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You may assume the following:

The symbols used in all questions have the following meaning:

M is the stellar mass m(r) is the mass interior to radius r
R is the stellar radius L the luminosity
Teff the effective temperature of a star P is the pressure
ρ is the density T is the temperature
κ is the opacity per unit mass ε the rate of energy production per unit mass
µ denotes the mean molecular weight γ is the ratio of specific heats
R is the gas constant c is the speed of light
G is the gravitational constant σ is the Stefan-Boltzmann constant
a is Stefan’s radiation constant X, Y , Z are the mass fractions of H, He and heavy elements

Note the relation σ = ac/4.

You may assume L = 4πR2Frad, and Frad is given by

Frad = −4ac

3

T 3

κρ

dT

dr
.

The central density, ρc, central temperature, Tc, and central pressure, Pc, of a polytrope of index
n are:

ρc = an
3M

4πR3
, Tc = bn

µGM

RR
, Pc = cn

GM2

R4
,

where an, bn and cn are constants.

The apparent magnitude, mapp, absolute magnitude, Mabs and distance in parsecs are related by
mapp = Mabs + 5 log10 d− 5.

The following rounded numerical values, all in S.I. units, may be assumed throughout the paper.

c = 3× 108, G = 7× 10−11, σ = 6× 10−8, M� = 2× 1030, R� = 7× 108, L� = 4× 1026.

You may also assume that 1 year is 3× 107 seconds.
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SECTION A Answer ALL questions in Section A

Question A1

A CCD image of a region of the sky containing stars S1 and S2 was obtained. Star S1 is known
to have an absolute magnitude of M1 = 12 and a parallax of 0.01 arcsec.
(i) State the apparent magnitude of star S1.
(ii) S1 gave a photon count of 12500 and S2 a photon count of 25000 during the same time
interval. State the apparent magnitude of S2.
(iii) Both stars lie on the main sequence in the H-R diagram, which may be assumed to be a
straight line of slope 5. The effective temperature of S2 is twice that of S1. State the absolute
magnitude of S2.

[10 marks]

Question A2

(i) Show that for a fully ionised gas consisting of atomic hydrogen, helium and 16
8 O only, the mean

molecular weight, µ, is given by

µ =
16

20X + 12− 3Z
.

(ii) After arriving at the main sequence, a star consists of H, He and 16
8 O, and is of uniform

chemical composition with X = 0.70 and Y = 0.28. As the star evolves, hydrogen is converted to
helium, so that X and Y change. Calculate the change in µ between the initial state and when
Y has increased to 0.35.

[10 marks]

Question A3

Consider a group of homogeneous stars. Each star in the group has the same chemical compo-
sition and is composed of an ideal gas. Energy is generated by the CNO cycle with ε = εCNOρT

17,
where εCNO is a constant. All energy is transported by radiation, and the main opacity is due to
electron scattering so that κ is constant.
(i) Show that

R ∝M0.8.

(ii) Also show that
L ∝M3.

(iii) Obtain the slope of the line in an H-R diagram (log10 L versus log10 Teff) that these stars lie
on.

[10 marks]

Turn over
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Question A4

The temperature profile, T (r), in a polytropic star composed of an ideal gas is

T (r) = Tcθ(ξ),

where Tc is the central temperature, ξ = r/α where α is a constant, and θ(ξ) is the solution to
the Lane-Emden equation

1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn

with boundary conditions θ(0) = 1 and dθ/dξ = 0 at ξ = 0. The constant n is the polytropic index.
Consider a polytropic star with n = 0.

(i) Show by direct integration of the Lane-Emden equation that

θ(ξ) = 1− ξ2

6
.

(ii) Deduce the value of ξ at the surface of the star.
(iii) The central temperature of the star is Tc = 1× 108 K. Find the temperature at a distance from
the centre corresponding to 40% of the stellar radius.

[10 marks]

Question A5

The gravitational binding energy, Ω, of a spherically symmetric star is given by

Ω = −G
∫ M

0

m(r) dm

r
,

where m(r) is the mass interior to radius r.

(i) Consider a stellar model with uniform density (ρ = constant). Show that the gravitational
binding energy of a star of mass M and radius R is given by

Ω = −3

5

GM2

R
.

(ii) Using the equation of hydrostatic equilibrium, dP/dr = −Gm(r)ρ(r)/r2, show that the pres-
sure profile, P (r), inside the star of uniform density is

P (r) =
3GM2

8πR6
(R2 − r2).

(iii) Show that
Ω = −3

∫
V
PdV,

where V is the volume of the star.

[10 marks]
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SECTION B Answer TWO questions from Section B

Question B1

a) By considering the forces acting on a volume element, show that for a spherically symmetric
star to be in hydrostatic equilibrium the following expression must apply:

dP

dr
= −Gm(r)ρ

r2
.

[6 marks]

Consider a hypothetical star of mass M and radius R, for which the density profile is rep-
resented by ρ(r) = ρc (1− r/R) .

b) Show that m(r), the mass interior to r, can be written as

m(r) =
4

3
πr3ρc

(
1− 3r

4R

)
.

[3 marks]

c) Show that the mean density of the star is given by ρc/4.

[2 marks]

d) Given that the pressure is zero when r = R, show that the central Pc is given by:

Pc =
5GM2

4πR4
.

[5 marks]

e) The star is composed of an ideal gas with equation of state P = R
µ
ρT . Show that the central

temperature is

Tc =
5µ

12R
GM

R
.

[2 marks]

f) The energy generation rate per unit mass for the PP-chain is given by
εpp = 3× 10−37X2ρT 4 J Kg−1 s−1, and that generated by the CNO-cycle is given by
εCNO = 8 × 10−118XZρT 16 J Kg−1 s−1. Assuming that the mass-radius relation for the
hypothetical star described above obeys the relation R∗ = R�(M∗/M�)3/4, determine the
mass of the star for which the energy generation rate per unit mass at its centre has equal
contributions from the PP-chain and the CNO cycle. You should assume that R/µ = 104,
and that the mass fractions of hydrogen and heavy elements are X = 0.98 and Z = 0.02,
respectively.

[7 marks]

Turn over



Page 6 SPA7023P/SPA7023U (2018)

Question B2

a) A star is in hydrostatic equilibrium,
dP

dr
= −Gm(r)

r2
ρ(r),

where m(r) is the mass interior to radius r. The gravitational binding energy is defined by

Ω = −G
∫ M

0

m dm

r
.

Using integration by parts, show that

Ω = −3
∫
V
PdV,

where V is the spherical volume occupied by the star.

[8 marks]

b) The star is composed of classical particles. For a gas of classical particles, pressure P
and internal energy per unit volume u are related by u = 3P/2, a relation that you can use
without proof. Show that

Ω = −2U,

where U is the total thermal energy of the star. Write down the total energy of the star.
Before arriving at the main sequence, the star is contracting slowly under its own gravity.
Show that half of the gravitational energy that is released during the contraction is radiated
away, and the other half goes to increase the internal energy of the gas.

[5 marks]

c) The star of mass M contracts due to gravity, deriving its energy only from the change in its
gravitational binding energy. The energy is transported outwards by convection, so that the
star can be described by a polytropic model with polytropic index n = 3/2. The gravitational
binding energy for a star of radius R and polytropic index n is given by

Ω = − 3GM2

(5− n)R
.

The virial theorem holds, and so you can assume that half the gravitational energy released
is radiated away. Hence, show that the luminosity of the star at time t is

L = −3

7

GM2

R2(t)

dR

dt
.

[4 marks]

d) The star may be assumed to evolve with effective temperature, Teff , remaining constant.
Show that the time, t1, taken by such a star to evolve from a large radius to some smaller
radius, R1, is given by

t1 =
GM2

7L1R1

,

where L1 is the luminosity when the star has radius R1.

[8 marks]
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Question B3

According to Pauli’s exclusion principle, at most two electrons can occupy a given energy state,
and each particular energy state occupies volume h3 in the 6-dimensional space of coordinates
and momenta, where h is Planck’s constant.

a) In a degenerate gas all the electron states are filled up to a threshold momentum, pF, and
none above this value are occupied. Show that the number density of electrons for which
the momentum p is in the interval (p, p+ dp) is

ne(p)dp =
8πp2

h3
dp,

when p ≤ pF. Show that the total electron number density (i.e. integrated over all possible
momenta), is

ne =
8π

3h3
p3F.

[5 marks]

b) Show that when the pressure P is dominated by the electron pressure, and the electrons
are moving with speeds comparable to the speed of light, c,

P =
2πc

3h3
p4F.

You may use the general expression

P =
1

3

∫ ∞
0

v p n(p) dp,

where n(p) dp is the number density of particles with momentum in the interval (p, p + dp),
and v is their velocity.

[4 marks]

c) Show that in a completely ionised gas of a given chemical composition, the electron number
density, ne, is proportional to the mass density, ρ.

[4 marks]

d) Show that in a stellar core where the pressure P is dominated by the pressure of the
degenerate relativistic electrons, the pressure and density are related by a polytropic law

P = Kρ4/3.

[6 marks]

e) Show that the degenerate electrons become relativistic when

ne �
(
mec

h

)3

,

where me is the electron mass.

[6 marks]

Turn over
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Question B4

a) The equation of state for an adiabatic gas can be written as P = Kργ, and hence the
adiabatic exponent γ can be defined as

γ =

(
∂ lnP

∂ ln ρ

)
S

,

where subscript S indicates that the partial derivative is taken at constant entropy, i.e.
without any heat exchange. Assuming that the equation of state of an ideal gas, P = R

µ
ρT ,

also applies show that (
∂ lnT

∂ lnP

)
S

=
γ − 1

γ
.

[3 marks]

b) Derive the Schwarzschild criterion for the onset of convection in an ideal gas, namely

d lnT

d lnP
>
γ − 1

γ
,

stating clearly any assumptions which are used.

[11 marks]

c) When computing the structure of a star, it is necessary to determine the temperature gra-
dient at each point in the model. Provide a brief explanation of how this is done in practice,
and provide arguments to justify on physical grounds the approach that you have outlined.

[4 marks]

d) In a region of convective instability near the surface of a solar-type star of total mass M , the
temperature and pressure are related approximately by the expression P = KT 5/2. Show
that the temperature gradient for an ideal gas in hydrostatic equilibrium in this convection
zone is given by

dT

dr
= −2Gm(r)µ

5Rr2
.

Further, assuming that the mass in the convection zone is small compared to M , show that
at a depth h measured from the top of the convection zone, the temperature is approxi-
mately given by

T = TS +
2GMµ

5RR2
h,

when h is small compared to R and TS is the temperature at the top of the convection zone.

[7 marks]

End of Paper


