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Question 1
(a) Suppose, for the purposes of a rough calculation, that the Milky Way galaxy contains 1011 stars
(and nothing else), each weighing one solar mass on average, and each composed entirely of hydrogen
(not unreasonable for an order-of-magnitude estimate). Suppose further that the Milky Way is a
typical galaxy, and that each cubic megaparsec of space contains 1 galaxy. On average, what volume
is occupied by a single hydrogen atom?

The number of hydrogen atoms per cubic Mpc is (total mass)/(hydrogen-atom mass),

N(H) = 1011 ×M�/mH

= 1011 × 1.99× 1030 kg/1.66× 10−27 kg = 1.199× 1068

and the volume occupied by one atom is (1/N(H)) Mpc−3 – i.e., 8.34 × 10−69 Mpc−3, or, in more
sensible units,

8.34× 10−69 × (3.086× 1022)3 m−3 = 0.25 m−3

(since 1 Mpc = 3.086× 1022 m). [3]
[Very roughly speaking, on average there’s of order one atom per cubic metre in the local universe (as
compared with roughly one atom per cubic cm in interstellar space in the Galaxy).]

(b) If the age of the Universe is 1.4 × 1010 years, estimate the volume of the observable universe.
(Remember, this is intended to be a rough calculation, so the only extra information you should need
to make this estimate is the speed of light.)

If the age of the universe is t0, we can see to a distance of something like c× t0:

1.4× 1010 × (365.25× 24× 60× 60)× 3.00× 108 = 1.325× 1026 m;

that is, a volume of 9.75× 1078 m3, or, in more sensible units, 3.32× 1011 Mpc3. [2]
[The actual size of the observable universe is not simply ct0, but depends on the detailed cosmological
model. In general, the radius of the observable universe is somewhat larger than the simple estimate
(by about a factor of 2), because the universe expanded while the light traveled across is. An alterna-
tive way of looking at this is to note that we see distant objects where they were, not where they are
(and they’re now further away).]

(c) The Standard EuroBeach is 1km long, 10m across, and 1m deep; and the European Standard
Sandgrain occupies 1 cubic mm. Which is the larger number: the number of galaxies in the observable
universe, or the number of grains of sand on a beach? What about the number of stars compared to
the number of sandgrains?

The volume of the Eurobeach is 1000× 10× 1 = 104 m3;
the volume occupied by the Standard Sandgrain is 1 mm3 = 10−9 m3;
whence the number of grains on the beach is 104/10−9 = 1013.

Taking the volume of the observable universe as 3.32 × 1011 Mpc3 (from above), then if there is
one galaxy Mpc−3, and 1011 stars in a galaxy (as stated in part (a)), then there are 3.32× 1022 stars
in the observable Universe.



So – very roughly speaking:

• the number of stars in a galaxy is about the same as the number of galaxies in the universe;

• there are more sandgrains on a beach than stars in a galaxy (or galaxies in the universe);

• but there are many, many fewer sandgrains on a beach – or, for that matter, on all the beaches
of the world combined – than there are stars in the observable universe. [3]

[You’ll see that this is a very simple – indeed, almost trivial – calculation; and yet not so long ago it
was “announced” in a press release:

http://news.bbc.co.uk/1/hi/sci/tech/3085885.stm

Try this Google search:

http://www.google.co.uk/search?q=simon+driver+stars+in+the+universe

to see the astonishing amount of media coverage this ”discovery” attracted!]

Question 2
As discussed in lectures, X-ray emitting intergalactic gas in clusters of galaxies can be used to estimate
M(r), the total cluster mass within some radius r. This involves combining the equation of hydrostatic
equilibrium for the gas,
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(where p(r), ρ(r), and T (r) are the pressure, density, and temperature at radius r, m is the mean
particle mass, and k is Boltzmann’s constant).
By differentiating equation (2), and using equation (1), derive equation (3).
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d
dr

[
ρ(r)kT (r)

m

]
=

GM(r)ρ(r)
r2

kT (r)
m

dρ(r)
dr

+
kρ(r)

m

dT (r)
dr

=
GM(r)ρ(r)

r2

Rearranging, and reusing eqtn.2,
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Question 3
By expressing the lengths a and b in terms of the angles β and θ, show that the observed angular
displacement in this generalized case is given by. . .

The angles in this geometry are small (i.e., sin(x) ' tan(x) ' x, when x is measured in radians),
so
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QED [5]

(b) Use the above equation to obtain an estimate the angular deflection of a distant star whose position,
in the absence of gravitational lensing, is exactly on the limb of the Sun. Assume that the Sun’s distance
is 1 Astronomical Unit, and that the angular deflection is small compared to the Sun’s angular radius
of 15′ (which, for the purposes of this question, can be treated as a ‘small angle’).

For a “distant” star, dLS >> dOL and so
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.

We don’t know β, only θ (the “position, in the absence of gravitational lensing, is exactly on the
limb of the Sun”), but since “the angular deflection is small compared to the Sun’s angular radius”,
1/θ ' 1/β. Our equation for the deflection is therefore
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]
with dOL = 1 AU and β = 15′ = (15/60)× (π/180) radians:
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= 9.0455× 10−6 radians = 1.87′′

[5]


