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Read this! I

These are not lecture notes!

These slides are merely an outline of what we will cover
in the lectures. Use them as a guide, solve the problems
indicated here, and follow-up on reading the material high-
lighted in the reference texts.
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Goals

Goals of MT3 I

Vector spaces
1 Vector spaces
2 Linear operators
3 Matrices
4 Basis functions
5 Function spaces
6 Fourier expansions (an example of a function space)

Differential equations
1 Ordinary differential equations
2 Green’s function methods
3 Partial differential equations

The Variational Principle
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VectorSpace

Vector Spaces I

Defn: A set of objects a, b, c, etc. is said to form a linear vector space
V if:

The set is closed under commutative and associative addition:

a+ b = b+ a

a+ (b+ c) = (a+ b) + c

The set is closed under multplication by a scalar, i.e.,
λa ∈ V ∀λ ∈ C.
Multplication by a scalar is both distributive and associative:

λ(a+ b) = λa+ λb

λ(µa) = (λµ)a.

There exists a null vector 0 s.t. a+ 0 = a.
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VectorSpace

Vector Spaces II

Multplication by the unit scalar leaves any vector unchanged:
1a = a.

∀a ∈ V ∃ −a s.t. a+ (−a) = 0.

See RHB §8.1 for more details.
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VectorSpace

Vector Spaces III

Linear dependencies
If @ αi 6= 0 s.t.

∑N
i αiai = 0 then the set {ai} of N vectors is said to

from a linearly independent set.

Dimension
In a space V, if there are no more than N linearly independent vectors
{ai} then the space is said to have dimension N .
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VectorSpace

Vector Spaces IV

Basis sets
If V is an N -dimensional vector space then any set of N linearly
independent vectors {ei} forms a basis for V.

If x is an arbitrary vector in V than the set {x, {ei}} must be linearly
dependent. I.e., we must have

N∑
i

αiei + βx = 0,

where not all αi = 0, and β 6= 0.
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VectorSpace

Vector Spaces V

Since β 6= 0, we can define xi = −αi/β giving

x =

N∑
i

xiei.

Q: Show that given a basis {ei}, the coefficients {xi} are
unique.

See RHB §8.1.1 for more details.
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Norm of a vector

The Norm I

Inner product
The inner product of two vectors results in a scalar 〈a|b〉 with the
properties
〈a|b〉 = 〈b|a〉∗, and
〈a|λb+ µc〉 = λ〈a|b〉+ µ〈a|c〉.

Q:
Show that:
〈λa+ µb|c〉 = λ∗〈a|c〉+ µ∗〈b|c〉

Q:
Show that:
〈λa|µb〉 = λ∗µ〈a|b〉
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Norm of a vector

The Norm II
Orthogonal vectors
a,b ∈ V are orthogonal iff 〈a|b〉 = 0.

iff = if and only if

Norm of a vector
‖a‖ =

√
〈a|a〉.

A normalized vector is one with has a unit norm. Any vector can be
normalized as follows:

a→ a

‖a‖
.

The inner product 〈a|a〉 can have any sign. If we restrict
it, as we will now do, to have 〈a|a〉 ≥ 0, then we get the
Euclidean, or positive semi-definite norm.
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Norm of a vector

The Norm III

Orthonormal basis
This is a basis set of orthogonal and normalised basis functions {êi}
that satisfies

〈êi|êj〉 = δij ,

where δij is the Kronecker delta function that is defined as

δij =

{
1, if i = j,

0, if i 6= j.
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Norm of a vector

The Norm IV
Components of a vector:
Any vector a ∈ V can be written as

a =

N∑
i

aiêi,

where the components of a are the {ai} which are defined as

ai = 〈êi|a〉

Q: Demonstrate this!

Q: Show that: 〈a|b〉 =
∑N

i=1 a
∗
i bi.

Compare this defn of the inner product with the dot product.
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Norm of a vector

The Norm V

What is the basis vectors are normalized but not orthogonal?
I.e., 〈êi|êj〉 = 1, but

〈êi|êj〉 =

{
1, if i = j,

Gij , if i 6= j.

Q: Show that 〈a|b〉 =
∑N

ij a
∗
iGijaj .

Q:
Show that if the norm of a vector is real, i.e, if ‖a‖ ∈ R, then
Gij = G∗ji.

See RHB §8.1.2 for more details.
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Gram–Schmidt Orthogonalization

Orthogonalization I

Given a basis {ei} of not necessarily normalization or orthogonalized
vectors, we can create an orthogonalized basis {ê′i} as follows:

ê′1 =
e1
‖e1‖

ê′2 =
e2 − 〈ê1|e2〉ê1
‖e2 − 〈ê1|e2〉ê1‖

ê′3 =
e3 − 〈ê1|e3〉ê1 − 〈ê2|e3〉ê2
‖e3 − 〈ê1|e3〉ê1 − 〈ê2|e3〉ê2‖

· · · = · · ·

See 2016 lecture notes for more details.
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Linear Operators

Linear Operators (RHB §8.2) I

A linear operator Â on a vector space V associates every vector x ∈ V
with another vector y ∈ V ′:

y = Âx,

such that
For a,b ∈ V and scalars λ, µ ∈ R,

Â(λa+ µb) = λÂa+ µÂb.

(Â+ B̂)a = Âa+ B̂b.
(ÂB̂)a = Â(B̂a).
Null operator: Ôa = 0.
Identity: Îa = a.
If ∃Â−1 s.t. ÂÂ−1 = Î = Â−1Â, then Â−1 is the inverse of Â and Â
is non-singular.
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Linear Operators

Linear Operators (RHB §8.2) II

V Â−→ V ′

{êi} {f̂j}
N M

x
Â−→ y

What is the action of Â on a basis function of V?
Â transforms êi into a linear combination of basis functions {f̂j} that
span space V ′:

Âêi =

M∑
j=1

Ajif̂j , i ∈ [1, N ].

Here the Aji are the scalars that determine the transformation.
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Linear Operators

Linear Operators (RHB §8.2) III

What is the action of Â on a vector of V?

x =

N∑
i=1

xiêi ∈ V

y =

M∑
j=1

yj f̂j ∈ V ′,

such that

y = Âx.

Q: Show that: yj =
∑N

i Ajixi.
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Linear Operators

Linear Operators (RHB §8.2) IV

yj =

N∑
i=1

Ajixi

This can be represented as


y1
y2
...
yM

 =


A11 A12 A13 . . . A1N

A21 A22 A23 . . . A2N
...

...
...

. . .
...

AM1 AM2 AM3 . . . AMN



x1
x2
x3
...
xN
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Linear Operators

Linear Operators (RHB §8.2) V

If we use the notation A to denote the M ×N object, then

y = Ax

This looks very similar to the operator form:

y = Âx.

But A is only a representation of the operator Â in the chosen basis
sets {êi} (for V) and {f̂j} (for V ′).

Q:
If we had used different basis sets then the terms in A
would change, but the dimensions of A would always be
M ×N . Explain why.
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Matrices

Matrices (RHB §8.3) I

Properties of linear ops in index notation

(Â+ B̂)a = Âa+ B̂a

becomes
N∑
j=1

(A+B)ijaj =

N∑
j=1

Aijaj +
N∑
j=1

Bijaj

As this must hold ∀a ∈ V we must have

(A+B)ij = Aij +Bij .

This defines matrix addition.
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Matrices

Matrices (RHB §8.3) II

(ÂB̂)a = Â(B̂a)

becomes

N∑
j

(AB)ijaj =

N∑
k

Aik(Ba)k

=

N∑
k

Aik

N∑
j

Bkjaj

=

N∑
j

(
N∑
k

AikBkj

)
aj .
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Matrices

Matrices (RHB §8.3) III

As this must hold ∀a ∈ V we must have

(AB)ij =

N∑
k

AikBkj .

This defines matrix multplication.
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Matrices

Matrices (RHB §8.3) IV

Similarly, the simplified version of multplication by a scalar:

(λÂ)a = λ(Âa)

implies
(λA)ij = λAij ,

which defines how matrices can be multplied by a scalar.

Examples are given in RHB §8.4.1 and RHB §8.4.2.

AJMisquitta (QMUL) MT3 September 25, 2018 29 / 68



Matrices

Matrices (RHB §8.3) V

(AB)ij =

N∑
k

AikBkj .

Let (AB)ij = Pij = (P)ij , so

P = AB

Q: What are the dimensions of P? See RHB §8.4.2.
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Matrices

Matrices (RHB §8.3) VI

Matrix multplication is associative

A(BC) = (AB)C.

Q: Prove it.

Is matrix multplication commutative?

P = AB
?
= BA = Q

Q:
We can consider the commutation only if A is M × N and
B is N ×M . Why? In this case, what are the dimensions of
P and Q?
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Matrices

Matrices (RHB §8.3) VII

Matrix multplication is not in general commutative

AB 6= BA

Q:
When will matrix multplication be commutative? When the
matrices are square? Diagonal? Any other case?

Matrix multplication is distributive under addition

(A+B)C = AC+BC.

Q: Prove this.
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Matrices

Matrices (RHB §8.3) VIII
Null matrix: 0

0A = 0 = A0

0+A = A = A+ 0

Identity matrix: I

IA = A = AI

I =


1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
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Matrices

Matrices (RHB §8.3) IX

Transpose: AT

(AT)ij = (A)ji

If A is M ×N then AT is N ×M .

Q: Prove that (AB)T = BTAT.
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Matrices

Matrices (RHB §8.3) X

Complex conjugate: A∗: (A∗)ij = (Aij)
∗

Hermitian conjugate or adjoint: A†

A† = (A∗)T = (AT)
∗
.

(A†)ij = [(A∗)T]ij

= (A∗)ji = (Aji)
∗.

Q: Prove that (AB)† = B†A†.

Q: Show that if A is real then A† = AT.
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Matrices

Matrices (RHB §8.3) XI

Notation
In general:

〈a|b〉 =
N∑
i=1

a∗i bi

=
[
a∗1 a∗2 . . . a∗N

]

b1
b2
...
bN


= a†b

For real vectors this becomes:

〈a|b〉 = aTb

AJMisquitta (QMUL) MT3 September 25, 2018 36 / 68



Matrices

Matrices (RHB §8.3) XII

If a and b are operated on by Â and B̂:

〈Âa|B̂b〉 = (Aa)†(Bb)

= a†A†Bb

For real vectors this becomes:

〈Âa|B̂b〉 = (Aa)T(Bb)

= aTATBb
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Matrices

Matrices (RHB §8.3) XIII
Rotations
In 2D, on rotation by θ anti-clockwise, the basis vectors {ê1, ê2}
transform into {ê′1, ê′2} which are given by:

ê′1 = cos θ ê1 + sin θ ê2

ê′2 = − sin θ ê1 + cos θ ê2

These basis sets are both orthonormal basis sets of the vector space.
The rotation operator R̂ is defined through its action on a basis vector:

ê′j = R̂êj =
∑
i

Rij êi

This allows us to define the matrix R:

R =

[
R11 R12

R21 R22

]
=

[
cos θ − sin θ
sin θ cos θ

]
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Matrices

Matrices (RHB §8.3) XIV

Orthogonal matrices
The rotation matrix is an example of an orthogonal matrix as

RTR = I = RRT.

Q: Show this.

The inverse of an orthogonal matrix is particularly easy to compute as
from the above definition it follows that

R−1 = RT.
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Matrices

Matrices (RHB §8.3) XV

As you have shown in the second exercise set, this kind of operator
also preserves the lengths of vectors:

〈a|a〉 = 〈R̂a|R̂a〉

To show this you could first show that

R̂a =
∑
i

(∑
i′

Rii′ai′

)
êi

and then show that the R.H.S equals the L.H.S. But there is a faster
way that uses a result we have demonstrated earlier:

〈Âa|B̂b〉 = (Aa)T(Bb)

= aTATBb
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Matrices

Matrices (RHB §8.3) XVI

We have Â = B̂ = R̂ so we get

〈R̂a|R̂a〉 = aTRTRa

= aTIa

= aTa = 〈a|a〉.

Where we have used RTR = I. This is much simpler a proof!
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Matrices

Matrices (RHB §8.3) XVII

Hermitian operators and matrices
A matrix A is said to be Hermitian iff:

A = A†.

Equivalently, an operator Â is said to be Hermitian iff:

〈a|Âb〉 = 〈Âa|b〉.

The equivalence of these definitions can be seen as follows:

〈a|Âb〉 = a†Ab

= a†A†b because A = A†

= (Aa)†b = 〈Âa|b〉.
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Matrices

Matrices (RHB §8.3) XVIII

Unitary matrices
This is a special kind of Hermitian matrix for which

U−1 = U†.

We get the orthogonal matrices as a special cases of unitary matrices
when the elements of U are real.
These matrices also preserve the norms of vectors.
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Operations on matrices

Operations on matrices I

Now we define some operations on matrices. These will be:

The trace of a matrix: Tr (A)

The determinant of a matrix: |A|
The inverse of a matrix: A−1

All these operations can only be defined for square matrices.
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Operations on matrices

Operations on matrices II
The trace of a matrix

Tr (A) =

N∑
i=1

Aii = A11 +A22 + · · ·+ANN .

Notice that the trace can only be defined for a square matrix.

Q:

Show that the trace is a linear operation. That is

Tr (A+B) = Tr (A) + Tr (B) .

Also show that

Tr (AB) = Tr (BA) .
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Operations on matrices

Operations on matrices III

The determinant of a matrix

det(A) ≡ |A| =

∣∣∣∣∣∣∣∣∣
A11 A12 A13 . . . A1N

A21 A22 A23 . . . A2N
...

...
...

. . .
...

AM1 AM2 AM3 . . . AMN

∣∣∣∣∣∣∣∣∣
The determinant is, if you will, the magnitude of a matrix. For a 2× 2
matrix it is ∣∣∣∣A11 A12

A21 A22

∣∣∣∣ = A11A22 −A12A21.
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Operations on matrices

Operations on matrices IV
For larger matrices we use recursion to define |A|:

Minor: The minor Mij of the element Aij of A of dimension
N ×N is the determinant of the (N − 1)× (N − 1) matrix formed
by removing the ith row and jth column of A.
Cofactor: Cij = (−1)i+jMij .
Determinant: Choose any row i, or column j:

|A| =
N∑
k=1

AikCik

=

N∑
k=1

AkjCkj

This is the Laplace expansion for the determinant.
AJMisquitta (QMUL) MT3 September 25, 2018 48 / 68



Operations on matrices

Operations on matrices V
Properties of the determinant
(Mostly without proof)

∣∣AT
∣∣ = |A|

This means any theorem established for the rows also applies to
the columns.

|A∗| = |A|∗ , and∣∣∣A†∣∣∣ = |A|∗
If any two rows (or columns) are interchanged

|A| = − |Ai↔j|
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Operations on matrices

Operations on matrices VI

If A′ = λA, then ∣∣A′∣∣ = λN |A| .

If any two rows or columns are equal then |A| = 0.

If a multiple of any row (or column) is added to another row (or
column) then the determinant of the resulting matrix is
unchanged. That is, if (A′)ij = Aij + λAkj then |A′| = |A|.

|AB| = |A| |B| = |BA| .
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Operations on matrices

Operations on matrices VII

We will use determinants in this course so check to see if you have
understood how to manipulate them by showing that

|A| =

∣∣∣∣∣∣∣∣
1 0 2 3
0 1 −2 1
3 −3 4 −2
−2 1 −2 −1

∣∣∣∣∣∣∣∣ = 0

The solution to this problem is given in RHB §8.9.1.
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Operations on matrices

Operations on matrices VIII

The inverse of a matrix

A−1A = I = AA−1.

To construct A−1:
Construct the matrix C where Cik = cofactor(Aik).
Now define the elements of A−1:

(A−1)ik =
(CT)ik
|A|

=
(C)ki
|A|

Important: The inverse is not defined if |A| = 0.
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Operations on matrices

Operations on matrices IX
To prove that this definition does lead to an inverse we need the
following result: ∑

k

CkiAkj = |A| δij .

The proof of this is quite simple and can be found in RHB §8.10.
Now we will use this to show that A−1A = I:

(A−1A)ij =
∑
k

(A−1)ikAkj

=
∑
k

(C)ki
|A|

Akj

=
|A|
|A|

δij = δij .

This proves the result.
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Operations on matrices

Operations on matrices X

Properties of the inverse

(A−1)
−1

= A

(AT)
−1

= (A−1)
T

(A†)
−1

= (A−1)
†

(AB)−1 = B−1A−1

Q: Show that
∣∣A−1∣∣ = |A|−1.
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Operations on matrices

Operations on matrices XI

Eigenvectors and eigenvalues
Consider an operator Â for which, for all x ∈ V , Âx ∈ V , then it is
possible that for some x,

Âx = λx.

If x 6= 0 then x is called an eigenvector or eigenfunction of Â, and λ is
the corresponding eigenvalue.

eigen means proper or characteristic.
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Operations on matrices

Operations on matrices XII

In matrix form, the eigenvalue equation is

Ax = λx.

Since x′ = µx will also be an eigenfunction with the same eigenvalue,
we use only normalized eigenfunctions, i.e.,

〈x|x〉 = xTx = 1.

Notation
The eigenfunctions of the square matrix A will be denoted
by xi, and eigenvalues by λi.
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Operations on matrices

Operations on matrices XIII

Practical methods for eigenvalues and eigenvectors
Write the eigenvalue equation as

0 = Ax− λI
= (A− λI)x
= Bx

Where B = A− λI. Now if B−1 exists, then we can multiply with this
inverse on both sides to show that:

B−10 = 0 = B−1Bx = x.

This solution, x = 0 is known as the trivial solution.
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Operations on matrices

Operations on matrices XIV

On the other hand, if B−1 does not exist then we will find the more
interesting solutions. For the inverse not to exist we must have

0 = |B| = |A− λI| .

This is known as the characteristic equation and it results in a
polynomial of order N (the dimension of this space) in λ. This can be
solved to yield N roots which will be the required eigenvalues.

See RHB §8.14 for more details and the following examples
that we will also solve in class.
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Operations on matrices

Operations on matrices XV

Some examples from RHB §8.14:

A =

1 1 3
1 1 −3
3 −3 −3


Set up the characteristic equation:

0 = |A− λI|

=

∣∣∣∣∣∣
1− λ 1 3
1 1− λ −3
3 −3 −3− λ

∣∣∣∣∣∣
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Operations on matrices

Operations on matrices XVI

This leads to the polynomial equation for λ:

0 = (λ− 2)(λ− 3)(λ+ 6).

Therefore the eigenvalues are

λ1 = 2

λ1 = 3

λ1 = −6

To find the eigenvectors we need to solve for each i:

Axi = λix
i.
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Operations on matrices

Operations on matrices XVII
For the first eigenvalue this is

Ax1 = 2x1

If x1 = (a b c)T then we get1 1 3
1 1 −3
3 −3 −3

ab
c

 = 2

ab
c


This must be solved for a, b,and c to get a = b and c = 0, so
x1 = (a a 0)T, and this must be normalized to get x1 = 1√

2
(1 1 0)T.

Q: Find the two other eigenfunctions of A and show that the
three eigenfunctions are mutually orthogonal.
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Operations on matrices

Operations on matrices XVIII
In this example, also from RHB §8.14.1 we see how to tackle the case
when the eigenvalues are degenerate:

A =

1 0 3
0 −2 0
3 0 1


The characteristic equation for this matrix leads to the polynomial:

0 = (4− λ)(λ+ 2)2.

Therefore the eigenvalues are

λ1 = 4 λ1 = −2 λ1 = −2

Q: How do we find the eigenfunction of this matrix?
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Operations on matrices

Operations on matrices XIX
Properties of the eigenvectors

The eigenvalues of an Hermitian matrix are real.

Outline of proof
A matrix is Hermitian iff A = A†. Consider the eigenvalue equation for
A:

Axi = λix
i.

Take the adjoint of this equation to get

(xi)
†
A† = λ∗i (x

i)
†
, and therefore

(xi)
†
A = λ∗i (x

i)
†

Now take the inner product with xi of both equations and subtract one
from the other to show that λi = λ∗i .
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Operations on matrices

Operations on matrices XX

Eigenvectors corresponding to different eigenvalues of an
Hermitian matrix are orthogonal.

Outline of proof
Start with two eigenvalue equations

Axi = λix
i and

Axj = λjx
j

Take the adjoint of one of these and then the inner product with the
other eigenfunction.

Full proof in RHB §8.13.2.
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Operations on matrices

Operations on matrices XXI
Some more important results that you should prove:

Q:
A matrix A is anti-Hermitian if A† = −A. Prove that the
eigenvalues of an anti-Hermitian matrix are purely imagi-
nary.

Q: Prove that the eigenvalues of a unitary matrix have unit
modulus.

Q: Given the eigenvalues and eigenfunctions of matrix A, find
the corresponding eigenvalues and eigenfunctions of A−1.

All of these have solutions in RHB.

AJMisquitta (QMUL) MT3 September 25, 2018 65 / 68



Operations on matrices

Operations on matrices XXII

Change of basis : similarity transformation
We followed RHB §8.15 and RHB §8.16. Please see the examples in
these sections.
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Function Spaces & Fourier Transforms

Function Spaces & Fourier Transforms I

We mainly followed the 2016 lecture notes on these topics. But we
also used RHB §17.1 and RHB §17.2 for orthogonal polynomials and
the adjoint and Hermitian conjugate of operators.
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