \hat{B})\mathbf{a} = \hat{A}\mathbf{a} + \hat{B}\mathbf{b}.$
- $(\hat{A}\hat{B})\mathbf{a} = \hat{A}(\hat{B}\mathbf{a}).$
- Null operator:  $\hat{\mathcal{O}}\mathbf{a} = \mathbf{0}$ .
- Identity:  $\hat{\mathcal{I}}\mathbf{a} = \mathbf{a}$ .
- If  $\exists \hat{A}^{-1}$  s.t.  $\hat{A}\hat{A}^{-1} = \hat{\mathcal{I}} = \hat{A}^{-1}\hat{A}$ , then  $\hat{A}^{-1}$  is the inverse of  $\hat{A}$  and  $\hat{A}$  is *non-singular*.

AJMisquitta (QMUL)

## Linear Operators (RHB §8.2) II

$$\begin{array}{c} \mathcal{V} \xrightarrow{\hat{A}} \mathcal{V}' \\ \{ \hat{\mathbf{e}}_i \} & \{ \hat{\mathbf{f}}_j \} \\ N & M \\ \mathbf{x} \xrightarrow{\hat{A}} \mathbf{y} \end{array}$$

## What is the action of $\hat{A}$ on a *basis function* of $\mathcal{V}$ ? $\hat{A}$ transforms $\hat{\mathbf{e}}_i$ into a linear combination of basis functions $\{\hat{\mathbf{f}}_j\}$ that span space $\mathcal{V}'$ :

$$\hat{A}\hat{\mathbf{e}}_i = \sum_{j=1}^M A_{ji}\hat{\mathbf{f}}_j, \quad i \in [1, N].$$

Here the  $A_{ji}$  are the scalars that determine the transformation.

#### Linear Operators (RHB §8.2) III

What is the action of  $\hat{A}$  on a *vector* of  $\mathcal{V}$ ?

$$\mathbf{x} = \sum_{i=1}^{N} x_i \hat{\mathbf{e}}_i \quad \in \mathcal{V} \ \mathbf{y} = \sum_{j=1}^{M} y_j \hat{\mathbf{f}}_j \quad \in \mathcal{V}',$$

such that

$$\mathbf{y} = \hat{A}\mathbf{x}.$$

**Q:** Show that: 
$$y_j = \sum_i^N A_{ji} x_i$$
.

September 25, 2018

э

## Linear Operators (RHB $\S$ 8.2) IV

$$y_j = \sum_{i=1}^N A_{ji} x_i$$

This can be represented as

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & \dots & A_{1N} \\ A_{21} & A_{22} & A_{23} & \dots & A_{2N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ A_{M1} & A_{M2} & A_{M3} & \dots & A_{MN} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_N \end{bmatrix}$$

э

## Linear Operators (RHB §8.2) V

If we use the notation  ${\bf A}$  to denote the  $M \times N$  object, then

 $\mathbf{y} = \mathbf{A}\mathbf{x}$ 

This looks very similar to the operator form:

$$\mathbf{y} = \hat{A}\mathbf{x}$$

But **A** is only a *representation* of the operator  $\hat{A}$  in the chosen basis sets  $\{\hat{\mathbf{e}}_i\}$  (for  $\mathcal{V}$ ) and  $\{\hat{\mathbf{f}}_j\}$  (for  $\mathcal{V}'$ ).

If we had used different basis sets then the terms in A Q: would change, but the dimensions of A would always be  $M \times N$ . Explain why.

## Outline of the Talk

- Goals of MT3
- 2 Vector Spaces
- 3 Norm of a vector
- 4 Gram–Schmidt Orthogonalization
  - Linear Operators
- 6 Matrices
- Operations on matrices
- Function Spaces & Fourier Transforms

## Matrices (RHB §8.3) I

#### Properties of linear ops in index notation

$$(\hat{A} + \hat{B})\mathbf{a} = \hat{A}\mathbf{a} + \hat{B}\mathbf{a}$$

becomes

$$\sum_{j=1}^{N} (\mathbf{A} + \mathbf{B})_{ij} a_j = \sum_{j=1}^{N} A_{ij} a_j + \sum_{j=1}^{N} B_{ij} a_j$$

As this must hold  $\forall \mathbf{a} \in \mathcal{V}$  we must have

$$(\mathbf{A} + \mathbf{B})_{ij} = A_{ij} + B_{ij}.$$

This defines matrix addition.

< ロ > < 同 > < 回 > < 回 >

September 25, 2018

## Matrices (RHB §8.3) II

$$(\hat{A}\hat{B})\mathbf{a}=\hat{A}(\hat{B}\mathbf{a})$$

becomes

$$\sum_{j}^{N} (\mathbf{AB})_{ij} a_j = \sum_{k}^{N} A_{ik} (\mathbf{Ba})_k$$
$$= \sum_{k}^{N} A_{ik} \sum_{j}^{N} B_{kj} a_j$$
$$= \sum_{j}^{N} \left( \sum_{k}^{N} A_{ik} B_{kj} \right) a_j.$$

2

イロン イ理 とく ヨン イヨン

## Matrices (RHB §8.3) III

#### As this must hold $orall \mathbf{a} \in \mathcal{V}$ we must have

$$(\mathbf{AB})_{ij} = \sum_{k}^{N} A_{ik} B_{kj}.$$

This defines matrix multplication.

September 25, 2018

3

## Matrices (RHB §8.3) IV

Similarly, the simplified version of multplication by a scalar:

$$(\lambda \hat{A})\mathbf{a} = \lambda(\hat{A}\mathbf{a})$$

implies

$$(\lambda \mathbf{A})_{ij} = \lambda A_{ij},$$

which defines how matrices can be multplied by a scalar.

Examples are given in RHB §8.4.1 and RHB §8.4.2.

September 25, 2018

## Matrices (RHB §8.3) V

$$(\mathbf{AB})_{ij} = \sum_{k}^{N} A_{ik} B_{kj}.$$

Let 
$$(\mathbf{AB})_{ij} = P_{ij} = (\mathbf{P})_{ij}$$
, so

$$\mathbf{P}=\mathbf{AB}$$

#### Q: What are the dimensions of P? See RHB §8.4.2.

September 25, 2018

3

## Matrices (RHB §8.3) VI

Matrix multplication is associative

 $\mathbf{A}(\mathbf{BC}) = (\mathbf{AB})\mathbf{C}.$ 

Q: Prove it.

Is matrix multplication commutative?

$$\mathbf{P} = \mathbf{A}\mathbf{B} \stackrel{?}{=} \mathbf{B}\mathbf{A} = \mathbf{Q}$$

We can consider the commutation only if A is  $M \times N$  and Q: B is  $N \times M$ . Why? In this case, what are the dimensions of P and Q?

## Matrices (RHB §8.3) VII

#### Matrix multplication is not in general commutative

 $\mathbf{AB} \neq \mathbf{BA}$ 

Q: When will matrix multplication be commutative? When the matrices are square? Diagonal? Any other case?

Matrix multplication is distributive under addition

 $(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}.$ 

Q: Prove this.

(日)

September 25, 2018

## Matrices (RHB §8.3) VIII

#### Null matrix: 0

$$0\mathbf{A} = \mathbf{0} = \mathbf{A}\mathbf{0}$$
$$\mathbf{0} + \mathbf{A} = \mathbf{A} = \mathbf{A} + \mathbf{0}$$

#### Identity matrix: I

$$IA = A = AI$$

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

AJMisquitta (QMUL)

September 25, 2018 33 / 68

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

## Matrices (RHB §8.3) IX

#### Transpose: $\mathbf{A}^{\mathrm{T}}$

$$(\mathbf{A}^{\mathrm{T}})_{ij} = (\mathbf{A})_{ji}$$

If **A** is  $M \times N$  then  $\mathbf{A}^{\mathrm{T}}$  is  $N \times M$ .

**Q**: Prove that  $(\mathbf{AB})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$ .

September 25, 2018

3

## Matrices (RHB §8.3) X

Complex conjugate:  $\mathbf{A}^*$ :  $(\mathbf{A}^*)_{ij} = (A_{ij})^*$ 

Hermitian conjugate or adjoint:  $\mathbf{A}^{\dagger}$ 

$$\mathbf{A}^{\dagger} = (\mathbf{A}^{*})^{\mathrm{T}} = (\mathbf{A}^{\mathrm{T}})^{*}$$

$$(\mathbf{A}^{\dagger})_{ij} = [(\mathbf{A}^*)^{\mathrm{T}}]_{ij}$$
$$= (\mathbf{A}^*)_{ji} = (A_{ji})^*.$$

**Q**: Prove that  $(\mathbf{AB})^{\dagger} = \mathbf{B}^{\dagger}\mathbf{A}^{\dagger}$ .

Q: Show that if A is real then  $A^{\dagger} = A^{T}$ .

AJMisquitta (QMUL)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

September 25, 2018

## Matrices (RHB §8.3) XI

#### Notation

In general:

$$\begin{aligned} \mathbf{a} | \mathbf{b} \rangle &= \sum_{i=1}^{N} a_i^* b_i \\ &= \begin{bmatrix} a_1^* & a_2^* & \dots & a_N^* \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{bmatrix} \\ &= \mathbf{a}^{\dagger} \mathbf{b} \end{aligned}$$

For real vectors this becomes:

$$\langle \mathbf{a} | \mathbf{b} 
angle = \mathbf{a}^{\mathrm{T}} \mathbf{b}$$

September 25, 2018

э

#### Matrices (RHB §8.3) XII

If a and b are operated on by  $\hat{A}$  and  $\hat{B}$ :

$$\langle \hat{A} \mathbf{a} | \hat{B} \mathbf{b} 
angle = (\mathbf{A} \mathbf{a})^{\dagger} (\mathbf{B} \mathbf{b})$$
  
=  $\mathbf{a}^{\dagger} \mathbf{A}^{\dagger} \mathbf{B} \mathbf{b}$ 

For real vectors this becomes:

$$\langle \hat{A} \mathbf{a} | \hat{B} \mathbf{b} \rangle = (\mathbf{A} \mathbf{a})^{\mathrm{T}} (\mathbf{B} \mathbf{b})$$
  
=  $\mathbf{a}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{B} \mathbf{b}$ 

< ロ > < 同 > < 回 > < 回 >

September 25, 2018

## Matrices (RHB §8.3) XIII

#### Rotations

In 2D, on rotation by  $\theta$  anti-clockwise, the basis vectors  $\{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2\}$  transform into  $\{\hat{\mathbf{e}}'_1, \hat{\mathbf{e}}'_2\}$  which are given by:

$$\hat{\mathbf{e}}_1' = \cos\theta \,\hat{\mathbf{e}}_1 + \sin\theta \,\hat{\mathbf{e}}_2 \\ \hat{\mathbf{e}}_2' = -\sin\theta \,\hat{\mathbf{e}}_1 + \cos\theta \,\hat{\mathbf{e}}_2$$

These basis sets are *both* orthonormal basis sets of the vector space. The rotation operator  $\hat{R}$  is defined through its action on a basis vector:

$$\hat{\mathbf{e}}_j' = \hat{R}\hat{\mathbf{e}}_j = \sum_i R_{ij}\hat{\mathbf{e}}_i$$

This allows us to define the matrix R:

$$\mathbf{R} = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

## Matrices (RHB §8.3) XIV

#### **Orthogonal matrices**

The rotation matrix is an example of an orthogonal matrix as

$$\mathbf{R}^{\mathrm{T}}\mathbf{R} = \mathbf{I} = \mathbf{R}\mathbf{R}^{\mathrm{T}}.$$

#### Q: Show this.

The inverse of an orthogonal matrix is particularly easy to compute as from the above definition it follows that

$$\mathbf{R}^{-1} = \mathbf{R}^{\mathrm{T}}.$$

イロト イヨト イヨト イヨト

September 25, 2018

## Matrices (RHB §8.3) XV

As you have shown in the second exercise set, this kind of operator also preserves the lengths of vectors:

$$\langle \mathbf{a} | \mathbf{a} \rangle = \langle \hat{R} \mathbf{a} | \hat{R} \mathbf{a} \rangle$$

To show this you could first show that

$$\hat{R}\mathbf{a} = \sum_{i} \left(\sum_{i'} R_{ii'} a_{i'}\right) \mathbf{\hat{e}}_{i}$$

and then show that the R.H.S equals the L.H.S. But there is a faster way that uses a result we have demonstrated earlier:

$$\begin{split} \langle \hat{A} \mathbf{a} | \hat{B} \mathbf{b} \rangle &= (\mathbf{A} \mathbf{a})^{\mathrm{T}} (\mathbf{B} \mathbf{b}) \\ &= \mathbf{a}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{B} \mathbf{b} \end{split}$$

< 口 > < 同 > < 回 > < 回 > < 回 > <

September 25, 2018

#### Matrices (RHB §8.3) XVI

We have  $\hat{A} = \hat{B} = \hat{R}$  so we get

$$\langle \hat{R} \mathbf{a} | \hat{R} \mathbf{a} 
angle = \mathbf{a}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \mathbf{R} \mathbf{a}$$
  
=  $\mathbf{a}^{\mathrm{T}} \mathbf{I} \mathbf{a}$   
=  $\mathbf{a}^{\mathrm{T}} \mathbf{a} = \langle \mathbf{a} | \mathbf{a} \rangle$ .

Where we have used  $\mathbf{R}^{\mathrm{T}}\mathbf{R} = \mathbf{I}$ . This is much simpler a proof!

< ロ > < 同 > < 回 > < 回 >

September 25, 2018

## Matrices (RHB §8.3) XVII

#### Hermitian operators and matrices

A matrix A is said to be Hermitian iff:

$$\mathbf{A} = \mathbf{A}^{\dagger}.$$

Equivalently, an operator  $\hat{A}$  is said to be Hermitian iff:

$$\langle \mathbf{a} | \hat{A} \mathbf{b} \rangle = \langle \hat{A} \mathbf{a} | \mathbf{b} \rangle.$$

The equivalence of these definitions can be seen as follows:

$$\begin{split} \langle \mathbf{a} | \hat{A} \mathbf{b} \rangle &= \mathbf{a}^{\dagger} \mathbf{A} \mathbf{b} \\ &= \mathbf{a}^{\dagger} \mathbf{A}^{\dagger} \mathbf{b} \quad \text{because } \mathbf{A} = \mathbf{A}^{\dagger} \\ &= (\mathbf{A} \mathbf{a})^{\dagger} \mathbf{b} = \langle \hat{A} \mathbf{a} | \mathbf{b} \rangle. \end{split}$$

## Matrices (RHB §8.3) XVIII

#### **Unitary matrices**

This is a special kind of Hermitian matrix for which

 $\mathbf{U}^{-1} = \mathbf{U}^{\dagger}.$ 

We get the orthogonal matrices as a special cases of unitary matrices when the elements of  ${\bf U}$  are real.

These matrices also preserve the norms of vectors.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

September 25, 2018

## Outline of the Talk

- Goals of MT3
- 2 Vector Spaces
- 3 Norm of a vector
- 4 Gram–Schmidt Orthogonalization
- 5 Linear Operators
- 6 Matrices



Function Spaces & Fourier Transforms

<ロト <回ト < 国ト < 国ト < 国ト 三 国

#### Operations on matrices I

Now we define some operations on matrices. These will be:

- The trace of a matrix:  ${\rm Tr}\left( {\bf A} \right)$
- The determinant of a matrix: |A|
- The inverse of a matrix: A<sup>-1</sup>

All these operations can only be defined for square matrices.

< ロ > < 同 > < 回 > < 回 >

#### Operations on matrices II

#### The trace of a matrix

Tr (**A**) = 
$$\sum_{i=1}^{N} A_{ii} = A_{11} + A_{22} + \dots + A_{NN}.$$

Notice that the trace can only be defined for a square matrix.

Show that the trace is a linear operation. That is  $Tr (\mathbf{A} + \mathbf{B}) = Tr (\mathbf{A}) + Tr (\mathbf{B}) .$ Q: Also show that  $Tr (\mathbf{AB}) = Tr (\mathbf{BA}) .$ 

#### **Operations on matrices III**

#### The determinant of a matrix

$$\det(\mathbf{A}) \equiv |\mathbf{A}| = \begin{vmatrix} A_{11} & A_{12} & A_{13} & \dots & A_{1N} \\ A_{21} & A_{22} & A_{23} & \dots & A_{2N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ A_{M1} & A_{M2} & A_{M3} & \dots & A_{MN} \end{vmatrix}$$

The determinant is, if you will, the magnitude of a matrix. For a  $2\times 2$  matrix it is

$$\begin{vmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix} = A_{11}A_{22} - A_{12}A_{21}.$$

< ロ > < 同 > < 回 > < 回 >

#### Operations on matrices IV

For larger matrices we use *recursion* to define |A|:

- **Minor**: The minor  $M_{ij}$  of the element  $A_{ij}$  of **A** of dimension  $N \times N$  is the determinant of the  $(N-1) \times (N-1)$  matrix formed by removing the  $i^{\text{th}}$  row and  $j^{\text{th}}$  column of **A**.
- Cofactor:  $C_{ij} = (-1)^{i+j} M_{ij}$ .
- **Determinant**: Choose any row *i*, or column *j*:

$$\mathbf{A}| = \sum_{k=1}^{N} A_{ik} C_{ik}$$
$$= \sum_{k=1}^{N} A_{kj} C_{kj}$$

This is the Laplace expansion for the determinant.

## Operations on matrices V

## Properties of the determinant (Mostly without proof)

۲

$$\left|\mathbf{A}^{\mathrm{T}}\right| = \left|\mathbf{A}\right|$$

This means any theorem established for the rows also applies to the columns.

۲

$$\begin{split} |\mathbf{A}^*| &= |\mathbf{A}|^*\,, \;\; \text{and} \\ \left|\mathbf{A}^\dagger\right| &= |\mathbf{A}|^* \end{split}$$

• If any two rows (or columns) are interchanged

$$\mathbf{A}| = -|\mathbf{A}_{\mathbf{i}\leftrightarrow\mathbf{j}}|$$
 and the set of the set o

AJMisquitta (QMUL)

#### **Operations on matrices VI**

• If  $\mathbf{A}' = \lambda \mathbf{A}$ , then

$$\left|\mathbf{A}'\right| = \lambda^N \left|\mathbf{A}\right|.$$

- If any two rows or columns are equal then  $|\mathbf{A}| = 0$ .
- If a multiple of any row (or column) is added to another row (or column) then the determinant of the resulting matrix is unchanged. That is, if  $(\mathbf{A}')_{ij} = A_{ij} + \lambda A_{kj}$  then  $|\mathbf{A}'| = |\mathbf{A}|$ .

$$|\mathbf{A}\mathbf{B}| = |\mathbf{A}| |\mathbf{B}| = |\mathbf{B}\mathbf{A}|.$$

September 25, 2018

50 / 68

## **Operations on matrices VII**

We will use determinants in this course so check to see if you have understood how to manipulate them by showing that

$$|\mathbf{A}| = \begin{vmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -2 & 1 \\ 3 & -3 & 4 & -2 \\ -2 & 1 & -2 & -1 \end{vmatrix} = 0$$

The solution to this problem is given in RHB §8.9.1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

September 25, 2018

#### **Operations on matrices VIII**

The inverse of a matrix

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I} = \mathbf{A}\mathbf{A}^{-1}.$$

To construct  $A^{-1}$ :

- Construct the matrix C where  $C_{ik} = cofactor(A_{ik})$ .
- Now define the elements of A<sup>-1</sup>:

$$(\mathbf{A}^{-1})_{ik} = \frac{(\mathbf{C}^{\mathrm{T}})_{ik}}{|\mathbf{A}|}$$
$$= \frac{(\mathbf{C})_{ki}}{|\mathbf{A}|}$$

September 25, 2018

52/68

• Important: The inverse is not defined if  $|\mathbf{A}| = 0$ .

#### **Operations on matrices IX**

To prove that this definition does lead to an inverse we need the following result:

$$\sum_{k} C_{ki} A_{kj} = |\mathbf{A}| \,\delta_{ij}.$$

The proof of this is quite simple and can be found in RHB §8.10. Now we will use this to show that  $A^{-1}A = I$ :

$$\mathbf{A}^{-1}\mathbf{A})_{ij} = \sum_{k} (\mathbf{A}^{-1})_{ik} A_{kj}$$
$$= \sum_{k} \frac{(\mathbf{C})_{ki}}{|\mathbf{A}|} A_{kj}$$
$$= \frac{|\mathbf{A}|}{|\mathbf{A}|} \delta_{ij} = \delta_{ij}.$$

This proves the result.

AJMisquitta (QMUL)

< ロ > < 同 > < 回 > < 回 >

September 25, 2018

#### Operations on matrices X

#### Properties of the inverse

| • | $\left(\mathbf{A^{-1}}\right)^{-1} = \mathbf{A}$                                        |   |
|---|-----------------------------------------------------------------------------------------|---|
| ٠ | $\left(\mathbf{A}^{\mathrm{T}}\right)^{-1} = \left(\mathbf{A}^{-1}\right)^{\mathrm{T}}$ |   |
| • | $\left(\mathbf{A}^{\dagger} ight)^{-1}=\left(\mathbf{A}^{-1} ight)^{\dagger}$           |   |
| • | $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$                                   |   |
|   |                                                                                         | _ |

#### **Q**: Show that $|\mathbf{A}^{-1}| = |\mathbf{A}|^{-1}$ .

September 25, 2018

э

## Operations on matrices XI

#### **Eigenvectors and eigenvalues**

Consider an operator  $\hat{A}$  for which, for all  $\mathbf{x} \in V$ ,  $\hat{A}\mathbf{x} \in V$ , then it is possible that for some  $\mathbf{x}$ ,

$$\hat{A}\mathbf{x} = \lambda \mathbf{x}.$$

If  $x \neq 0$  then x is called an *eigenvector* or *eigenfunction* of  $\hat{A}$ , and  $\lambda$  is the corresponding *eigenvalue*.

eigen means proper or characteristic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

September 25, 2018

#### **Operations on matrices XII**

In matrix form, the eigenvalue equation is

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}.$$

Since  $\mathbf{x}' = \mu \mathbf{x}$  will also be an eigenfunction with the same eigenvalue, we use only normalized eigenfunctions, i.e.,

$$\langle \mathbf{x} | \mathbf{x} \rangle = \mathbf{x}^{\mathrm{T}} \mathbf{x} = 1.$$

**Notation** The eigenfunctions of the square matrix **A** will be denoted by  $\mathbf{x}^i$ , and eigenvalues by  $\lambda_i$ .

イロト イヨト イヨト イヨト

September 25, 2018

#### **Operations on matrices XIII**

**Practical methods for eigenvalues and eigenvectors** Write the eigenvalue equation as

(

$$\mathbf{D} = \mathbf{A}\mathbf{x} - \lambda \mathbf{I}$$
$$= (\mathbf{A} - \lambda \mathbf{I})\mathbf{x}$$
$$= \mathbf{B}\mathbf{x}$$

Where  $\mathbf{B} = \mathbf{A} - \lambda \mathbf{I}$ . Now if  $\mathbf{B}^{-1}$  exists, then we can multiply with this inverse on both sides to show that:

$$\mathbf{B}^{-1}\mathbf{0} = \mathbf{0} = \mathbf{B}^{-1}\mathbf{B}\mathbf{x} = \mathbf{x}.$$

This solution,  $\mathbf{x} = \mathbf{0}$  is known as the *trivial* solution.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

September 25, 2018

#### Operations on matrices XIV

On the other hand, if  $B^{-1}$  *does not exist* then we will find the more interesting solutions. For the inverse not to exist we must have

$$0 = |\mathbf{B}| = |\mathbf{A} - \lambda \mathbf{I}|.$$

This is known as the *characteristic equation* and it results in a polynomial of order N (the dimension of this space) in  $\lambda$ . This can be solved to yield N roots which will be the required eigenvalues.

See RHB §8.14 for more details and the following examples that we will also solve in class.

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

September 25, 2018

#### Operations on matrices XV

Some examples from RHB §8.14:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 1 & -3 \\ 3 & -3 & -3 \end{bmatrix}$$

Set up the characteristic equation:

$$0 = |\mathbf{A} - \lambda \mathbf{I}| \\ = \begin{vmatrix} 1 - \lambda & 1 & 3 \\ 1 & 1 - \lambda & -3 \\ 3 & -3 & -3 - \lambda \end{vmatrix}$$

(日)

#### **Operations on matrices XVI**

This leads to the polynomial equation for  $\lambda$ :

$$0 = (\lambda - 2)(\lambda - 3)(\lambda + 6).$$

Therefore the eigenvalues are

$$\lambda_1 = 2$$
$$\lambda_1 = 3$$
$$\lambda_1 = -6$$

To find the eigenvectors we need to solve for each *i*:

$$\mathbf{A}\mathbf{x}^i = \lambda_i \mathbf{x}^i.$$

September 25, 2018

60 / 68

A D b 4 A b

## Operations on matrices XVII

For the first eigenvalue this is

$$\mathbf{A}\mathbf{x}^1 = 2\mathbf{x}^1$$

If  $\mathbf{x}^1 = (a \ b \ c)^{\mathrm{T}}$  then we get

$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 1 & -3 \\ 3 & -3 & -3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 2 \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

This must be solved for a, b, and c to get a = b and c = 0, so  $\mathbf{x}^1 = (a \ a \ 0)^T$ , and this must be normalized to get  $\mathbf{x}^1 = \frac{1}{\sqrt{2}}(1 \ 1 \ 0)^T$ .

 $\mathbf{Q}$ : Find the two other eigenfunctions of  $\mathbf{A}$  and show that the three eigenfunctions are mutually orthogonal.

A D N A B N A B N A B

#### Operations on matrices XVIII

In this example, also from RHB §8.14.1 we see how to tackle the case when the eigenvalues are *degenerate*:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -2 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

The characteristic equation for this matrix leads to the polynomial:

$$0 = (4 - \lambda)(\lambda + 2)^2.$$

Therefore the eigenvalues are

$$\lambda_1 = 4 \quad \lambda_1 = -2 \quad \lambda_1 = -2$$

Q: How do we find the eigenfunction of this matrix?

| AJMisc     | uitta ( | OMU     | L) |
|------------|---------|---------|----|
| , 10111100 | antica  | ( and ) | -, |

A D N A B N A B N

September 25, 2018

## **Operations on matrices XIX**

Properties of the eigenvectors

The eigenvalues of an Hermitian matrix are real.

Outline of proof A matrix is Hermitian iff  $\mathbf{A} = \mathbf{A}^{\dagger}$ . Consider the eigenvalue equation for A:

$$\mathbf{A}\mathbf{x}^i = \lambda_i \mathbf{x}^i.$$

Take the adjoint of this equation to get

$$\begin{split} \mathbf{(x}^{i)}^{\dagger} \mathbf{A}^{\dagger} &= \lambda_{i}^{*} \mathbf{(x}^{i)}^{\dagger}, \quad \text{and therefore} \\ \mathbf{(x}^{i)}^{\dagger} \mathbf{A} &= \lambda_{i}^{*} \mathbf{(x}^{i)}^{\dagger} \end{split}$$

Now take the inner product with  $\mathbf{x}^i$  of both equations and subtract one from the other to show that  $\lambda_i = \lambda_i^*$ .

September 25, 2018

## Operations on matrices XX

Eigenvectors corresponding to different eigenvalues of an Hermitian matrix are orthogonal.

*Outline of proof* Start with two eigenvalue equations

$$\mathbf{A}\mathbf{x}^i = \lambda_i \mathbf{x}^i$$
 and  
 $\mathbf{A}\mathbf{x}^j = \lambda_j \mathbf{x}^j$ 

Take the adjoint of one of these and then the inner product with the other eigenfunction.

# Full proof in RHB §8.13.2.

September 25, 2018

#### **Operations on matrices XXI**

Some more important results that you should prove:

A matrix A is anti-Hermitian if  $A^{\dagger} = -A$ . Prove that the Q: eigenvalues of an anti-Hermitian matrix are purely imaginary.

Q: Prove that the eigenvalues of a unitary matrix have unit modulus.

Q: Given the eigenvalues and eigenfunctions of matrix A, find the corresponding eigenvalues and eigenfunctions of  $A^{-1}$ .

All of these have solutions in RHB.

#### **Operations on matrices XXII**

#### Change of basis : similarity transformation

We followed RHB §8.15 and RHB §8.16. Please see the examples in these sections.

## Outline of the Talk

- Goals of MT3
- 2 Vector Spaces
- 3 Norm of a vector
- 4 Gram–Schmidt Orthogonalization
- 5 Linear Operators
- 6 Matrices



Function Spaces & Fourier Transforms

<ロト <回ト < 国ト < 国ト < 国ト 三 国

#### Function Spaces & Fourier Transforms I

We mainly followed the 2016 lecture notes on these topics. But we also used RHB <sup>17.1</sup> and RHB <sup>17.2</sup> for orthogonal polynomials and the adjoint and Hermitian conjugate of operators.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

September 25, 2018