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1 Functions of Several Variables

1.1 Introduction

Since we live in a three-dimensional world, in applied mathematics we are interested in functions which
can vary with any of the three space variables x, y, z and also with time t. For instance, if the function f
represents the temperature in this room, then f depends on the location (x, y, z) at which it is measured
and also on the time t when it is measured, so f is a function of the independent variables x, y, z and t,
i.e. f(x, y, z, t).

1.2 Geometric Interpretation

For a function of two variables, f(x, y), consider (x, y) as defining a point P in the xy-plane. Let the value
of f(x, y) be taken as the length PP ′ drawn parallel to the z-axis (or the height of point P ′ above the
plane). Then as P moves in the xy-plane, P ′ maps out a surface in space whose equation is z = f(x, y).
Example: f(x, y) = 6− 2x− 3y
The surface z = 6− 2x− 3y, i.e. 2x+ 3y + z = 6, is a plane
which intersects the x-axis where y = z = 0, i.e. x = 3;
which intersects the y-axis where x = z = 0, i.e. y = 2;
which intersects the z-axis where x = y = 0, i.e. z = 6.
Example: f(x, y) = x2 − y2

In the plane x = 0, there is a maximum at y = 0; in the plane y = 0, there is a minimum at x = 0. The
whole surface is shaped like a horse’s saddle; and the picture shows a structure for which (0, 0) is called
a saddle point.

-3
-2

-1
0

1
2

3
x -3

-2
-1

0
1

2
3

y

-10
-8
-6
-4
-2
0
2
4
6
8

10

2



1.2.1 Plane polar coordinates

Since the variables x and y respresent a point in the plane, we can express that point in plane polar
coordinates simply by substituting the definitions:

x = r cos θ y = r sin θ.

Example: f(x, y) = x2 + y2

The surface z = x2 + y2 may be drawn most easily by first converting into plane polar coordinates.
Substituting x = r cos θ and y = r sin θ gives z = r2. The surface is symmetric about the z-axis and
its cross-section is a parabola. [Check with the original function and the plane y = 0.] Thus the whole
surface is a paraboloid (a bowl).
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Another way to picture the same surface is to do as map-makers or weather forecasters do and draw
contour lines (or level curves) – produces by taking a section, using a plane z = const. and projecting it
onto the xy-plane. For z = x2 + y2 as above, the contour lines are concentric circles.

1.3 Partial Differentiation

Remember the derivative(!):

f(x)

s

x x+ δx

f(x)

f(x+ δx)
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For a function f(x) that depends on a single variable, x, the ordinary derivative is

df
dx

= lim
δx→0

f(x+ δx)− f(x)
δx

and gives the slope of the curve y = f(x) at the point x.
Example: f(x) = 3x4 + sinx

df
dx

= 12x3 + cosx.

For a function f that depends on several variables x, y, . . . we can differentiate with respect to each
of these variables, keeping the others constant. This process is called partial differentiation (partial
derivatives).
Example: f(x, y) = yx4 + sinx
We treat y as a constant as we did 3 for the f(x) above, and have

∂f

∂x
= 4yx3 + cosx.

The formal definition (for a function of x and y) is

∂f

∂x
= lim

δx→0

f(x+ δx, y)− f(x, y)
δx

and it gives the slope of a slice y =constant of the surface z = f(x, y).
To find a partial derivative we hold all but one of the independent variables constant and differentiate
with respect to that one variable using the ordinary rules for one-variable calculus.
Notation:
The partial derivative of f with respect to x is denoted by ∂f/∂x or by fx.
Example: Calculate the partial derivatives of the functions:

(a) f(x, y) = x2 + 2xy2 + y3;

(b) f(x, y, z) = xz + eyz + sin (xy).

Solution:

(a) Holding y constant gives ∂f/∂x = 2x+ 2y2 + 0.
Holding x constant gives ∂f/∂y = 0 + 4xy + 3y2.

(b) Holding both y and z constant gives fx = z + 0 + y cos (xy).
Holding both x and z constant gives fy = 0 + zeyz + x cos (xy).
Holding both x and y constant gives fz = x+ yeyz + 0.
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1.3.1 Second-order partial derivatives

For f(x, y) we can form ∂f/∂x and ∂f/∂y. Each of these can then be differentiated again with respect
to x or y to form the second-order derivatives

∂

∂x

(
∂f

∂x

)
=
∂2f

∂x2
= fxx;

∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
= fxy;

∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y
= fyx;

∂

∂y

(
∂f

∂y

)
=
∂2f

∂y2
= fyy.

fxy and fyx are called mixed derivatives.
Example: If f(x, y) = x4y2 − x2y6 then

∂f

∂x
= 4x3y2 − 2xy6

∂f

∂y
= 2x4y − 6x2y5

∂2f

∂x2
= 12x2y2 − 2y6

∂2f

∂y∂x
= 8x3y − 12xy5

∂2f

∂y2
= 2x4 − 30x2y4

∂2f

∂x∂y
= 8x3y − 12xy5

Note that in this example fxy = fyx and this is true in general.

1.3.2 The Mixed Derivatives Theorem

The Mixed Derivative Theorem states that if fxy and fyx are continuous then fxy = fyx.
Thus to calculate a mixed derivative we can calculate in either order.
[Think about calculating ∂/∂x (∂f/∂y) if f(x, y) = xy + 1/(sin (y2) + ey).]
For third-order derivatives the mixed derivatives theorem gives fxxy = fxyx = fyxx.

1.3.3 Partial differential equations

Just as we can use ordinary derivatives to write down a differential equation for a function we don’t
know:

d2f

dx2
+ 3x

df
dx

+ f(x) = 0,

5



for many real-world physical situations, we are working in three-dimensional space or four-dimensional
space-time, so the equations we need will be partial differential equations.

Quantum mechanics The wave-function describing how electrons behave, ψ(x, y, z, t), is governed by
Schrödinger’s equation:

ih̄
∂ψ

∂t
= − h̄2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
+ V (x, y, z)ψ.

Heat transfer The heat equation for the way the temperature changes in a conducting solid is

∂T

∂t
= κ

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
.

All of the partial differential equations above will work better in a vector form: we will see how this sort
of shorthand works later on.

1.4 The Chain Rule

Remember the chain rule for ordinary differentiation:

df
dt

=
df
dx

dx
dt
.

This applies when f is a function of x and x depends on t.
We now generalise this result for a function of several variables. For f(x, y), suppose x and y depend on
t. The chain rule for a function of two variables is:

df
dt

=
(
∂f

∂x

)
dx
dt

+
(
∂f

∂y

)
dy
dt
.

Note that f depends on x and y [so partial derivatives ∂f/∂x, ∂f/∂y] whilst x and y depend on the
single variable t [so ordinary derivatives dx/dt, dy/dt]. Thus f depends on t and has the derivative
df/dt given above.
Example: If f(x, y) = x2 + y2, where x = sin t, y = t3, then

df
dt

=
(
∂f

∂x

)
dx
dt

+
(
∂f

∂y

)
dy
dt

= 2x cos t+ 2y3t2 = 2 sin t cos t+ 6t5.

Of course in this simple example we can check the result by substituting for x and y before differentiation
to give f(t) = (sin t)2 + (t3)2, so df

dt = 2 sin t cos t+ 6t5 as before.
The chain rule extends directly to functions of three or more variables.

1.4.1 Extended chain rule

For f(x, y) suppose that x and y depend on two variables s and t. Then changing either s or t changes
x and y, which in turn changes f . If we write

F (s, t) = f(x(s, t), y(s, t))
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then the partial derivatives ∂F
∂s and ∂F

∂t are produced according to the extended chain rule

∂F

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
,

∂F

∂t
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
.

Example: f(x, y) = x2y3, where x = s− t2, y = s+ 2t. Then

∂f

∂x
= 2xy3 and

∂f

∂y
= 3x2y2

and
∂F

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
= 2xy3 + 3x2y2 = (s− t2)(s+ 2t)2(5s+ 4t− 3t2)

∂F

∂t
=

∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
= 2xy3(−2t) + 3x2y2(2)

= 2(s− t2)(s+ 2t)2(3s− 2st− 7t2).

Of course, we could just substitute in the definitions of x and y:

F (s, t) = (s− t2)2(s+ 2t)3

which produces the same results. [Exercise: check this!]
Question:
For a function f(x, y), if the independent variables x and y are changed to polar coordinates r and θ, so
x = r cos θ, y = r sin θ, and F (r, θ) = f(x(r, θ), y(r, θ)), show that

1
r

∂

∂r

(
r
∂F

∂r

)
+

1
r2
∂2F

∂θ2
=
∂2f

∂x2
+
∂2f

∂y2
.

Solution:
We calculate the derivatives in terms of the polar coordinates:

∂F

∂r
=

∂f

∂x
cos θ +

∂f

∂y
sin θ

∂F

∂θ
= −∂f

∂x
r sin θ +

∂f

∂y
r cos θ.

If we wanted expressions for fx and fy we could combine these:

r cos θ
∂F

∂r
− sin θ

∂F

∂θ
=

∂f

∂x
r cos2 θ +

∂f

∂y
r sin θ cos θ +

∂f

∂x
r sin2 θ − ∂f

∂y
r sin θ cos θ = r

∂f

∂x

so
∂f

∂x
= cos θ

∂F

∂r
− sin θ

r

∂F

∂θ

r sin θ
∂F

∂r
+ cos θ

∂F

∂θ
=

∂f

∂x
r sin θ cos θ +

∂f

∂y
r sin2 θ − ∂f

∂x
r sin θ cos θ +

∂f

∂y
r cos2 θ = r

∂f

∂y

so
∂f

∂y
= sin θ

∂F

∂r
+

cos θ
r

∂F

∂θ
.
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We calculate the second derivatives we need:

∂

∂r

(
r
∂F

∂r

)
=

∂

∂x

(
x
∂f

∂x
+ y

∂f

∂y

)
cos θ +

∂

∂y

(
x
∂f

∂x
+ y

∂f

∂y

)
sin θ

∂2F

∂θ2
=

∂

∂x

(
−y ∂f

∂x
+ x

∂f

∂y

)
(−r sin θ) +

∂

∂y

(
−y ∂f

∂x
+ x

∂f

∂y

)
(r cos θ)

and simplify:

∂

∂r

(
r
∂F

∂r

)
=

(
∂f

∂x
+ x

∂2f

∂x2
+ y

∂2f

∂x∂y

)
cos θ +

(
x
∂2f

∂x∂y
+
∂f

∂y
+ y

∂2f

∂y2

)
sin θ

∂2F

∂θ2
= −r

(
−y ∂

2f

∂x2
+
∂f

∂y
+ x

∂2f

∂x∂y

)
sin θ + r

(
−∂f
∂x

− y
∂2f

∂x∂y
+ x

∂2f

∂y2

)
cos θ

and add:

1
r

∂

∂r

(
r
∂F

∂r

)
+

1
r2
∂2F

∂θ2
=

1
r

[(
∂2f

∂x2
+
∂2f

∂y2

)
x cos θ +

(
∂2f

∂x2
+
∂2f

∂y2

)
y sin θ

]

=
∂2f

∂x2
+
∂2f

∂y2

1.4.2 Matrix form of the extended chain rule

The form we had for the extended chain rule was

∂F

∂s
=

∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
,

∂F

∂t
=

∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
,

which we can write as a matrix-vector equation:
(
∂F/∂s
∂F/∂t

)
=

(
∂x/∂s ∂y/∂s
∂x/∂t ∂y/∂t

) (
∂f/∂x
∂f/∂y

)

and the matrix in this equation is known as the Jacobian matrix of the transformation from s, t to
x, y.

1.5 Change of Variables: Polar Coordinates

We are used to the three Cartesian or rectangular coordinates:

x −∞ < x <∞
y −∞ < y <∞
z −∞ < z <∞
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and we have also seen plane polar coordinates:

r 0 ≤ r <∞
θ 0 ≤ θ < 2π

which are related to x and y by
x = r cos θ y = r sin θ.

¡
¡

¡
¡

¡
¡

r y

x

θ

Example: Express in polar coordinates the portion of the unit disc that lies in the first quadrant.
Solution: The region may be expressed in polar coordinates as 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π/2.
Example: Express in polar coordinates the function

f(x, y) = x2 + y2 + 2yx.

Solution: We substitute x = r cos θ and y = r sin θ to have

f = r2 cos2 θ + r2 sin2 θ + 2r2 sin θ cos θ = r2 + r2 sin 2θ.

1.5.1 Cylindrical Coordinates

These are really the three-dimensional equivalents of plane polar coordinates:

r 0 ≤ r <∞
θ 0 ≤ θ < 2π
z −∞ < z <∞

which are related to the rectangular coordinates by:

x = r cos θ y = r sin θ z = z.

Example: Express in cylindrical coordinates the function

f(x, y, z) = x2 + y2 + z2 − 2z
√

(x2 + y2)

Solution: We substitute x = r cos θ and y = r sin θ to have

f = r2 cos2 θ + r2 sin2 θ + z2 − 2z
√
r2 cos2 θ + r2 sin2 θ = r2 + z2 − 2z

√
r2 = r2 + z2 − 2zr = (r − z)2.

9



1.5.2 Spherical Coordinates

These are fully three-dimensional polar coordinates, and are used in lots of situations where there is a
natural spherical symmetry (e.g. electron orbits).

ρ 0 ≤ ρ <∞
θ 0 ≤ θ ≤ π

φ 0 ≤ φ < 2π

They are related to rectangular coordinates by

x = ρ sin θ cosφ y = ρ sin θ sinφ z = ρ cos θ

In the above equations, θ is the latitude or polar angle, and φ is the longitude.
Example: Express in spherical polars the function

f(x, y, z) = x2 + y2 + z2

Solution: We substitute the definitions x = ρ sin θ cosφ, y = ρ sin θ sinφ and z = ρ cos θ to get

f = ρ2 sin2 θ cos2 φ+ ρ2 sin2 θ sin2 φ+ ρ2 cos2 θ
= ρ2 sin2 θ[cos2 φ+ sin2 φ] + ρ2 cos2 θ = ρ2 sin2 θ + ρ2 cos2 θ = ρ2.

Example: Express in spherical polar coordinates the solid T that is bounded above by the cone z2 =
x2 + y2, below by the xy-plane, and on the sides by the hemisphere z = (4− x2 − y2)1/2.
Solution: The solid is defined by the following inequalities:

z2 ≤ x2 + y2

z ≥ 0
x2 + y2 + z2 ≤ 4

Substituting the definitions of x, y and z in terms of ρ, θ and φ gives:

ρ2 cos2 θ ≤ ρ2 sin2 θ cos2 φ+ ρ2 sin2 θ sin2 φ

ρ cos θ ≥ 0
ρ2 sin2 θ cos2 φ+ ρ2 sin2 θ sin2 φ+ ρ2 cos2 θ ≤ 4

so

ρ2 cos2 θ ≤ ρ2 sin2 θ

ρ cos θ ≥ 0
ρ2 ≤ 4

and we can use the fact that ρ ≥ 0 and sin θ ≥ 0 to deduce

ρ ≤ 2
cos θ ≥ 0

1 ≤ tan θ.
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θ

φ
x

ρ

Figure 1: Spherical polar coordinates
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Given that 0 ≤ θ ≤ π, this reduces to:

0 ≤ ρ ≤ 2
π/4 ≤ θ ≤ π/2.

In this case, where there is no information about φ contained in our limits, we use the whole permitted
range:

0 ≤ φ < 2π.

1.6 Critical Points

1.6.1 Maxima and Minima of a function of one variable

A critical point of an ordinary function f(x) is a point at which f ′(x) = 0, i.e. the graph is locally
horizontal.
If f ′′(x) > 0 then the gradient is increasing and we have a local minimum:

s

If f ′′(x) < 0 then the gradient is decreasing and we have a local maximum:
s

If f ′′(x) = 0 then we may have any of three possibilities: a maximum, a minimum, or an inflexion point
(e.g. x = 0 if f(x) = x3). This is called a degenerate critical point and you won’t need to classify any
of these.

1.6.2 Critical Points of a Function of Two Variables

Definition: For a function of two variables, f(x, y), a critical point is defined to be a point at which
both of the first partial derivatives are zero:

∂f

∂x
= 0,

∂f

∂y
= 0.

We can classify any critical point: this is the equivalent of, for an ordinary function, deciding whether
it is a maximum, a minimum or an inflection point.
For a function of two variables, there are two key quantities we will need in order to classify our critical
point:

• fxx, the second partial derivative of f with respect to x, and

• H = fxxfyy − f2
xy, the Hessian.
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If the Hessian is zero, then our critical point is degenerate.
For a non-degenerate critical point, for which the Hessian is nonzero, there are three possible be-
haviours.
We may have a maximum:

s

This happens if the Hessian is positive and fxx (or fyy if you prefer) is negative:

Sufficient conditions for a maximum at a critical
point are that fxx < 0 and fxxfyy − f2

xy > 0 at
that point.

The function decreases as you move away from the critical point in any direction.
We could have a minimum:

s

which happens when the Hessian is positive and so are fxx and fyy:

Sufficient conditions for a minimum at a critical
point are that fxx > 0 and fxxfyy − f2

xy > 0 at
that point.

The function increases as you move away from the critical point in any direction.
Finally, we may have a saddle point:

s

This happens if the Hessian is negative:

Sufficient condition for a saddle point is that
fxxfyy − f2

xy < 0 at that point.
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As you move away from the critical point, the function may increase or decrease depending on which
direction you choose.
Example: Locate and classify the critical points of the function f(x, y) = 12x3 + y3 + 12x2y − 75y.
Solution:

fx = 36x2 + 24xy = 12x(3x+ 2y),
fy = 3y2 + 12x2 − 75 = 3(4x2 + y2 − 25).

Critical points are given by fx = 0 and fy = 0.
Now fx = 0 =⇒ x = 0 or 3x+ 2y = 0.

(a) Suppose x = 0. Then fy = 3(y2 − 25) so we need y = ±5.

(b) Otherwise, suppose 3x+ 2y = 0. Then y = −3x/2 and

fy = 3(4x2 + 9x2/4− 25) = (3/4)(16x2 + 9x2 − 100) = (3/4)(25x2 − 100) = (75/4)(x2 − 4)

so we need x = ±2.

We have found four critical points:

(0, 5); (0,−5); (2,−3); (−2, 3)

The 2nd order partial derivatives are

fxx = 72x+ 24y = 24(3x+ y),
fxy = 24x,
fyy = 6y.

At (0, 5) , fxx = 120 > 0, fxy = 0, fyy = 30, H = fxxfyy − f2
xy = 3600 > 0, so this is a minimum.

At (0,−5) , fxx = −120 < 0, fxy = 0, fyy = −30, H = 3600 > 0, so this is a maximum.

At (2,−3) , fxx = 72, fxy = 48, fyy = −18, H = −72× 18− 482 < 0, so this is a saddle point.

At (−2, 3) , fxx = −72, fxy = −48, fyy = 18, H = −72× 18− 482 < 0, so this is a saddle point.
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2 Grad, Div, Curl and all that

2.1 Gradient vector in two dimensions

For a function of two variables f(x, y), we have seen that the function can be used to represent the
surface

z = f(x, y)

and the partial derivatives ∂f/∂x and ∂f/∂y measure the slope of the surface along the x and y directions,
respectively.
We now ask how we can calculate the slope of f in any direction in space. The answer lies in the vector

∇f =
(
∂f

∂x
,
∂f

∂y

)
=
∂f

∂x
i+

∂f

∂y
j

called the gradient of f .
Example
If f(x, y) = x2y2 + x3 + y, find ∇f at the point x = 2, y = 5.
Solution
We first work out the first partial derivatives:

fx = 2xy2 + 3x2

fy = 2x2y + 1

to give
∇f =

(
2xy2 + 3x2, 2x2y + 1

)

and then substitute in the values:
∇f = (112, 41) .

Example
If we know

∇f =
(
3x2y2 + x3, 2x3y + cos y

)

find the most general possible form of f(x, y).
Solution
We start by using the definition of ∇f to separate this into two equations:

∂f

∂x
= 3x2y2 + x3

∂f

∂y
= 2x3y + cos y

Now we integrate one of them, remembering that for a partial derivative, all the other variables act like
constants, so when we integrate a partial derivative our “constant of integration” will depend on all the
other variables.

∂f

∂x
= 3x2y2 + x3 =⇒ f(x, y) = x3y2 +

1
4
x2 + g(y).
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Now we can differentiate this with respect to y:

∂f

∂y
= 2x3y +

dg
dy
.

Notice that since g only depends on y this is now an ordinary derivative. We already know that

∂f

∂y
= 2x3y + cos y

so to make these consistent we need

2x3y + cos y = 2x3y +
dg
dy

=⇒ dg
dy

= cos y

and this is now an ordinary integration, giving as its result

g(y) = sin y + c.

The final answer is then
f(x, y) = x3y2 +

1
4
x2 + sin y + c.

2.2 Directional Derivative

First of all notice that
i · ∇f =

∂f

∂x

dotting ∇f with the unit vector in the x direction gives the slope in the x direction.
In the same way,

j · ∇f =
∂f

∂y

dotting ∇f with the unit vector in the y direction gives the slope in the y direction.
We can do the same thing with any other direction: the directional derivative

u · ∇f
gives the slope of the surface measured in the direction of the unit vector u.
Example: If f(x, y) = x2 +xy, find ∇f . What is the slope of the surface z = f(x, y) along the direction
i+ 2j at the point (1, 1)?
Solution:

∇f =
(
∂f

∂x
,
∂f

∂y

)
= (2x+ y, x).

Now at the point (1, 1), we have ∇f = (3, 1). To find the slope of f along a vector v, we need to calculate
the dot product of ∇f with the unit vector of v. Here, v = (1, 2) which has modulus

√
(1 + 4) =

√
5 so

the unit vector is u = (1/
√

5, 2/
√

5).

u · ∇f = (1/
√

5, 2/
√

5) · (3, 1) = 3/
√

5 + 2/
√

5 =
√

5.
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2.2.1 Two properties of the gradient in two dimensions

We are looking at a function f(x, y) which represents the surface z = f(x, y).
Property 1. At any point, ∇f points in the direction in which f is increasing most rapidly: i.e. ∇f
points uphill. Its magnitude |∇f | gives the slope in this steepest direction.
Property 2. At any point, ∇f is perpendicular to the contour line f = const. through that point.

2.3 Gradient vector in three dimensions

Now let us look at a function of three variables, f(x, y, z). We can still calculate the gradient vector:

∇f =
(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
=
∂f

∂x
i+

∂f

∂y
j +

∂f

∂z
k.

We can still represent a surface using our function: the equation

f(x, y, z) = A

describes a surface in three-dimensional space for each value of A.
Examples

x+ y + z = 1

represents a plane: it can also be written as

z = 1− x− y.

x2 + y2 − z = 0

can be written as
z = x2 + y2

which is a surface we have already seen: the paraboloid bowl.
Finally, if we have

f(x, y, z) = x2 + y2 + z2

then the equation
f(x, y, z) = 4

represents the sphere centred on the origin of radius 2. This is easier to see if we use spherical polar
coordinates:

f = ρ2 ρ = 2.

Remember in 2D we had two properties: ∇f points uphill, and ∇f is perpendicular to contour lines.
There are equivalent properties in 3D:

• ∇f points in the direction in which f increases fastest, and its magnitude gives the rate of change
of f in that direction.
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• ∇f is perpendicular to the surface f = constant.

Let’s look at our example function f(x, y, z) = x2 + y2 + z2.

∇f =
(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
= (2x, 2y, 2z) = 2(x, y, z).

This is double the position vector, so it points in the radial direction. Now remember that the surface
f(x, y, z) = constant represented a sphere, and we know intuitively that the perpendicular to the surface
of a sphere points outwards along the radius. On the earth, the vector perpendicular to the surface is
vertical, which is along the same line as the centre of the earth. So this agrees with the property that
∇f is perpendicular to the surface f = constant.
Example: Find a vector perpendicular to the surface z = x2 + y2 at the point (1, 2, 5).
Solution:
The vector ∇f is perpendicular to the surface f = const. so we need to write our surface in the form
f = const. We use

f(x, y, z) = x2 + y2 − z

and our surface is f(x, y, z) = 0.

∇f =
(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
= (2x, 2y,−1)

At the point (1, 2, 5) we have x = 1, y = 2, z = 5 so the gradient is

∇f = (2, 4,−1)

and this vector is perpendicular to the surface.

2.4 Vector fields

What we have from the gradient is a vector function or vector field: for each point (x, y, z) it gives
a vector.
A vector field does not have to be a gradient: in the same way that we can have an ordinary function of
either one variable:

f(x)

or of more:
f(x, y, z)

we can form a general vector function of three variables

v(x) = v(x, y, z) = (v1(x, y, z), v2(x, y, z), v3(x, y, z))

For every point in 3D space, this vector field assigns a vector.
Example:

v(x) = (y, x, x2 + y2 + z2)
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Let us look at a few values.

v(0, 0, 0) = (0, 0, 0) v(1, 0, 0) = (0, 1, 1)
v(0, 1, 0) = (1, 0, 1) v(0, 0, 1) = (0, 0, 1)
v(1, 1, 1) = (1, 1, 3) v(1, 2, 1) = (2, 1, 6)

As you can see, the first component of the input or argument vector x is x, the second is y and the third
is z. We substitute in the three values for each component to get the three components of the output
vector v.
Examples
Some physical uses of vector functions are:

• Magnetic field: this has a magnitude and a direction so it is a vector, and it can be different at
every point in space

• Fluid velocity: think about a turbulent river flow – there are many different velocities at different
points in space

• Temperature gradient: the heat flow through one point of a conducting object is proportional to
the gradient of temperature at that point.

• Normal to a surface: if we look at a smooth 2D surface in 3D space, at any point on the surface
we can find a vector which is perpendicular to the surface. This gives us a (different) vector for
every point on the surface: in other words, a vector which is a function of position, or a vector
field again. This is what we did in the last example of the section on ∇, and is called the normal
field to the surface.

• Tangent to a surface: at each point of a surface, there is more than one vector parallel to the
surface (in fact there is a plane of them); but we can write down a vector function which is at every
point tangent to (parallel to) the surface and this is called a tangent field.

2.5 Grad as a separate entity

Suppose that f(x, y, z) is a scalar function. Then we can think of the ∇ part of ∇f separately, as an
operator (more on these later). It operates on f as follows:

∇f =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

This is the gradient of f , which we have just discussed. It takes a scalar function and gives us a vector
field. The operator ∇ is given by

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)

and it is not really a vector in its own right; it only exists to operate on (or apply to) something else.

Question How does ∇ operate on vector functions or vector fields?

Answer Using either of the vector products we already know – dot or cross.
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2.6 Divergence

If q(x, y, z) = (q1(x, y, z), q2(x, y, z), q3(x, y, z)) is a vector function, then by definition

div(q) = ∇ · q =
∂q1
∂x

+
∂q2
∂y

+
∂q3
∂z

. (1)

This “product”, ∇ · q, defined in imitation of the ordinary dot product, is a scalar called the divergence
of q.
Example: Calculate ∇ · q for the vector function q(x, y, z) = (x− y, x+ y, z).
Solution:

∇ · q =
∂(x− y)
∂x

+
∂(x+ y)
∂y

+
∂z

∂z
= 1 + 1 + 1 = 3.

2.7 Curl

For the vector q = (q1(x, y, z), q2(x, y, z), q3(x, y, z)), we also have

curl(q) = ∇× q = det




i j k
∂
∂x

∂
∂y

∂
∂z

q1 q2 q3




=
(
∂q3
∂y

− ∂q2
∂z

,
∂q1
∂z

− ∂q3
∂x

,
∂q2
∂x

− ∂q1
∂y

)
. (2)

This second “product”, ∇× q, defined in imitation of the ordinary cross product, is a vector called the
curl of q.
Example: Calculate ∇× q for (from above) q(x, y, z) = (x− y, x+ y, z).
Solution:

∇× q =

∣∣∣∣∣∣

i j k
∂/∂x ∂/∂y ∂/∂z
x− y x+ y z

∣∣∣∣∣∣
= i(0) + j(0) + k(1 + 1) = 2k.

2.8 Laplacian

Now we have two operators, based on ∇, that we can apply to any vector field: div and curl. Since ∇f
is a vector field for any scalar function f(x, y, z), we can apply either of them to ∇f . What do we get?
Curl of gradient
This one is not very interesting:

curl(∇f) = ∇×∇f = 0.

Div of gradient
Because it’s based on the dot product, this gives a scalar:

div(∇f) = ∇ · ∇f =
∂

∂x

(
∂f

∂x

)
+

∂

∂y

(
∂f

∂y

)
+

∂

∂z

(
∂f

∂z

)
= fxx + fyy + fzz.
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This is called the Laplacian and is used in lots of applications.

∇2f = fxx + fyy + fzz.

Example: Calculate the Laplacian for f(x, y, z) = x2 + y2 + z2.
Solution:

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
=

∂

∂x
2x+

∂

∂y
2y +

∂

∂z
2z = 2 + 2 + 2 = 6.

The forms for the Laplacian in different coordinate systems are more complex (we found one of these as
an example for polar coordinates). They are given by:

∇2f =
1
r

∂

∂r

(
r
∂f

∂r

)
+

1
r2
∂2f

∂θ2
in plane polar coordinates

∇2f =
1
r

∂

∂r

(
r
∂f

∂r

)
+

1
r2
∂2f

∂θ2
+
∂2f

∂z2
in cylindrical polar coordinates

∇2f =
1
ρ2

∂

∂ρ

(
ρ2 ∂f

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1
ρ2 sin2 θ

∂2f

∂φ2
in spherical polar coordinates

Example: Looking again at the example we used for the Laplacian:

f(x, y, z) = x2 + y2 + z2 ∇2f = 6.

We will recalculate this in the different coordinate systems.
In cylindrical polar coordinates, x = r cos θ and y = r sin θ so

f(r, θ, z) = r2 cos2 θ + r2 sin2 θ + z2 = r2 + z2.

Then using the formula for ∇2 in cylindrical polars:

∇2f =
1
r

∂

∂r

(
r
∂f

∂r

)
+

1
r2
∂2f

∂θ2
+
∂2f

∂z2
=

1
r

∂

∂r
(r 2r) + 0 +

∂

∂z
(2z)

=
1
r

∂

∂r
(2r2) +

∂

∂z
(2z) =

1
r
(4r) + 2 = 4 + 2 = 6.

In spherical polar coordinates, x = ρ sin θ cosφ, y = ρ sin θ sinφ and z = ρ cos θ so

f(ρ, θ, φ) = ρ2.

Then using the formula for ∇2 in spherical polars:

∇2f =
1
ρ2

∂

∂ρ

(
ρ2 ∂f

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1
ρ2 sin2 θ

∂2f

∂φ2

=
1
ρ2

∂

∂ρ
(ρ2 2ρ) + 0 + 0 =

1
ρ2

∂

∂ρ
(2ρ3) =

1
ρ2

6ρ2 = 6.

These three different calculations all produce the same result because ∇2 is a derivative with a real
physical meaning, and does not depend on what coordinate system is being used to look at the system.
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2.9 Real Partial Differential Equations

Remember the examples we had of partial differential equations. Here we will run through most of them
again in vector form, using the functions div, grad, curl and the Laplacian:

Quantum mechanics We can re-write Schrödinger’s equation as

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V (x, y, z)ψ.

Electromagnetism In the scalar format there were eight Maxwell’s equations: four of them are
covered by these two vector equations:

∇ ·B = 0

∂B

∂t
+∇× E = 0.

Fluid flow The Navier-Stokes equations in vector form are:

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∇2u.

Heat transfer The heat equation becomes

∂T

∂t
= κ∇2T.
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3 Operators and the Commutator

3.1 Operators: Introduction and examples

An operator is an instruction or action: it operates on something.
Example: for a variable x, the function f(x) = ax can be thought of as an operator on x:

f : x→ ax “multiply by a”

and so can any other function, e.g. g(x) = x2:

g : x→ x2 “square”

Equally, differentiation can be thought of as an operator acting on a function of x:

D : f(x) → df
dx

“differentiate with respect to x”

For a vector v, a matrix A is an operator on v:

A : v → Av “multiply by A”

Another operator that can operate on a function is multiplication by a constant:

a : f(x) → af(x) “multiply by a”

3.2 Linear operators

O(f) is a linear operator if:

• O(f + g) = O(f) +O(g) and

• O(λf) = λO(f)

We can show whether an operator is linear or not by checking these two properties.

Multiply by a

O : f(x) → af(x)
O(f + g) = a(f + g) = af(x) + ag(x) = O(f) +O(g)
O(λf) = aλf(x) = λaf(x) = λO(f).

We have checked both properties so it is linear.

Multiply by x

O : f(x) → xf(x)
O(f + g) = x(f + g) = xf(x) + xg(x) = O(f) +O(g)
O(λf) = xλf(x) = λxf(x) = λO(f).

We have checked both properties so it is linear.
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Differentiate with respect to x

D : f(x) → df
dx

D(f + g) =
d
dx

(f(x) + g(x)) =
df
dx

+
dg
dx

= D(f) +D(g)

D(λf) =
d
dx

(λf(x)) = λ
df
dx

= λD(f).

We have checked both properties so it is linear.

Squaring function

f : x→ x2

f(x+ y) = (x+ y)2 = x2 + 2xy + y2 = f(x) + f(y) + 2xy

so the squaring operator is not linear.

Multiply by x2 function

O : f(x) → x2f(x)
O(f + g) = x2(f + g) = x2f + x2g = O(f) +O(G)
O(λf) = x2(λf) = λx2f = λO(f)

so this operator is linear.

3.3 Composing operators

If we have two different operators and we want to apply them to a function in sequence, we use the
notation

O1 ◦O2 : f → O1(O2(f))

so we apply O2 first, then apply O1 to the result.
Example

OA : f(x) → xf(x)
OB : g(x) → g2(x)

We will compute OA ◦OB :

OA ◦OB : g(x) B→ g2(x) A→ xg2(x)
OA ◦OB : g(x) → xg2(x)

Suppose g(x) = ex: then

OA(g) = xex

OB(g) = e2x

OA ◦OB(g) = xe2x
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Example

OA : f(x) → df/dx+ f(x)
OB : f(x) → df/dx+ 2f(x)

We can also write these as
OA = D + 1 OB = D + 2.

We will compute OA ◦OB :

OA ◦OB : f(x) B→ df/dx+ 2f(x) A→ (d/dx+ 1) (df/dx+ 2f(x))
= d2f/dx2 + 2df/dx+ df/dx+ 2f(x)
= d2f/dx2 + 3df/dx+ 2f(x)

OA ◦OB = D2 + 3D + 2

and similarly, (left as an exercise to the reader):

OB ◦OA : f(x) → (D2 + 3D + 2)f(x)

i.e. the same as OA ◦OB , but this will not always work.
We can apply derivatives repeatedly, but we can also mix our operators.

D : f(x) → df
dx

D2 = D ◦D : f(x) → D(
df
dx

) =
d2f

dx2

(D + a) : f(x) → df
dx

+ af(x)

(D + a) ◦ (D + b) : f(x) → (D + a)
(

df
dx

+ bf(x)
)

=
d2f

dx2
+

d
dx

(bf(x)) + a
df
dx

+ abf(x)

=
d2f

dx2
+ (a+ b)

df
dx

+ abf(x)

= (D2 + (a+ b)D + ab)f

It doesn’t have to be all constants and derivatives:

D ◦ x : f(x) → D(xf(x)) =
d
dx

(xf(x)) = f(x) + x
df
dx

D ◦ x(x2) = x2 + x(2x) = x2 + 2x2 = 3x2 = D(x3)

We must be careful about the order of our operators though:

x ◦D : f(x) → x(Df(x)) = x
df
dx

6= D ◦ x(f)

A couple more linearity checks:
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Second derivative D2

D2 : f(x) → d2f

dx2

D2(f + g) =
d2

dx2
(f + g) =

d2f

dx2
+

d2g

dx2
= D2f +D2g

D2(λf) =
d2

dx2
(λf) = λD2f

Just as D was linear, so is D2.

The operator xD

xD : f(x) → x
df
dx

xD(f + g) = x
d
dx

(f + g) = x
df
dx

+ x
dg
dx

= xDf + xDg

xD(λf) = x
d
dx

(λf) = xλ
df
dx

= λxDf

so the operator xD is also linear.

In general, if OA is linear and OB is linear, then OA ◦OB and OB ◦OA are also linear.

3.4 Partial derivatives

Partial derivatives can also be treated as operators:

Dx : f(x, y) → ∂f

∂x

Dy : f(x, y) → ∂f

∂y

Just like the ordinary derivative D, these are linear operators. Equally, ∇ is an operator, as are div, curl
and the Laplacian:

∇ : f(x, y, z) →
(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

div : q(x, y, z) → ∂q1
∂x

+
∂q2
∂y

+
∂q3
∂z

curl : q(x, y, z) →
∣∣∣∣∣∣

i j k
∂/∂x ∂/∂y ∂/∂z
q1 q2 q3

∣∣∣∣∣∣

∇2 : f(x, y, z) → ∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

All four of these are also linear.
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3.5 Order of operators is important

Remember if we have two different operators OA and OB , we can apply them in turn:

OA ◦OB : f → OA(OB(f))

Let us look at an example:

OA : f(x) → df
dx

OB : f(x) → x
df
dx

OA ◦OB =
d
dx

(
x

d
dx

)

OB ◦OA = x
d
dx

(
d
dx

)

The order can be important:

OA ◦OB =
d
dx

+ x
d2

dx2

OB ◦OA = x
d2

dx2
6= OA ◦OB

For example, try applying them to f(x) = ex.

OA ◦OB(ex) =
(

d
dx

+ x
d2

dx2

)
ex = ex + xex = (1 + x)ex

OB ◦OA(ex) = x
d2

dx2
ex = xex

Let us look at another example two operators: this time two matrices acting as linear operators on a
vector:

OA : v → Av

OB : v → B v

with

A =
(

1 0
0 0

)
B =

(
1 1
1 0

)

The composed operators are:

OA ◦OB : v → AB v

OB ◦OA : v → BAv

and the matrices involved there:

AB =
(

1 0
0 0

) (
1 1
1 0

)
=

(
1 1
0 0

)
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BA =
(

1 1
1 0

) (
1 0
0 0

)
=

(
1 0
1 0

)

Since the order of matrix multiplication is important, this is another case where the order of the operators
is important.

3.6 The commutator

Given two operators OA and OB , the commutator of the two is

[OA, OB ] = OA ◦OB −OB ◦OA.

It can be nonzero precisely because the order of operators is important.
Let us work out the commutators for the examples from the previous section. We start with the matrix
example:

OA : v → Av

OB : v → B v

with

A =
(

1 0
0 0

)
B =

(
1 1
1 0

)

and we had worked out the composed operators:

OA ◦OB : v → AB v

OB ◦OA : v → BAv

with the matrix products:

AB =
(

1 1
0 0

)
BA =

(
1 0
1 0

)

The commutator is thus:
[OA, OB ] = OA ◦OB −OB ◦OA

[OA, OB ] : v → (AB −BA)v

and we can write this as

[OA, OB ] : v → C v

with

C = AB −BA =
(

1 1
0 0

)
−

(
1 0
1 0

)
=

(
0 1
−1 0

)
.

Note that the commutator of two operators is itself an operator.
Next we look at a commutator involving a derivative:

D : f(x) → df
dx

xD : f(x) → x
df
dx
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The commutator is
[D,xD] = D ◦ xD − xD ◦D = D + xD2 − xD2 = D.

Let us work out just one more example for practice:

[x2, D2] = x2 ◦D2 −D2 ◦ x2

= x2D2 −D ◦D ◦ x2

= x2D2 −D ◦ (2x+ x2D)
= x2D2 − (2 + 2xD + 2xD + x2D2)
= −2− 4xD

Remember, x2 as an operator means “multiply by x2”.

3.7 Commutators and Partial Derivatives

We can involve both partial derivatives and multiple variables in a commutator: e.g.
[
∂

∂x
, xy

]
: f → ∂

∂x
(xyf)− xy

∂f

∂x

= yf + xy
∂

∂x
(f)− xy

∂f

∂x
= yf

so [
∂

∂x
, xy

]
= y.

Similarly,
[
x
∂

∂y
, y

∂

∂x

]
: f → x

∂

∂y

(
y
∂f

∂x

)
− y

∂

∂x

(
x
∂f

∂y

)

= x
∂f

∂x
+ xy

∂2f

∂x∂y
− y

∂f

∂y
− yx

∂2f

∂y∂x

= x
∂f

∂x
− y

∂f

∂y

so [
x
∂

∂y
, y

∂

∂x

]
= x

∂

∂x
− y

∂

∂y
.

The next example comes from classical mechanics. The angular momentum of a particle with unit
mass travelling with velocity ∇φ is r ×∇φ: you don’t need to worry about this but let’s work out the
components.

r ×∇φ =

∣∣∣∣∣∣

i j k
x y z

∂φ/∂x ∂φ/∂y ∂φ/∂z

∣∣∣∣∣∣
= i

(
y
∂φ

∂z
− z

∂φ

∂y

)
+ j

(
z
∂φ

∂x
− x

∂φ

∂z

)
+ k

(
x
∂φ

∂y
− y

∂φ

∂x

)
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A handy shorthand is to number the variables from 1 to 3:

x1 = x x2 = y x3 = z.

Then we can define the angular momentum operator

Lab : φ→ xa
∂φ

∂xb
− xb

∂φ

∂xa

Lab = xa
∂

∂xb
− xb

∂

∂xa

This means that our angular momentum vector is

r ×∇φ = iL23(φ) + jL31(φ) + kL12(φ).

and we could even treat the whole thing as an operator on φ:

r ×∇ = iL23 + jL31 + kL12.

Returning to the scalar operators Lab, we can work out the commutator of two of them:

[L12, L23] = (xDy − yDx)(yDz − zDy)− (yDz − zDy)(xDy − yDx)
= xDy(yDz − zDy)− yDx(yDz − zDy)− yDz(xDy − yDx) + zDy(xDy − yDx)
= x(Dz + yDyDz − zD2

y)− y(yDxDz − zDxDy)

− y(xDzDy − yDzDx) + z(xD2
y −Dx − yDyDx)

= xDz − zDx = L13.

3.8 Extended Chain Rule Revisited

Remember the extended chain rule: if x = x(s, t) and y = y(s, t), and we have a function f(x, y) so that

F (s, t) = f(x(s, t), y(s, t))

then

∂F

∂s
=

∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s

∂F

∂t
=

∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
.

We can write this in operator form as

Ds =
∂x

∂s
Dx +

∂y

∂s
Dy

Dt =
∂x

∂t
Dx +

∂y

∂t
Dy.

Let us look again at the example of calculating the form of the operator ∇2 in plane polar coordinates.
Let us use s for r and t for θ:

x = s cos t y = s sin t
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then the extended chain rule gives us

Ds = cos tDx + sin tDy

Dt = −s sin tDx + s cos tDy.

We will start from the standard form:

1
r

∂

∂r

(
r
∂f

∂r

)
+

1
r2
∂2f

∂θ2

which gives us the linear operator

L : f → 1
s

∂

∂s

(
s
∂f

∂s

)
+

1
s2
∂2f

∂t2

or
L =

1
s
Ds(sDs) +

1
s2
D2

t

Now we can look at the individual terms:

1
s
Ds(sDs) =

1
s
Ds(s[cos tDx + sin tDy])

=
1
s
(cos tDx + sin tDy)(s cos tDx + s sin tDy)

=
1
s
(cos tDx + sin tDy)(xDx + yDy) . . .

The rest of the calculation is left as an exercise.
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4 Ordinary Differential Equations

4.1 Introduction

A differential equation is an equation relating an independent variable, e.g. t, a dependent variable, y,
and one or more derivatives of y with respect to t:

dx
dt

= 3x y2 dy
dt

= et d2y

dx2
+ 3x2y2 dy

dx
= 0.

In this section we will look at some specific types of differential equation and how to solve them.

4.2 Classifying equations

We can classify our differential equation by four properties:

• Is it an ordinary differential equation?

• Is it linear?

• Does it have constant coefficients?

• What is the order?

Ordinary
An Ordinary Differential Equation or ODE has only one independent variable (for example, x, or t) and
so uses ordinary derivatives. The alternative (equations for e.g. f(x, y)) is a partial differential equation:
we saw some earlier but we will not solve them in this course.
Linearity
A differential equation is linear if every term in the equation contains none or exactly one of either the
dependent variable or its derivatives. There are no products of the dependent variable with itself or its
derivatives. Each term has at most one power of the equivalent of x or ẋ or ẍ or . . . ; or f(x) and its
derivatives.
Examples:

f(x)
df
dx

= −ω2x is not linear
df
dx

= f3(x) is not linear
d2f

dx2
= −x2f(x) + ex is linear.

Constant coefficients
A differential equation has constant coefficients if the dependent variable and all the derivatives are only
multiplied by constants.
Examples: which have constant coefficients?

3
df
dx

= −ω2x: yes
d2f

dx2
= −x2f(x) + ex: no

d2f

dx2
+ 3

df
dx

+ 2f(x) = sinxex: yes.

Finally, a “trick” one:

3ex df
dx

+ exf(x) = x3 does have constant coefficients: divide the whole equation by ex.
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Order
The order of a differential equation is the largest number of derivatives (of the dependent variable) ever
taken.
Examples:

f(x)
df
dx

= −ω2x is 1st order
d2f

dx2
= −x2f(x)+ex is 2nd order

d2f

dx2
+3

d2f

dx2

df
dx

= 0 is 2nd order.

4.3 First order linear equations

First the general theory. A first order linear differential equation for y(x) must be of the form

dy
dx

+ p(x)y = q(x).

If there is something multiplying the dy/dx term, then divide the whole equation by this first.
Now suppose we calculate an integrating factor

I(x) = exp
(∫

p(x) dx
)
.

Just this once, we won’t bother about a constant of integration.
We multiply our equation by the integrating factor:

I(x)
dy
dx

+ I(x)p(x)y = I(x)q(x).

and then observe that

d
dx

(yI(x)) =
dy
dx
I(x) + y

dI
dx

=
dy
dx
I(x) + yp(x)I(x)

which is our left-hand-side. So we have the equation

d
dx

(yI(x)) = I(x)q(x)

which we can integrate (we hope):

yI(x) =
∫
I(x)q(x) dx+ C

y =
1

I(x)

∫
I(x)q(x) dx+

C

I(x)
.

The last thing we do is find C: we will do this using any initial conditions we’ve been given.
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Example

dy
dx

+ 2xy = 0 and y = 3 when x = 0.

Here the integrating factor will be

I(x) = exp
(∫

2xdx
)

= expx2

and our equation is

ex2 dy
dx

+ 2xex2
y = 0.

d
dx

[
yex2

]
= 0 =⇒ yex2

= C =⇒ y = Ce−x2
.

The last thing we do is use the initial conditions: at x = 0, y = 3 but our form gives at x = 0, y = C so
we need C = 3 and

y = 3e−x2
.

 3

 0

Example

x
dy
dx

+ 2y = sinx with y(π/2) = 0.

First we need to get the equation into a form where the first term is just dy/dx: so divide by x:

dy
dx

+
2
x
y =

sinx
x

.

Now we calculate the integrating factor:

I(x) = exp
(∫

2
x

dx
)

= exp (2 lnx) = exp ln (x2) = x2.

We multiply the whole system by x2:

x2 dy
dx

+ 2xy = x sinx

and now we can integrate:

d
dx

(x2y) = x sinx =⇒ x2y =
∫
x sinxdx+ C
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which we can integrate by parts:

x2y = −x cosx+
∫

cosxdx+ C = −x cosx+ sinx+ C

so the general solution is

y = −cosx
x

+
sinx
x2

+
C

x2
.

Finally, we use the initial condition y = 0 when x = π/2 to get

0 = −cos (π/2)
(π/2)

+
sin (π/2)
(π/2)2

+
C

(π/2)2
= 0 +

1
(π/2)2

+
C

(π/2)2
.

which means C = −1 and our solution is

y = −cosx
x

− 1− sinx
x2

.

Example

This time we will solve two different differential equations in parallel.

dy
dx

+ 3y = e−2x and
df
dx

+ 3f = e−3x

In this example, we don’t actually have variable coefficients – but that just makes it easier!

In both cases, I(x) = exp
∫

3 dx = e3x.

e3x dy
dx

+ 3e3xy = ex and e3x df
dx

+ 3e3xf = 1.

d
dx

(
e3xy

)
= ex and

d
dx

(
e3xf

)
= 1.

e3xy = ex + C0 and e3xf = x+ C1.

y = e−2x + C0e
−3x and f = xe−3x + C1e

−3x.

Notice that we haven’t got any initial conditions so we can’t determine the constants C0 or C1 here:
what we have found is called the general solution.

4.4 Homogeneous linear equations.

A homogeneous linear equation is one in which all terms contain exactly one power of the dependent
variable and its derivatives:

e.g. x3 d2y

dx2
+ 5x

dy
dx

+ 2y = 0.
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For these equations, we can add up solutions: so if f(x) is a solution and g(x) is a solution:

x3 d2f

dx2
+ 5x

df
dx

+ 2f = 0 and x3 d2g

dx2
+ 5x

dg
dx

+ 2g = 0

then so is af(x) + bg(x) for any constants a and b:

x3 d2

dx2
[af(x) + bg(x)] + 5x

d
dx

[af(x) + bg(x)] + 2[af(x) + bg(x)] = 0.

An nth order homogeneous linear equation will “always” (i.e. if it is well-behaved: don’t worry about
this detail) have exactly n independent solutions y1, . . . , yn and the general solution to the equation is

y = c1y1 + c2y2 + · · ·+ cnyn.

4.4.1 Special case: coefficients axr

Suppose we are given a differential equation in which the coefficient of the rth derivative is a constant
multiple of xr:

e.g. x2 d2y

dx2
+ 2x

dy
dx

− 6y = 0.

Then if we try a solution of the form y = xm we get

y = xm dy
dx

= mxm−1 d2y

dx2
= m(m− 1)xm−2

and if we put this back into the original equation we get

x2m(m− 1)xm−2 + 2mxxm−1 − 6xm = 0

xm(m(m− 1) + 2m− 6) = 0 xm(m2 +m− 6) = 0.

Now xm will take lots of values as x changes so we need

(m2 +m− 6) = 0 =⇒ (m− 2)(m+ 3) = 0.

In this case we get two roots: m1 = 2 and m2 = −3. This means we have found two functions that work
as solutions to our differential equation:

y1 = xm1 = x2 and y2 = xm2 = x−3.

But we know that if we have two solutions we can use any combination of them so our general solution
is

y = c1x
2 + c2x

−3.

This works with an nth order ODE as long as the nth order polynomial for m has n different real roots.
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Example

x2 d2y

dx2
− 6x

dy
dx

+ 10y = 0.

Try y = xm:

y = xm dy
dx

= mxm−1 d2y

dx2
= m(m− 1)xm−2.

m(m− 1)xm − 6mxm + 10xm = 0 =⇒ xm(m2 −m− 6m+ 10) = 0 =⇒ xm(m− 5)(m− 2) = 0.

The general solution to this equation is

y = c1x
5 + c2x

2.

4.4.2 Special case: constant coefficients.

Now suppose we have a homogeneous equation with constant coefficients, like this one:

d2y

dx2
+ 5

dy
dx

+ 6y = 0.

We try a solution y = eλx. This gives dy/dx = λeλx and d2y/dx2 = λ2eλx so

λ2eλx + 5λeλx + 6eλx = 0.

(λ2 + 5λ+ 6)eλx = 0 for all x.

Just like the polynomial case, the function of x will not be zero everywhere so we need

λ2 + 5λ+ 6 = 0 =⇒ (λ+ 2)(λ+ 3) = 0.

In this case we get two roots: λ1 = −2 and λ2 = −3. This means we have found two independent
solutions:

y1 = eλ1x = e−2x and y2 = eλ2x = e−3x,

and the general solution is
y = c1e

−2x + c2e
−3x.

Example

A third-order equation this time:
d3y

dx3
− d2y

dx3
− 2

dy
dx

= 0.

Trying y = eλx gives

λ3 − λ2 − 2λ = 0 =⇒ λ(λ2 − λ− 2) = 0 =⇒ λ(λ− 2)(λ+ 1) = 0

which has three roots,
λ1 = 0 λ2 = 2 λ3 = −1.

The general solution is
y = c1e

0x + c2e
2x + c3e

−x = c1 + c2e
2x + c3e

−x.

Notice that we have three constants here: in general we will always have N constants in the solution to
an Nth order equation.
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Example

Another second-order equation:
d2y

dx2
+ 2

dy
dx

+ 5y = 0.

Trying y = eλx gives
λ2 + 2λ+ 5 = 0

which has two roots,

λ =
−2±√4− 20

2
=
−2±√−16

2
= −1± 2i.

The general solution is then

y = Ae(−1+2i)x +Be(−1−2i)x = e−x[Ae2ix +Be−2ix]

where A and B will be complex constants: but if y is real (which it usually is) then we can write the
solution as

y = e−x[c1 sin 2x+ c2 cos 2x].

Repeated roots

If our polynomial for λ has two roots the same, then we will end up one short in our solution. The extra
solution we need will be xeλx.

Example

Another third-order equation:
d3y

dx3
− 2

d2y

dx2
+

dy
dx

= 0.

Trying y = eλx gives

λ3 − 2λ2 + λ = 0 =⇒ λ(λ2 − 2λ+ 1) = 0 =⇒ λ(λ− 1)2 = 0

which has only two distinct roots,
λ1 = 0 λ2 = λ3 = 1.

The general solution is
y = c1e

0x + c2e
x + c3xe

x = c1 + c2e
x + c3xe

x.

4.5 Inhomogeneous linear equations.

What happens if there is a term with none of the dependent variable? That is, loosely, a term on the
right hand side, or a function of x.

f2(x)
d2y

dx2
+ f1(x)

dy
dx

+ f0(x)y = g(x).
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In the most general case we can’t do anything: but in one or two special cases we can.
If we already know the general solution to the homogeneous equation:

f2(x)
d2y

dx2
+ f1(x)

dy
dx

+ f0(x)y = 0 =⇒ y = c1y1(x) + c2y2(x)

then all we need is a particular solution to the whole equation: one function u(x) that obeys

f2(x)
d2u

dx2
+ f1(x)

du
dx

+ f0(x)u = g(x).

Then the general solution to the whole equation is

y = c1y1(x) + c2y2(x) + u(x).

The solution to the homogeneous equation is called the complementary function or CF; the particular
solution u(x) is called the particular integral or PI. Finding it involves a certain amount of trial and
error!

Special case: Coefficients xr

In this case, we can only cope with one specific kind of RHS: a polynomial. We will see this by example:

x2 d2y

dx2
− 6x

dy
dx

+ 10y = 6x3.

The homogeneous equation in this case is one we’ve seen before:

x2 d2y

dx2
− 6x

dy
dx

+ 10y = 0 =⇒ y = c1x
5 + c2x

2.

Now as long as the power on the right is not part of the CF we can find the PI by trying a multiple
of the right hand side:

y = Ax3 =⇒ dy
dx

= 3Ax2 and
d2y

dx2
= 6Ax.

x2 d2y

dx2
− 6x

dy
dx

+ 10y = x26Ax− 6x3Ax2 + 10Ax3 = x3[6A− 18A+ 10A] = −2Ax3

so for this to be a solution we need −2A = 6 so A = −3. Then the general solution to the full equation
is

y = c1x
5 + c2x

2 − 3x3.

A couple of words of warning about this kind of equation:

• If the polynomial for the power m has a repeated root then we fail

• If the polynomial for the power m has complex roots then we fail

• If a power on the RHS matches a power in the CF then we fail.
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Special case: constant coefficients

Given a linear ODE with constant coefficients, we saw in the previous section that we can always find
the general solution to the homogeneous equation (using eλx, xeλx and so on), so we know how to find
the CF. There are a set of standard functions to try for the PI, but that part is not guaranteed.

Example

d2y

dx2
− 3

dy
dx

+ 2y = e−x.

First we need the CF. Try y = eλx on the homogeneous equation:

λ2 − 3λ+ 2 = 0 =⇒ (λ− 1)(λ− 2) = 0.

So there are two roots, λ1 = 1 and λ2 = 2. The CF is then

yCF = c1e
x + x2e

2x.

Next we need the PI. Since the RHS is e−x, we try the form

y = Ae−x dy
dx

= −Ae−x d2y

dx2
= Ae−x.

d2y

dx2
− 3

dy
dx

+ 2y = Ae−x + 3Ae−x + 2Ae−x = 6Ae−x

so we need A = 1/6 for this to work. Our PI is

yPI =
1
6
e−x

and the general solution is

y = c1e
x + x2e

2x +
1
6
e−x.

Example

dy
dx

+ 3y = e−3x.

This is only first-order: in fact we solved it in section 4.3 and the solution was

y = xe−3x + C1e
−3x.

Let us solve it the way we have just learned. First the CF: try y = eλx then

λ+ 3 = 0

so λ = −3 and the CF is
yCF = C1e

−3x.
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Now look for the PI. The RHS is e−3x so our first thought might be to try Ae−3x. But this is the CF:
so we know when we try it we will get zero! So instead (motivated by knowing the answer in this case)
we multiply by x and try

y = Axe−3x dy
dx

= Ae−3x − 3Axe−3x

dy
dx

+ 3y = Ae−3x − 3Axe−3x + 3Axe−3x = Ae−3x.

so we need A = 1 and we end up with the same solution we got last time.
In general, if the RHS matches the CF (or part of the CF) then we will multiply by x to get our trial
function for the PI.

Example

This time we have initial conditions as well: remember we always use these as the very last thing we
do.

d3y

dx3
+ 2

d2y

dx2
+

dy
dx

= 2x with y = 3,
dy
dx

= −4 and
d2y

dx2
= 4 at x = 0.

First we find the CF. Try y = eλx:

λ3 + 2λ2 + λ = 0 =⇒ λ(λ2 + 2λ+ 1) = 0 =⇒ λ(λ+ 1)2 = 0.

This has only two distinct roots: λ1 = 0, λ2 = λ3 = −1. Therefore the CF is:

yCF = c1 + c2e
−x + c3xe

−x.

Now we look for the PI. The RHS is x so we try a function

y = Ax+B =⇒ dy
dx

= A =⇒ d2y

dx2
=

d3y

dx3
= 0.

This makes
d3y

dx3
+ 2

d2y

dx2
+

dy
dx

= 0 + 0 +A

and no value of A can make this equal to x. What do we do when it fails?

• If the trial function fails, try multiplying by x.

[Note: in this case we could have predicted this because the B of our trial function is part of the CF.]
We want one more power of x so we try

y = Cx2 +Ax =⇒ dy
dx

= 2Cx+A =⇒ d2y

dx2
= 2C and

d3y

dx3
= 0.

d3y

dx3
+ 2

d2y

dx2
+

dy
dx

= 0 + 4C + 2Cx+A

so we need
2Cx+ 4C +A = 2x which means C = 1, A = −4.
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Our general solution is
y = c1 + c2e

−x + c3xe
−x + x2 − 4x.

Now we apply the initial conditions:

y = c1 + c2e
−x + c3xe

−x + x2 − 4x =⇒ y(0) = c1 + c2 = 3
dy
dx

= −c2e−x + c3e
−x − c3xe

−x + 2x− 4 =⇒ dy
dx

(0) = −c2 + c3 − 4 = −4

d2y

dx2
= c2e

−x − 2c3e−x + c3xe
−x + 2 =⇒ d2y

dx2
(0) = c2 − 2c3 + 2 = 4

The solution to this linear system is c2 = −2, c3 = −2, c1 = 5 so our final answer is

y = 5− 2e−x − 2xe−x + x2 − 4x.

Table of functions to try for PI

f(x) Conditions on CF First guess at PI
αekx λ = k not a root Aeλx

sin kx λ = ik not a root A cos kx+B sin kx
cos kx λ = ik not a root A cos kx+B sin kx
xn λ = 0 not a root Axn +Bxn−1 + · · ·+ C

If the trial function given above matches with part of the CF then this won’t work; instead we multiply
by x (or x2 if the result of that still matches the CF) and try again.

5 Fourier Series

5.1 Introduction: A model problem

Consider a forced spring:

}
} }

equilibrium free oscillation

?y

periodic
forced oscillation

6
?
F (t)

The force exerted by the spring is a negative multiple of y: we will choose k so that the force is −mk2y.
Unforced system
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The governing equation is
ÿ + k2y = 0

(recall the notation ÿ = d2y/dt2) which has auxiliary equation λ = ±ik and general solution

y = a cosλt+ b sinλt.

The solutions look like:

- t

6y

s
0

s
P

s
2P

(this is sin kt): they are periodic with period P = 2π/k. When t = nP we have sin kt = sin 2nπ = 0.
Add periodic forcing
The governing equation for the forced system is now

ÿ + k2y = F (t).

So how do we find y? In other words, how will we find the PI?

5.2 Harmonic forcing

What we mean by harmonic forcing is that the forcing can be written as a pure sine wave A sin (ωt− δ)
for some constants A and δ.
We will look here at a pure sine wave:

F (t) = sinωt q0 qT

which has period T = 2π/ω. We must have T 6= P for the following discussion to work. . .
This system is easy to solve: try a particular solution y = α cosωt+ β sinωt. Then ÿ = −ω2y and

ÿ + k2y = F =⇒ −ω2y + k2y = sinωt =⇒ (k2 − ω2)(α cosωt+ β sinωt) = sinωt

Equating coefficients of cosωt and sinωt:

α = 0 β =
1

k2 − ω2
y =

1
k2 − ω2

sinωt

as long as k 6= ω.
Notice that this solution will be very large if k is close to ω: this phenomenon is called resonance.
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5.3 Periodic forcing

Now we look at the case where F has period (or ‘repeat time’) 2L, but a non-harmonic shape:

e.g.
q q q q
0 2L 4L 6L

q»»»»q»»»»q»»»»q
0 2L 4L 6L

q q q q
0

2L 4L 6L
square wave

To solve
ÿ + k2y = F (t),

we write F as a sum of harmonic waves:

F (t) = 1
2a0 + a1 cosωt + b1 sinωt

+ a2 cos 2ωt + b2 sin 2ωt
+ . . .

= 1
2a0 +

∑∞
n=1 an cosnωt+ bn sinωt

This series is called a Fourier series.

F (t) = 1
2a0


 0 2L


 + a1


 0 2L


 + b1


 0 2L




+ a2


 0 2L


 + b2


 0 2L




+ . . .

In our example case, we can solve the equation term by term:

ÿn + k2yn = an cosnωt+ bn sinnωt

We use a trial solution

yn(t) = αn cosnωt+ βn sinnωt
ÿn = −n2ω2yn

ÿn + k2yn = an cosnωt+ bn sinnωt = (k2 − n2ω2)yn

=⇒ αn =
an

k2 − n2ω2
, βn =

bn
k2 − n2ω2

and we can build our complete solution from these modes:

y(t) = yCF + 1
2y0(t) +

∞∑
n=1

yn(t).

So the only part left is to calculate the an and bn constants from F (t): calculate the Fourier series of
F .
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5.4 Preparation for calculating a Fourier series: Orthogonality

We will need some properties of cos and sin.

For m 6= 0,
∫ 2L

0

cos
(πmx

L

)
dx =

[
L

mπ
sin

(πmx
L

)]2L

0

= 0

and
∫ 2L

0

sin
(πmx

L

)
dx =

[−L
mπ

cos
(πmx

L

)]2π

0

= − L

mπ
+

L

mπ
= 0

For m = 0,
∫ 2L

0

cos
(πmx

L

)
dx =

∫ 2L

0

1 dx = 2L

and
∫ 2π

0

sin
(πmx

L

)
dx = 0

Remember, there is nothing special about the name x in these integrals: the results are just as valid for
the integrals over t or any other name.

cos (a+ b) = cos a cos b− sin a sin b
sin (a+ b) = sin a cos b+ cos a sin b

cos a cos b = 1
2 (cos (a+ b) + cos (a− b))

sin a sin b = 1
2 (cos (a− b)− cos (a+ b))

sin a cos b = 1
2 (sin (a+ b) + sin (a− b))

We can now integrate combinations. For all positive integers m ≥ 0, n ≥ 0:
∫ 2L

0

sin
(πmx

L

)
sin

(πnx
L

)
dx =

∫ 2L

0

1
2

{
cos

(πmx
L

− πnx

L

)
− cos

(πmx
L

+
πnx

L

)}
dx

=
1
2

∫ 2L

0

cos
(
π(m− n)x

L

)
dx− 1

2

∫ 2L

0

cos
(
π(m+ n)x

L

)
dx

=
1
2

{
2L m = n
0 m 6= n

− 1
2

{
2L m = n = 0
0 otherwise

=
{
L m = n 6= 0
0 otherwise

Notice that one of the cases we have just shown is
∫ 2L

0

sin
(πmx

L

)
sin

(πnx
L

)
dx = 0 if m 6= n.

We have shown that the functions sin (πkx/L), k = 1, . . . are orthogonal in the interval 0 ≤ x ≤ 2L.
(We’re ignoring k = 0 as the function sin 0 is not really a function.)
In exactly the same way, we can show that

∫ 2L

0

cos
(πmx

L

)
cos

(πnx
L

)
dx = 0 if m 6= n,
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so the functions cos (πkx/L), k = 0, 1, . . . are orthogonal in the interval 0 ≤ x ≤ 2L; and

∫ 2L

0

sin
(πmx

L

)
cos

(πnx
L

)
dx = 0.

So we have a set of mutually orthogonal functions in 0 ≤ x ≤ 2L:

cos
(πmx

L

)
for m = 0, 1, . . . sin

(πnx
L

)
for n = 1, 2, . . .

This means any two different functions are orthogonal.

5.5 Calculating a Fourier series

We use the orthogonal property to calculate a Fourier series. We are given F (x) in 0 ≤ x ≤ 2L (and F
periodic, hence we know F everywhere) and we want

F (x) = 1
2a0 +

∞∑
n=1

an cos
(πnx
L

)
+

∞∑
n=1

bn sin
(πnx
L

)
.

The trick is to use the orthogonality. We pick one of our family of functions, multiply by it, and integrate:
and the orthogonality condition means most of the terms on the right disappear. Let us do the sin terms
first (this will give us bn). We will multiply by sin (πmx/L), m ≥ 1, and integrate:

F (x) = 1
2a0 +

∞∑
n=1

an cos
(πnx
L

)
+

∞∑
n=1

bn sin
(πnx
L

)

∫ 2L

0

sin
(πmx

L

)
F (x) dx = 1

2a0

∫ 2π

0

sin
(πmx

L

)
dx+

∞∑
n=1

an

∫ 2π

0

cos
(πnx
L

)
sin

(πmx
L

)
dx

+
∞∑

n=1

bn

∫ 2π

0

sin
(πnx
L

)
sin

(πmx
L

)
dx

= 0 + 0 +
∞∑

n=1

bn

{
0 m 6= n
L m = n

= Lbm.

bm =
1
L

∫ 2L

0

sin
(πmx

L

)
F (x) dx for m ≥ 1.

Recap

We were looking for the Fourier series for a function F (x) with period 2L:

F (x) = 1
2a0 +

∞∑
n=1

an cos
(πnx
L

)
+

∞∑
n=1

bn sin
(πnx
L

)
.
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We showed the useful results:
∫ 2L

0

sin
(πmx

L

)
sin

(πnx
L

)
dx =

{
L m = n 6= 0
0 otherwise

∫ 2L

0

sin
(πmx

L

)
cos

(πnx
L

)
dx = 0

∫ 2L

0

cos
(πmx

L

)
cos

(πnx
L

)
dx =





2L m = n = 0
L m = n 6= 0
0 otherwise

and we have shown that

bm =
1
L

∫ 2L

0

sin
(πmx

L

)
F (x) dx for m ≥ 1.

We can do a similar calculation, multiplying by cos (πmx/L), m ≥ 1:

F (x) = 1
2a0 +

∞∑
n=1

an cos
(πnx
L

)
+

∞∑
n=1

bn sin
(πnx
L

)

∫ 2L

0

cos
(πmx

L

)
F (x) dx = 1

2a0

∫ 2L

0

cos
(πmx

L

)
dx+

∞∑
n=1

an

∫ 2L

0

cos
(πnx
L

)
cos

(πmx
L

)
dx

+
∞∑

n=1

bn

∫ 2L

0

sin
(πnx
L

)
cos

(πmx
L

)
dx

= 0 +
∞∑

n=1

an

{
0 m 6= n
L m = n

+ 0 = Lam.

am =
1
L

∫ 2L

0

cos
(πmx

L

)
F (x) dx for m ≥ 1.

and finally cosmx for m = 0, i.e. using the function 1:

F (x) = 1
2a0 +

∞∑
n=1

an cos
(πnx
L

)
+

∞∑
n=1

bn sin
(πnx
L

)

∫ 2π

0

F (x) dx = 1
2a0

∫ 2L

0

1 dx+
∞∑

n=1

an

∫ 2L

0

cos
(πnx
L

)
dx+

∞∑
n=1

bn

∫ 2L

0

sin
(πnx
L

)
dx

= 1
2a0(2L) + 0 + 0 = La0.

a0 =
1
L

∫ 2L

0

F (x) dx =
1
L

∫ 2L

0

cos
(
π0x
L

)
F (x) dx

5.6 Odd and even functions

We have derived the formulae for the Fourier series. If

f(x) = 1
2a0 +

∞∑
n=1

{
an cos

(πnx
L

)
+ bn sin

(πnx
L

)}
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then

an =
1
L

∫ 2L

0

cos
(πnx
L

)
f(x) dx bn =

1
L

∫ 2L

0

sin
(πnx
L

)
f(x) dx

But f is periodic with period 2L, and so are all the cos and sin functions, so we could equally well have
used the integration region −L ≤ x ≤ L, which is often more convenient:

an =
1
L

∫ L

−L

cos
(πnx
L

)
f(x) dx

bn =
1
L

∫ L

−L

sin
(πnx
L

)
f(x) dx

Now let’s look at the behaviour of f between −L and L. If f(−x) = f(x) for every value of x in the
range, then f is said to be an even function:

-

6HH©©

You can see that if we integrate this over the whole (symmetric) range, we get double the integral over
the right half: ∫ L

−L

feven dx = 2
∫ L

0

feven dx.

If, on the other hand, f(−x) = −f(x) for every value of x in the range, then f is said to be an odd
function:

-

6HH

HH

Integrating this over the symmetric range (and remembering that areas above a negative curve count
negative) will give zero: ∫ L

−L

fodd dx = 0.

Products of odd and even functions are odd or even too following these rules:

Even function× Even function = Even function
Even function×Odd function = Odd function
Odd function×Odd function = Even function

Cosine (cos) is an even function; sin is an odd function.
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Even functions

If f(x) is even then f(x) cos (nπx/L) is even and f(x) sin (nπx/L) is odd. The integrals in the standard
form become:

an =
2
L

∫ L

0

cos
(πnx
L

)
f(x) dx, bn = 0.

Odd functions

If f(x) is odd then f(x) cos (nπx/L) is odd and f(x) sin (nπx/L) is even. The integrals in the standard
form become:

an = 0, bn =
2
L

∫ L

0

sin
(πnx
L

)
f(x) dx.

5.7 Fourier series example: sawtooth function

-

6
π

©©©©©HHHHH©©©©©HHHHH©©©©©HHHHHs
−2π

s
0

s
2π

s
4π

This function is periodic with period 2π, so we will put L = π.

f(x) =
{
x 0 ≤ x ≤ π
2π − x π ≤ x ≤ 2π or f(x) =

{ −x −π ≤ x ≤ 0
x 0 ≤ x ≤ π

Now look at the form of f(x) between −π and π. It is clear from the graph that f(−x) = f(x) so this
is an even function.
We will use the coefficient formulae we derived in the last section: if

f(x) = 1
2a0 +

∞∑
n=1

{
an cos

(πnx
L

)
+ bn sin

(πnx
L

)}

and f(x) is even, then

an =
2
L

∫ L

0

cos
(πnx
L

)
f(x) dx bn = 0

When we put in L = π this becomes much simpler:

an =
2
π

∫ π

0

cosnxf(x) dx bn = 0

In this case we have

a0 =
2
π

∫ π

0

f(x) dx =
2
π

∫ π

0

xdx =
2
π

[
x2

2

]π

0

=
2
π

π2

2
= π
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an =
2
π

∫ π

0

cosnxf(x) dx =
2
π

∫ π

0

x cosnxdx

=
2
π

([
x

sinnx
n

]π

0

−
∫ π

0

sinnx
n

dx
)

by parts

=
2
π

(
0−

[
−cosnx

n2

]π

0

)
=

2
π

1
n2

(cosnπ − 1) =
2
n2π

{
0 n even
−2 n odd.

So the Fourier series for this sawtooth function is

f(x) =
π

2
+

∞∑
n=1

2
n2π

(cosnπ − 1) cosnx

=
π

2
− 4
π

∞∑

n odd

1
n2

cosnx

=
π

2
− 4
π

(
cosx+

1
9

cos 3x+
1
25

cos 5x+ · · ·
)
.

−π 0 π
0

π

2

π 1
2a0 + a1 cosx+ a3 cos 3x
1
2a0 + a1 cosx

1
2a0

The coefficients in this case decrease like 1/n2: this sort of decay occurs when f is continuous (i.e.
has no jumps). We may only need a few terms to get a good approximation to the shape: the graph
above shows only three terms of the series.

5.8 Example Fourier series with discontinuities: Square wave

-

6

s
−2π −π

s
0 π

s
2π 3π

s
4π

f(x) =
{ −1 −π < x ≤ 0

1 0 < x ≤ π

This function is periodic with period 2π, but it is not continuous: there are jumps at 0, π, 2π, 3π, . . .
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This time, the function is odd: the values on the left are negative the values on the right.
Again, we use the formulae we derived: if

f(x) = 1
2a0 +

∞∑
n=1

{
an cos

(πnx
L

)
+ bn sin

(πnx
L

)}

then

an = 0, bn =
2
L

∫ L

0

sin
(πnx
L

)
f(x) dx

and for the special case L = π this becomes

an = 0, bn =
2
π

∫ π

0

sinnxf(x) dx.

bn =
2
π

∫ π

0

sinnx(1) dx =
2
π

[
−cosnx

n

]π

0
=

2
nπ

(1− cosnπ) =
2
nπ

{
2 n odd
0 n even.

So the Fourier series for the square wave is

f(x) =
∞∑

n=1

bn sinnx =
∑

n odd

4
nπ

sinnx =
4
π

(
sinx+

1
3

sin 3x+
1
5

sin 5x+ · · ·
)

Here the coefficients decrease like 1/n: this happens when f is discontinuous (has a jump). The errors
are more visible after a few terms than for the continuous case:

−π 0 π

−1

1

b1 sinx
A
AAU

b1 sinx+ b3 sin 3x

?
b1 sinx+ b3 sin 3x+ b5 sin 5x

@R

5.9 Will the Fourier series converge?

Dirichlet conditions: sufficient, but not necessary, for convergence:

• f(x) is defined and single-values, except possily at a finite number of points in the periodic range

• f(x) is periodic
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• f(x) and df/dx are piecewise continuous.

e.g.

q q
0 T

¡ ¡@¡@¡

is fine, as long as it is periodic.

Where f is continuous (no jump), the Fourier series converges to f(x).
Where f has a jump, the Fourier series converges to the middle of the gap. For example, with the square
wave:

∑
bn sinnx = 0 at x = 0 (and x = π, 2π, . . . )

= 1
2 (1 + (−1)) = 1

2{f(0+) + f(0−)}.
c
q
q

5.10 Example with a different period: another square wave

-

6

s s s s
−2L −L/2 0 L/2 2L 4L

α

F (x) =
{
α −L/2 < x < L/2
0 L/2 < x < 3L/2

Note that F is an even function. This means we are expecting a cosine series, because cos is even and
sin is odd. The coefficients will be

an =
2
L

∫ L

0

cos
(πnx
L

)
F (x) dx bn = 0

a0 =
2
L

∫ L

0

F (x) dx =
2
L

∫ L/2

0

α dx = α twice the average value of F

an =
2
L

∫ L

0

F (x) cos
(nπx
L

)
dx =

2α
L

∫ L/2

0

cos
(nπx
L

)
dx

=
2α
L

[
L

nπ
sin

(nπx
L

)]L/2

0

=
2α
nπ

sin
(nπ

2

)
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We can now construct the series for F (x):

F (x) =
α

2
+

∞∑
n=1

2α
nπ

sin
(nπ

2

)
cos

(nπx
L

)

=
α

2
+

2α
π

{
cos

(πx
L

)
− 1

3
cos

(
3πx
L

)
+

1
5

cos
(

5πx
L

)
− 1

7
cos

(
7πx
L

)
+ · · ·

}

Note: this is a cosine series because F (x) is even. The terms decrease like 1/n for large n because F
has discontinuities.
Let’s look at the discontinuity point L/2:

F (L/2) =
α

2
+

∑

n odd

2α
nπ

sin
(nπ

2

)
cos

(
nπL

2L

)

and cos
(nπ

2

)
= 0 when n is odd

F (L/2) =
α

2

so it converges to the middle of the gap as we expected.
One more case to look at: at x = 0, F (x) = α from the definition, so

α =
α

2
+

2α
π

{
1− 1

3
+

1
5
− 1

7
+ · · ·

}

1− 1
3

+
1
5
− 1

7
+ · · · = π/4

.

5.11 Superposition of Fourier series

When we have a periodic function that is made out of two simpler functions, we can exploit this. I will
explain by example.

Square wave: f(x)

1

0

−1

π 2π

bn =
1
π

∫ π

−π

f(x) sinnxdx (odd function, an = 0)

=
2
π

∫ π

0

1. sinnxdx =
2
π

[
−cosnx

n

]π

0

=
2
nπ

(1− cosnπ)
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‘Triangular’ wave: g(x)

¡¡@
@

@¡¡

π/2
0

−π/2
π 2π

Bn =
1
π

∫ π

−π

g(x) sinnxdx (odd function, An = 0)

=
2
π

∫ π

0

g(x) sinnxdx

=
2
π

∫ π/2

0

x sinnxdx+
2
π

∫ π

π/2

(π − x) sinnx dx

=
2
π

{[
x

(− cosnx)
n

]π/2

0

−
∫ π/2

0

− cosnx
n

dx+
[
(π − x)

(− cosnx)
n

]π

π/2

−
∫ π

π/2

(−1)
(− cosnx)

n
dx

}

=
2
π

{
− π

2n
cos

(nπ
2

)
− 0 +

∫ π/2

0

cosnx
n

dx+ 0 +
π

2n
cos

(nπ
2

)
−

∫ π

π/2

cosnx
n

dx

}

=
2
π

{[
sinnx
n2

]π/2

0

−
[
sinnx
n2

]π

π/2

}
=

2
π

{
1
n2

sin
(nπ

2

)
+

1
n2

sin
(nπ

2

)}
=

4
n2π

sin
(nπ

2

)

Now we can add these two functions together to get a new function, also periodic with period 2π and
odd:

h(x) = f(x) + g(x)

@
@

@¡
¡

¡

¡
¡

¡@
@

@

@
@

@¡
¡

¡

1 + π/2

1

0

−1

−1− π/2

−π π 2π

Then

h(x) =
∞∑
1

bn sinnx+
∞∑
1

Bn sinnx

=
∞∑
1

(bn +Bn) sinnx, which gives us the Fourier series of h: a sine series.
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A few of the coefficients:

bn +Bn =
2
nπ

(1− cosnπ) +
4
n2π

sin
(nπ

2

)

n = 1
4
π

+
4
π

=
8
π

n = 2 0 + 0 = 0

n = 3
4
3π

− 4
9π

=
8
9π

n = 4 0 + 0 = 0

n = 5
4
5π

+
4

25π
=

24
25π

Note that we can have 1/n and 1/n2 type behaviour mixed together in the coefficients. There will always
be some of the 1/n type if the function has discontinuities (jumps): we can see it here because of the
jump in h at x = 0, π, . . .

5.12 Integration of a Fourier series

The Fourier series for f(x) can be integrated term by term provided that f(x) is piecewise continuous
in the period 2L (i.e. only a finite number of jumps):

∫ β

α

f(x) dx =
∫ β

α

1
2a0 dx+

∞∑
n=1

an

∫ β

α

cos
nπx

L
dx+ bn

∫ β

α

sin
nπx

L
dx.

5.13 Fourier series – Parseval’s identity

f(x) = 1
2a0 +

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)

is the standard Fourier series for a function with period 2L.
Now consider

∫ 2L

0

f(x)f(x) dx =
∫ 2L

0

{
1
2a0 +

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)}
f(x) dx

= 1
2a0

∫ 2L

0

f(x) dx+
∞∑

n=1

(
an

∫ 2L

0

cos
nπx

L
f(x) dx+ bn

∫ 2L

0

sin
nπx

L
f(x) dx

)

where we are allowed to swap the order of the integral and the infinite
sum because the Fourier series converges uniformly: don’t worry about
the definition of this, but do remember we can’t always switch the order
like this!

= 1
2a0La0 +

∞∑
n=1

(anLan + bnLbn) = L

[
1
2a

2
0 +

∞∑
n=1

(a2
n + b2n)

]
.
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To put it another way,
1
L

∫ 2L

0

f(x)f(x) dx =
1
2
a2
0 +

∞∑
n=1

(a2
n + b2n).

This is Parseval’s identity.
Example
Remember the square wave, of height 1 and period 2π:

-

6

s
−2π −π

s
0 π

s
2π 3π

s
4π

The Fourier series for this function was

f(x) =
∞∑
1

bn sinnx with bn =





4
nπ

n odd

0 n even.

Parseval’s identity gives

1
π

∫ 2π

0

f2(x) dx =
∞∑

n=1

b2n

2 =
16
π2

[
1 +

1
9

+
1
25

+
1
49

+ · · ·
]

which tells us that

1 +
1
9

+
1
25

+
1
49

+ · · · = π2

8
.

6 Linear Equations

6.1 Notation

We begin with a review of material from B3C. First some notation:

Vectors

v =
(

1
6

)
, r =




x
y
z


 , a =




a1

a2

a3

a4


 .

If the vector has two components we call it a two-dimensional vector, three components make
it a three-dimensional vector and so on.
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Linear combinations
A linear combination of variables is an expression of the form

3x1 + 2x2, c1x+ c2y + c3z

where cj (j = 1, 2, 3) are constants.
In the same way we can write a linear combination of vectors:

4
(

1
2

)
− 3

(
6
4

)
; λ




x1

x2

x3


 + µ




y1
y2
y3




where λ, µ are constants.

Linear equation Examples of linear equations are:

x+ y − 2z = 6 (a plane in 3D space)

a1x1 + a2x2 + a3x3 + a4x4 = A

with a1, a2, a3, a4, A constant.

Set of linear equations An example set of linear equations could be

x − y = 2
3x + y = 4

or more generally,

a11x1 + a12x2 + · · · + a1NxN = b1
a21x1 + a22x2 + · · · + a2NxN = b2

...
. . .

...
am1x1 + am2x2 + · · · + amNxN = bm

This is a set of m linear equations in N unknowns x1. . .xN , with constant coefficients a11. . . amN ,
b1. . . bm.

Matrix notation The sets of linear equations above can be written in matrix notation as
(

1 −1
3 1

)(
x
y

)
=

(
2
4

)

for the first, and
Ax = b

for the second, where

A =




a11 · · · a1N

...
. . .

...
am1 · · · amN




is a matrix of constant coefficients,

x =




x1

...
xN


 is to be found, and b =




b1
...
bm


 is a constant vector.
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6.2 Echelon form

One way to solve a set of linear equations is by reduction to row-echelon form: using row operations:

• multiply a row by any constant (i.e. a number)

• interchange two rows

• add a multiple of one row to another

Row-echelon form means:

• any all-zero rows are at the bottom of the reduced matrix

• in a non-zero row, the first-from-left nonzero value is 1

• the first ‘1’ in each row is to the right of the first ‘1’ in the row above

All the operations can be carried out on the augmented matrix
(
A b

)
.

Once the process is complete, it’s easy to find the solution to the set of equations by back-substitution.

Example

x1 + 2x2 + 3x3 = 9
2x1 − x2 + x3 = 8
3x1 − x3 = 3




1 2 3 9
2 −1 1 8
3 0 −1 3


 →

R1

R2 − 2R1

R3 − 3R1




1 2 3 9
0 −5 −5 −10
0 −6 −10 −24




→
R1

−R2/5
−R3/2




1 2 3 9
0 1 1 2
0 3 5 12




→
R1

R2

R3 − 3R2




1 2 3 9
0 1 1 2
0 0 2 6




→
R1

R2

R3/2




1 2 3 9
0 1 1 2
0 0 1 3




Now we can solve from the bottom up:

x3 = 3
x2 = 2− x3 = −1
x1 = 9− 2x2 − 3x3 = 2.
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In this case we had three unknowns and three non-zero rows in echelon form, giving a unique solution



x1

x2

x3


 =




2
−1
3


 .

The rank, R, is the number of non-zero rows in echelon form. The ranks of the matrix and the augmented
matrix determine the type of the solution.

Unique solution

If we have N variables and N nonzero rows in echelon form, we always get a unique solution.
In three dimensions this means geometrically that three independent planes meet at a point.

q
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¡
¡
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¡
¡

¡¡

¡

Zero rows

What if row reduction leads to, for example,



1 2 0 5
0 1 1 2
0 0 0 0


 ?

The rank R of the augmented matrix is 2, the number of variables N = 3.
In this situation x3 can have any value: so to solve, put x3 = λ, say, then

x2 = 2− x3 = 2− λ

x1 = 5− 2x2 = 5− 2(2− λ) = 1 + 2λ

so the general solution is 


x1

x2

x3


 =




1
2
0


 + λ




2
−1
1


 .

In three dimensions with two independent rows this means geometrically that two independent planes
intersect in a line.
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Here λ is a free parameter. In general, we expect N −R free parameters in the solution.

No solution

What if row reduction leads to, for example,



1 3 2 2
0 1 6 4
0 0 0 1


 ?

Here the rank R of the augmented matrix exceeds the rank of the left-hand-side. There is no value of
x3 we can choose that will give a solution.
Geometrically, this corresponds to a situation where three planes which are not independent do not
intersect at all:
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¡
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6.3 Relationship to eigenvalues and eigenvectors

Remember from B3C: for an N ×N matrix A, if

Av = λv

with v 6= 0 then v is an eigenvector of A with eigenvalue λ.
(Any multiple of v is also an eigenvector with eigenvalue λ: just pick some convenient form.)
The equation above can be written as

(A− λI)v = 0

which is a matrix-vector equation with augmented matrix

(A− λI|0).
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If the rank is the same as the number of variables, R = N , then there is a unique solution. But

v = 0

is a solution (the trivial solution) so to get another solution we need R < N . This means that when
matrix A − λI is reduced to echelon form there must be a zero row: or (equivalently) the determinant
of matrix A− λI is zero.
The determinant det(A−λI) is a polynomial in λ of degreeN , so there are at mostN different eigenvalues.
A useful fact (not proved here) is det(A) = λ1λ2 · · ·λN .

Example

A =
(

5 −2
9 −6

)
.

|A− λI| =
∣∣∣∣

5− λ −2
9 −6− λ

∣∣∣∣ = (5− λ)(−6− λ)− (−2)(9)

= (−30 + λ+ λ2) + 18 = λ2 + λ− 12 = (λ+ 4)(λ− 3)

so the matrix has eigenvalues λ1 = 3, λ2 = −4.
λ1 = 3:

(A− λ1I)v1 = 0 and v1 =
(
a
b

)
=⇒

(
2 −2
9 −9

)(
a
b

)
=

(
0
0

)
.

a− b = 0 a = b v1 =
(

1
1

)
(or any multiple of this).

Check:

Av1 =
(

5 −2
9 −6

)(
1
1

)
=

(
3
3

)
= 3

(
1
1

)
= λ1v1.

λ2 = −4:

(A− λ2I)v2 = 0 and v2 =
(
a
b

)
=⇒

(
9 −2
9 −2

)(
a
b

)
=

(
0
0

)
.

9a− 2b = 0 9a = 2b v2 =
(

2
9

)
(or any multiple of this).

Check:

Av2 =
(

5 −2
9 −6

)(
2
9

)
=

( −8
−36

)
= −4

(
2
9

)
= λ2v2.

Properties of eigenvalues and eigenvectors

• Eigenvectors for different eigenvalues are linearly independent.

• There may be multiple eigenvalues with the same value.

• λ = 0 can be an eigenvalue but v = 0 can’t be an eigenvector.

• λ can be complex.
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6.4 Linear (in)dependence of vectors

• Vectors are linearly dependent if there is some non-trivial linear combination of them that sums to
zero.

• Vectors are linearly independent if there is no non-trivial linear combination of them that sums to
zero.

Example:

v1 =




1
1
0


 , v2 =




1
0
1


 , v3 =




2
1
1


 .

Here v1 + v2 − v3 = 0 so the vectors are linearly dependent.
Given vectors v1, · · · , vN , they are independent if the linear equation

α1v1 + · · ·+ αNvN = 0

has α1 = · · · = αN = 0 as the only solution. (Note: this is the trivial solution, so this means there is no
non-trivial solution.)
This linear equation of vectors is a set of linear equations of scalars. For example, using the vectors
above, we can write it as 


1 1 2
1 0 1
0 1 1







α1

α2

α3


 =




0
0
0


 ,

in which the vectors have become the matrix columns.
We can solve this by reduction to echelon form: in this case we get




1 1 2 0
0 1 1 0
0 0 0 0




which gives

α3 = λ

α2 = −α3 = −λ
α1 = −2α3 − α2 = −λ

The non-trivial solution to the equation for the coefficients α is



α1

α2

α3


 = λ



−1
−1
1




so as we found above, the set of vectors is linearly dependent.
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6.4.1 Write a vector as a sum of other given vectors

Suppose we are given vectors v1, v2, v3, and another vector w, and asked to find coefficients α1, α2, α3

such that w = α1v1 + α2v2 + α3v3. This can be solved using the same methods.

Example: Write




9
8
3


 as a combination of




1
2
3


,




2
−1
0


,




3
1
−1


.

This is just a set of linear equations:

α1




1
2
3


 + α2




2
−1
0


 + α3




3
1
−1


 =




9
8
3




which we can write as 


1 2 3
2 −1 1
3 0 −1







α1

α2

α3


 =




9
8
3




and solve using, for example, row reduction to echelon form.
We did this case earlier, finding 


α1

α2

α3


 =




2
−1
3


 .

If there are N vectors vn that are linearly independent with N dimensions, then

• every vector w can be written as a combination of the vectors v1, · · · , vN : this means that the set
of vectors v1, · · · , vN spans the N -dimensional space

• for any w, there is a unique solution for the N coefficients α1, · · · , αN to write w in terms of
v1, · · · , vN .

The N vectors v1, · · · , vN are said to be a basis for the N -dimensional space.
In general, a set of linearly independent vectors will span some subspace (defined as the set of all vectors
that can be made as linear combinations of them) and they will be a basis for that space.

6.5 Orthonormal sets of vectors

6.5.1 Orthogonal vectors

Orthogonal vectors are vectors at right angles to each other:

(1,1)(-1,1)

¡
¡

¡
¡µ

@
@

@
@I

(−1, 1) · (1, 1) = −1 + 1 = 0.
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Vectors v1 and v2 are orthogonal if v1 · v2 = 0.
A set of vectors v1, v2, · · · , vN is (mutually) orthogonal if

vi · vj = 0 for all i 6= j, i = 1 . . . N, j = 1 . . . N.

Recap: Orthogonal vectors

A set of vectors v1, v2, · · · vN is (mutually) orthogonal if

vi · vj = 0 for all i 6= j, i = 1 . . . N, j = 1 . . . N.

Examples
(

cos θ
sin θ

)
and

( − sin θ
cos θ

)
are orthogonal.




1
0
−1


 ,




1√
2

1


 ,




1
−√2

1


 are orthogonal.

(
x
0

)
and

(
0
y

)
are orthogonal.

6.5.2 Normalised vectors

A vector is normal or a unit vector if it has magnitude 1.
If u · u = 1 then the vector u is normal.
If u · u 6= 1, then we can normalise the vector u by dividing by its magnitude.
To find the magnitude: |u| = (u · u)1/2, and the normalised vector is

û = u/|u|.

Example



1
0
−1


 has magnitude (1 + 1)1/2 = 21/2 so the normalised vector is




1/
√

2
0

−1/
√

2


.

6.5.3 Orthonormal vectors

A set of vectors is orthonormal if they are mutually orthogonal and each has magnitude 1.

i.e. vi · vj =
{

0 i 6= j
1 i = j

for i = 1, · · · , N, j = 1, · · · , N.
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6.6 Easy to write a vector as a linear combination of orthonormal vectors

If we have a set of orthonormal vectors v̂1, · · · , v̂N and we are asked to find α1, · · · , αN such that
w = α1v̂1 + · · ·+ αN v̂N then there is no need to do row reduction, etc. because

w · v̂i = α1v̂1 · v̂i + · · ·+ αiv̂i · v̂i + · · ·+ αN v̂N · v̂i

= αi

so we can find the coefficients easily by dot products. This is like the calculation of Fourier coefficients.

6.7 Creating orthonormal sets

It is often useful to convert a set of linearly independent vectors into an orthonormal set. We will look
first at how to do this by example.

Example

v1 =




2
1
0


 , v2 =




0
1
1


 .

These are independent, but v1 · v2 6= 0, i.e. they are not orthogonal.
To start with we will not worry about normalising our vectors: this can be done at the end.
To create an orthogonal set g

1
, g

2
that is a linear combination of v1, v2:

• Put g
1

= v1. It does not matter which is first, but it can be simpler if we choose a simple v1, e.g.
one with lots of zeroes. In this case neither choice is better.

• Try g
2

= v2 + αv1.

We want

g
1
· g

2
= 0 =⇒ v1 · v2 + αv1 · v1 = 0

=⇒ α = −v1 · v2

|v1|2
.

Hence

g
2

= v2 −
v1 · v2

|v1|2
v1

= v2 −
v1 · v2

|v1|
v̂1

= v2 − (v̂1 · v2)v̂1.

In our example,

u2 =




0
1
1


− 1

5




2
1
0


 =

1
5



−2
4
5


 .

Geometrically:
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©©©©©©©©©©* v1

6

v2

A
A

A
A

A
A

A
AK

A
A

A
A

A
A

©©©©*

(v̂1 · v2)v̂1

v2 − (v̂1 · v2)v̂1

6.7.1 The general process: Gram-Schmidt

Given linearly independent vectors v1, · · · , vN , we will construct orthogonal g
1
, · · · , g

N
that are linear

combinations of the vi.

Put g
1

= v1

Then g
2

= v2 − (v2 · ĝ1
)ĝ

1
= v2 −

(v2 · v1)
(v1 · v1)

v1 as before

g
3

= v3 − (v3 · ĝ1
)ĝ

1
− (v3 · ĝ2

)ĝ
2

= v3 −
(v3 · g1

)
(g

1
· g

1
)
g
1
− (v3 · g2

)
(g

2
· g

2
)
g
2

g
4

= v4 − (v4 · ĝ1
)ĝ

1
− (v4 · ĝ2

)ĝ
2
− (v4 · ĝ3

)ĝ
3

and so on.
Let us check orthogonality (one example):

g
3
· g

2
= v3 · g2

− (v3 · ĝ1
)ĝ

1
· g

2
− (v3 · ĝ2

)ĝ
2
· g

2

= v3 · g2
− 0− (v3 · ĝ2

)|g
2
|

= 0 OK.

Example

v1 =




1
−1
1


 , v2 =




1
0
1


 , v3 =




1
1
2


 .

g
1

=




1
−1
1


 . |g

1
|2 = 3. v2 · g1

= 2.

g
2

=




1
0
1


− 2

3




1
−1
1


 =

1
3




1
2
1


 .
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g
2
· g

2
=

6
9

=
2
3
. v3 · g1

= 2. v3 · g2
=

5
3
.

g
3

=




1
1
2


− 2

3




1
−1
1


− (5/3)

(2/3)
1
3




1
2
1


 =




1
1
2


− 2

3




1
−1
1


− 5

6




1
2
1


 =

1
2



−1
0
1


 .

Note we can choose any multiple of these calculated vectors: so let us have

g
1

=




1
−1
1


 , g

2
=




1
2
1


 , g

3
=



−1
0
1


 .

Check orthogonality:

g
1
· g

2
= 0

g
1
· g

3
= 0

g
2
· g

3
= 0.

7 Eigenvectors and eigenvalues

We already know that an eigenvalue-eigenvector pair λ, v satisfies

(A− λI)v = 0.

Let’s look at some more examples.

Example of repeated eigenvalues

A =




3 2 0
0 3 0
0 0 1


 .

|A− λI| =
∣∣∣∣∣∣

3− λ 2 0
0 3− λ 0
0 0 1− λ

∣∣∣∣∣∣
= (3− λ)2(1− λ)

so if |A− λI| = 0 then λ1 = 1, λ2 = λ3 = 3.
The eigenvalue λ = 3 has multiplicity 2 (i.e. it appears twice).
Look for the eigenvector of λ1 = 1:

(A− λ1I)v1 =




2 2 0
0 2 0
0 0 0







a
b
c


 =




0
0
0


 .

This is easy to solve as it happens to be in echelon form: there is one solution

v1 =




0
0
1


 .
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Now the eigenvector(s) of λ2 = 3:

(A− λ2I)v2 =




0 2 0
0 0 0
0 0 −2







a
b
c


 =




0
0
0


 .

Again, there is just one solution:

v2 =




1
0
0


 .

In this case there are only two eigenvectors; note that they are linearly independent.
In this situation, where a repeated eigenvalue has only one eigenvector v, we can find further linearly
independent “generalised eigenvectors” by considering, for example,

(A− λI)w = v, =⇒ (A− λI)2w = 0.

In our case we have 


0 2 0
0 0 0
0 0 −2







α
β
γ


 =




1
0
0




which gives

w =




k
1/2
0


 .

We can pick any value of k and get the generalised eigenvector: the part we are adding on with k is
always just a multiple of the standard eigenvector v.

7.1 Sets of linear ODEs

Suppose we are trying to solve the coupled linear ODEs:

dx/dt = 3x+ 5y + 2 dy/dt = 5x+ 3y + 3

We can write this in a vector form:

d

dt

(
x
y

)
=

(
3x+ 5y + 2
5x+ 3y + 3

)
=

(
3 5
5 3

)(
x
y

)
+

(
2
3

)
,

and if we set

v =
(
x
y

)

then the whole equation becomes

dv

dt
= Av + b with A =

(
3 5
5 3

)
b =

(
2
3

)
.
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Revision
Recall, if we are solving a linear first-order ODE with constant coefficients, it will be of the form

dx
dt

= ax+ b, which we also write as ẋ = ax+ b.

• We look first at the homogeneous equation ẋ = ax and try solutions of the form x = eλt

• Then we look for a particular solution of our full equation, trying something like the “right
hand side”: in this case a constant.

Returning to our example system, let us try a solution of the form

v = v0e
λt

in the homogeneous equation
dv

dt
= Av.

This gives
v̇ = λv0e

λt =⇒ Av0e
λt = λv0e

λt,

in other words, v0 must be an eigenvector of A with eigenvalue λ.

For this example,
∣∣∣∣

3− λ 5
5 3− λ

∣∣∣∣ = (3− λ)(3− λ)− 25 = λ2 − 6λ− 16 = (λ− 8)(λ+ 2) so our matrix

has eigenvalues λ1 = 8, λ2 = −2.

λ1 = 8 =⇒
( −5 5

5 −5

)(
a
b

)
= 0 =⇒ v1 =

(
1
1

)

λ2 = −2 =⇒
(

5 5
5 5

)(
a
b

)
= 0 =⇒ v2 =

(
1
−1

)

Then the general solution of the homogeneous equation is

v = c1

(
1
1

)
e8t + c2

(
1
−1

)
e−2t

where we have two unknown constants because there were originally two first-order equations, which is
loosely equivalent to one second-order equation.

Constant terms in the governing equation

We now have the general solution to the homogeneous equation: but we’re not trying to solve the
homogeneous equation, we want to solve the full equation

dv

dt
= Av + b.

Just as for ordinary ODEs, we try something that looks like the extra function on the right: in this case
b is a constant vector so we try a constant vector.
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For our example, we want a solution to

d

dt

(
x
y

)
=

(
3 5
5 3

)(
x
y

)
+

(
2
3

)

so we try a constant vector
(
x
y

)
=

(
α
β

)
d

dt

(
α
β

)
=

(
0
0

) (
3 5
5 3

)(
α
β

)
= −

(
2
3

)

which can then be written as an augmented matrix for α and β:
(

3 5 −2
5 3 −3

)
R1 → R1/3
R2 → R2−R1/3

(
1 5/3 −2/3
0 −16/3 1/3

)

The bottom row gives −16β/3 = 1/3 so β = −1/16; then the top row gives α+5β/3 = −2/3, α−5/48 =
−2/3, α = −9/16. The particular solution is

(
α
β

)
=

( −9/16
−1/16

)

and the general solution to the governing equation is
(
x
y

)
= c1

(
1
1

)
e8t + c2

(
1
−1

)
e−2t +

( −9/16
−1/16

)
.

7.1.1 What if there is a repeated eigenvalue?

Beware: sometimes, if there is a repeated eigenvalue, there may not be N eigenvectors to the N -equation
system.

Example:

ẋ = 3x + y
ẏ = 3y

(
ẋ
ẏ

)
=

(
3 1
0 3

)(
x
y

)
.

When we look for the eigenvalues of the matrix, we get λ = 3 twice. When we look for the eigenvectors
the only solution we find is

v1 =
(

1
0

)
.

This gives us a single solution

v = c1v1e
3t (or x = c1e

3t, y = 0).

To find another solution, we try the form

v = (tv1 + w)eλt

v̇ = v1e
λt + λ(tv1 + w)eλt = (tλv1 + v1 + λw)eλt

Av = A(tv1 + w)eλt = (tA v1 +Aw)eλt = (tλv1 +Aw)eλt
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so this form satisfies v̇ = Av if

Aw = v1 + λw =⇒ (A− λI)w = v1

so w is the generalised eigenvector associated with λ.
For our example, this means

(
0 1
0 0

)(
a
b

)
=

(
1
0

)
=⇒ w =

(
α
1

)
= αv1 +

(
0
1

)
.

Any choice of α will do; for convenience we choose α = 0 so that w is simple and v1 · w = 0.
Now we have two independent solutions to combine for the general solution:

v = c1

(
1
0

)
e3t + c2

[
t

(
1
0

)
+

(
0
1

)]
e3t,

where c1 and c2 are scalar constants.

7.1.2 Determining constants from initial conditions

We have found the general solution to several problems: we always had some undetermined constants at
the end. Just as with ordinary ODEs, finding the constants from the initial conditions is the last thing
we do.

Example

Suppose we had found the general solution
(
x
y

)
= c1

(
1
1

)
e8t + c2

(
1
−1

)
e−2t +

( −9/16
−1/16

)

and we were given the initial condition
(
x
y

)
=

( −9/16
−33/16

)
at t = 0.

In our general solution, when t = 0 we have
(
x
y

)
= c1

(
1
1

)
+ c2

(
1
−1

)
+

( −9/16
−1/16

)

so we need

c1

(
1
1

)
+ c2

(
1
−1

)
+

( −9/16
−1/16

)
=

( −9/16
−33/16

)

c1

(
1
1

)
+ c2

(
1
−1

)
=

(
0
−2

)
.

We just solve a set of linear equations to find c =
(
c1
c2

)
.
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In this case we get c =
( −1

1

)
so c1 = −1 and c2 = 1 and the solution that satisfies the ODE system

(from last week) and the initial conditions is
(
x
y

)
= −

(
1
1

)
e8t +

(
1
−1

)
e−2t +

( −9/16
−1/16

)
.

This method of solution is particularly simple if the system eigenvectors are orthogonal. Then it is
easy to solve the algebraic equations of the type c1v1 + c2v2 = d using dot products: v1 · v2 = 0 so
v1 · (c1v1 + c2v2) = v1 · d gives immediately c1v1 · v1 = v1 · d and the solution

c1 =
v1 · d
v1 · v1

and similarly c2 =
v2 · d
v2 · v2

.

Summary

First we look at the homogeneous equation and find the general solution, using the eigenvalues, eigen-
vectors and generalised eigenvectors of the matrix.
Second we sort our a particular solution by trying a constant vector.
Finally we impose the initial conditions to sort out our constants.

8 Matrix Diagonalisation

If an N ×N matrix A has N linearly independent eigenvectors vn, put

V =
(
v1 · · · vN

)
.

Then

AV =
(
λ1v1 · · · λNvN

)
= V




λ1 0 0

0
. . . 0

0 0 λN


 = V Λ.

[Note that V Λ 6= ΛV ; the order of multiplication of matrices is important.]

As the vectors vn are linearly independent, |V | 6= 0 and we can invert V to form V −1. Then

V −1AV = V −1V Λ = Λ.

Example

For A =
(

5 −2
−2 2

)
,

|A− λI| = (5− λ)(2− λ)− 4 = λ2 − 7λ+ 6 = (λ− 1)(λ− 6)

so the matrix has eigenvalues λ1 = 1, λ2 = 6.
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λ1 = 1 :
(

4 −2
−2 1

)(
a
b

)
= 0 =⇒ v1 =

(
1
2

)

λ2 = 6 :
( −1 −2
−2 −4

)(
a
b

)
= 0 =⇒ v2 =

( −2
1

)

Now V =
(
v1 v2

)
=

(
1 −2
2 1

)
; Λ =

(
1 0
0 6

)
.

Check:

V −1 =
1
|V |

(
1 2
−2 1

)
=

1
5

(
1 2
−2 1

)
.

A V =
(

5 −2
−2 2

)(
1 −2
2 1

)
=

(
1 −12
2 6

)
.

V −1AV =
1
5

(
1 2
−2 1

) (
1 −12
2 6

)
=

1
5

(
5 0
0 30

)
=

(
1 0
0 6

)
= Λ.

Expression for A

Since AV = V Λ, we can multiply on the right by V −1 to have

A = V ΛV −1.

Summary of diagonalisation of a matrix

• Find eigenvectors and eigenvalues: this only works if we have N eigenvectors

• V =
(
v1 · · · vN

)

• Λ =




λ1 0 0

0
. . . 0

0 0 λN


.

• Calculate V −1

• Check V −1AV = Λ.

Common special case: A symmetric

If A is symmetric, that is, A> = A, then its eigenvalues are real.
Also, the eigenvectors vi and vj are orthogonal if λi 6= λj .
If further we normalise the eigenvectors, so vi · vi = 1, then

vi · vj =
{

1 i = j
0 i 6= j

and v>i vj = vi · vj .
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Then

V >V =




v>1
...
v>N




(
v1 · · · vN

)
=




v>1 v1 · · · v>1 vN
...

. . .
...

v>Nv1 · · · v>NvN


 =




1 0 0

0
. . . 0

0 0 1


 ,

so V > = V −1.

Example

In the previous example

A =
(

5 −2
−2 2

)
, λ1 = 1, v1 =

(
1
2

)
, λ2 = 6, v2 =

( −2
1

)
.

We can see that v1 · v2 = 0. These vectors both have length 5 so the normalised versions are divided by√
5:

V =
1√
5

(
1 −2
2 1

)
, V > =

1√
5

(
1 2
−2 1

)
,

V >V =
1√
5

(
1 2
−2 1

)
1√
5

(
1 −2
2 1

)
=

1
5

(
5 0
0 5

)
=

(
1 0
0 1

)
= I.

8.1 Relation to ODEs

Suppose we have an ODE system in matrix form in which the matrix has a complete set of N linearly
independent eigenvectors, and so can be reduced to the diagonal matrix Λ:

v̇ = Av + b AV = V Λ V =
(
v1 · · · vN

)
.

Now put v = V X. This gives v̇ = V Ẋ and so

V Ẋ = AV X + b =⇒ Ẋ = V −1AV X + V −1b =⇒ Ẋ = ΛX + V −1b

This is now an uncoupled system: e.g. in two dimensions

V =
(
v1 v2

)
Λ =

(
λ1 0
0 λ2

)
v =

(
x
y

)
X =

(
X
Y

)
V −1b =

(
α
β

)

(it is particularly easy to find α and β if A is symmetric and V̂
−1

= V̂
>

) then

Ẋ = λ1X + α

Ẏ = λ2Y + β

X does not depend on Y and vice versa. We can easily solve each equation independently.
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Example

ẋ = 3x+ 4y
ẏ = 4x− 3y A =

(
3 4
4 −3

)
Λ =

(
5 0
0 −5

)
V =

(
2 1
1 −2

)

using the eigenvalues and eigenvectors we calculated earlier for the same example.
Then putting v = V X means

x = 2X + Y

y = X − 2Y

and the diagonal system is

Ẋ = 5X
Ẏ = −5Y,

an uncoupled system.

8.2 A real linear system: 3 springs

¡¡¡

k
}
m k

}
m k

¡¡
¡

The masses (both with mass m) have displacements from equilibrium x1 and x2. Then the differential
equations governing the system are

mẍ1 = −kx1 + k(x2 − x1)
mẍ2 = −kx2 − k(x2 − x1)

Because these are second order equations, we’re not quite ready to use our theory: so we introduce a
new set of variables, including two new ones:

y1 = x1 y2 = x2 y3 = ẋ1 y4 = ẋ2.

It’s easy to write down the two extra equations we need:

ẏ1 = y3 ẏ2 = y4.

So now we have a four-by-four system:



ẏ1
ẏ2
ẏ3
ẏ4


 =




0 0 1 0
0 0 0 1

−2k/m k/m 0 0
k/m −2k/m 0 0







y1
y2
y3
y4




If we put a2 = k/m then the system is

ẏ =




0 0 1 0
0 0 0 1

−2a2 a2 0 0
a2 −2a2 0 0


 y = Ay.
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The determinant is |A| = 3a4, and to find the eigenvalues:

|(A− λI)| = λ4 + 4λ2a2 + 3a4 = (λ2 + a2)(λ2 + 3a2).

The roots of this equation are

λ1 = ia, λ2 = −ia, λ3 = i
√

3a, λ4 = −i
√

3a,

and the corresponding eigenvectors

v1 =




1
1
ia
ia


 , v2 =




1
1
−ia
−ia


 , v3 =




1
−1√
3ia

−√3ia


 , v4 =




1
−1

−√3ia√
3ia


 .

The general solution to the problem is then



x1

x2

ẋ1

ẋ2


 = c1




1
1
ia
ia


 eiat + c2




1
1
−ia
−ia


 e−iat + c3




1
−1√
3ia

−√3ia


 ei

√
3at + c4




1
−1

−√3ia√
3ia


 e−i

√
3at.

We are really only interested in our original variables x1 and x2, for which
(
x1

x2

)
= c1

(
1
1

)
eiat + c2

(
1
1

)
e−iat + c3

(
1
−1

)
ei
√

3at + c4

(
1
−1

)
e−i

√
3at.

There are four modes here: but they come in two complex conjugate pairs.
(
x1

x2

)
=

(
1
1

) [
c1e

iat + c2e
−iat

]
+

(
1
−1

) [
c3e

i
√

3at + c4e
−i
√

3at
]
.

There are two ‘normal’ modes of oscillation going on:

• A mode in which x1 = x2: the middle spring is not stretched and the particles oscillate with
frequency a

• A mode in which x1 = −x2: the middle of spring 2 does not move and the particles oscillate with
frequency

√
3a.

We can write down the general solution in real form:
(
x1

x2

)
=

(
1
1

)
(d1 cosω1t+ d2 sinω1t) +

(
1
−1

)
(d3 cosω2t+ d4 sinω2t)

in which ω2
1 = a2, ω2

2 = 3a2 and the constants d1, d2, d3 and d4 will come from the initial conditions.
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8.3 A cleverer way

With the original governing equations of the last section:

mẍ1 = −kx1 + k(x2 − x1)
mẍ2 = −kx2 − k(x2 − x1)

we can write a matrix–vector system:
ẍ = Ax

with

x =
(
x1

x2

)
A =

( −2k/m k/m
k/m −2k/m

)
=

( −2a2 a2

a2 −2a2

)

Now if we find the eigenvalues and eigenvectors of this new A we can diagonalise it. For the eigenvalues:

|A−λI| =
∣∣∣∣
−2a2 − λ a2

a2 −2a2 − λ

∣∣∣∣ = (−2a2−λ)2−a4 = (−2a2−λ−a2)(−2a2−λ+a2) = (λ+3a2)(λ+a2)

so the eigenvalues are λ = −3a2 and λ = −a2. For the eigenvectors:

λ1 = −3a2 :
(
a2 a2

a2 a2

)(
c
d

)
= 0 =⇒

(
c
d

)
=

(
1
−1

)
.

λ2 = −a2 :
( −a2 a2

a2 −a2

)(
c
d

)
= 0 =⇒

(
c
d

)
=

(
1
1

)
.

We form our matrix using them as columns

V =
(

1 1
−1 1

)

in order to create a new vector
x = V X.

With the new variables we have

V Ẍ = AV X Ẍ = V −1AV X.

Now because V was designed to diagonalise A,

V −1AV = Λ =
( −3a2 0

0 −a2

)

We now have two separate equations:

Ẍ = −3a2X X = c1 cos
√

3at+ c2 sin
√

3at

Ÿ = −a2Y Y = c3 cos at+ c4 sin at

which then gives us the general solution in terms of the original variables:
(
x1

x2

)
= V

(
X
Y

)
=

(
c1 cos

√
3at+ c2 sin

√
3at+ c3 cos at+ c4 sin at

−c1 cos
√

3at− c2 sin
√

3at+ c3 cos at+ c4 sin at

)
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