UNIVERSITY COLLEGE LONDON
 DEPARTMENT OF PHYSICS AND ASTRONOMY

2B21 MATHEMATICAL METHODS IN PHYSICS AND ASTRONOMY
Problem Sheet M8 (2003-2004)
Solutions to be handed in on Tuesday 2 December 2003

1. By using integration by parts twice, or otherwise, show that

$$
\int \sin n x \sinh x d x=\frac{1}{1+n^{2}}[\cosh x \sin n x-n \cos n x \sinh x]+C .
$$

The function $f(x)$ is periodic with period 2π. In the interval $-\pi<x<+\pi$, it is given by

$$
f(x)=\sinh x
$$

Is $f(x)$ even or odd?

If $f(x)$ is expanded as the Fourier series

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x,
$$

obtain the coefficients a_{n} and b_{n} and show that the Fourier series is

$$
f(x)=\frac{2}{\pi} \sinh \pi \sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{2}+1} \sin n x .
$$

State Parseval's theorem and use it to evaluate

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{\left(n^{2}+1\right)^{2}}
$$

2. Evaluate the Fourier transform

$$
g(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} f(x) e^{i \omega x} d x
$$

of the function $(a>0)$

$$
f(x)= \begin{cases}e^{-a x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

Verify Parseval's theorem for this example.

