SPA5218 Mathematical Techniques 3 Exercise Sheet 9

1. Show that the integral

$$
J=\int_{x_{1}}^{x_{2}} f\left(y, y_{x}, x\right) \mathrm{d} x
$$

with $f=y(x)$ has no extreme values.
Now choose

$$
f\left(y, y_{x}, x\right)=f_{1}(x, y)+f_{2}(x, y) y_{x} .
$$

Show that the Euler equation leads to

$$
\frac{\partial f_{1}}{\partial y}-\frac{\partial f_{2}}{\partial x}=0
$$

2. By extremizing the integral

$$
I=\int_{t_{1}}^{t_{2}} L(x, \dot{x}, t) \mathrm{d} t
$$

under variations of the paths $x(t)$ subject to the condition that $\delta x\left(t_{1}\right)=\delta x\left(t_{2}\right)=0$, derive the Euler-Lagrange equation

$$
\frac{\partial L}{\partial x}=\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{x}} .
$$

Show that this equation can be re-written in the form

$$
\frac{\partial L}{\partial t}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(L-\dot{x} \frac{\partial L}{\partial \dot{x}}\right) .
$$

3. The action for a particle of mass m moving in one dimension is

$$
S=\int L(x, \dot{x}, t) \mathrm{d} t=\int\left(\frac{1}{2} m \dot{x}^{2}-k x^{2}\right) \mathrm{d} t
$$

Show that the Euler-Lagrange equation gives the Newtonian equation of motion. Find the solution which obeys the boundary condition $x(t=0)=A, \dot{x}(t=0)=0$.
Here, L is the Lagrangian and S is the action. This is what Feynman talks about in the lecture on the Principle of Least Action (which I hope you have read). Hamilton's principle states that for the physical system the action is extremized.

