SPA5218 Mathematical Techniques 3 Exercise Sheet 8

1. Solve the following sets of differential equations:
(a)

$$
\frac{\partial P(x, t)}{\partial x}+x=0, \quad \frac{\partial P(x, t)}{\partial t}=t .
$$

(b)

$$
\frac{\partial U(x, y)}{\partial x}=U(x, y), \quad \frac{\partial U(x, y)}{\partial y}=y U(x, y)
$$

(c)

$$
\frac{\partial R(x, t)}{\partial x}=t, \quad \frac{\partial R(x, t)}{\partial t}-\frac{R(x, t)}{t}=0, \quad \text { where } R(0, t)=3 t
$$

2. In two dimensions, a point charge $+Q$ is placed at the origin. The electric potential $V(x, y)$ is found to satisfy :

$$
\frac{\partial V(x, y)}{\partial x}=\frac{-Q x}{x^{2}+y^{2}}, \quad \frac{\partial V(x, y)}{\partial y}=\frac{-Q y}{x^{2}+y^{2}} .
$$

Find the electric potential as a function of the coordinates x and y.
3. The wave equation describing the transverse vibrations of a stretched membrane under tension T and having a uniform surface density ρ is

$$
T\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=\rho \frac{\partial^{2} u}{\partial t^{2}} .
$$

Find a separable solution of the form $u(x, y, t)=X(x) Y(y) S(t)$ appropriate to a membrane stretched on a frame of length a and width b, showing that the natural angular frequencies of such a membrane are given by

$$
\omega^{2}=\frac{\pi^{2} T}{\rho}\left(\frac{n^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}\right),
$$

where n and m are any positive integers. You may assume that each of $X^{\prime \prime} / X, Y^{\prime \prime} / Y$ and $S^{\prime \prime} / S$ is a different constant where ${ }^{\prime}$ denotes partial differentiation with respect to the appropriate variable $(x, y$ or $t)$.

