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1. We are given that ∫ +1

−1
Pm(x)Pn(x) dx = δnm .

Starting with the cases where n 6= m, since P1(x) is odd and P0(x) and P2(x)
are even, it follows immediately that∫ +1

−1
P0(x)P1(x) dx =

∫ +1

−1
P2(x)P1(x) dx = 0 . [1]

Furthermore,∫ +1

−1
P2(x)P0(x) dx = 1

2

∫ +1

−1
(3x2 − 1) dx = 1

2

[
x3 − x

]+1

−1
= 0 . [2]

For n = m = 0, ∫ +1

−1
[P0(x)]2 dx =

∫ +1

−1
dx = 2 . [1]

For n = m = 1, ∫ +1

−1
[P1(x)]2 dx =

∫ +1

−1
x2 dx = 2

3
. [1]

For n = m = 2,∫ +1

−1
[P2(x)]2 dx = 1

4

∫ +1

−1
(9x4 − 6x2 + 1) dx = 1

4

[
9
5
x5 − 2x3 + x

]+1

−1
= 2

5
. [1]

If P3(x) = a[x3 + bx2 + cx + d], orthogonality with P0(x) requires that∫ +1

−1
[x3 + bx2 + cx + d] dx = 2

3
b + 2d = 0 . [1]

Similarly, orthogonality with P1(x) necessitates∫ +1

−1
[x4 + bx3 + cx2 + dx] dx = 2

5
+ 2

3
c = 0. . [1]
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Finally, imposing orthogonality with respect to P2(x) means that

3
2

∫ +1

−1
[x5 + bx4 + cx3 + dx2] dx + 1

2

∫ +1

−1
[x3 + bx2 + cx + d] dx = 0 .

Now the second integral vanishes because of the orthogonality to P0(x). Hence

3
5
b + 1

2
d = 0 . [1]

This result is incompatible with the previous relation obtained between b and
d. Hence b = d = 0. Students might get this result by claiming that P3(x) is
an odd function. Though true, this was not given in the question and would
only receive a maximum credit of three marks.

Using the result for c, the Legendre polynomial reduces to

P3(x) = a
[
x3 − 3

5
x
]

. [1]

The easiest way of determining the value of a is from the condition that the
Legendre polynomials are normalised by Pn(x = 1) = 1. Therefore

1 = a
[
1− 3

5

]
= 2

5
a ,

and a = 5
2
. [3]

Alternatively, For n = m = 2,

∫ +1

−1
[P3(x)]2 dx = a2

∫ +1

−1

(
x6 − 6

5
x4 + 9

25
x2
)

dx

= a2
[

1
7
x7 − 6

25
x5 + 3

25
x3
]+1

−1
= 8

175
a2 = 2

7
.

Hence a2 = 25/4 and we find once more that a = 5
2
. [3]

2. Expanding the left hand side of

g(x, t) =
exp (−xt/(1− t))

1− t
=

∞∑
n=0

Ln(x) tn

in powers of t gives

g(x, t) = (1+ t+ t2) exp(−xt(1+ t))+O(t3) ≈ (1+ t+ t2)(1−xt−xt2 + 1
2
x2t2) [1]

= 1 + t(1− x) + t2(1
2
x2 − 2x + 1) + O(t3) .

Hence L0(x) = 1, L1(x) = 1− x, [1]

and L2(x) = 1
2
(x2 − 4x + 2). [1]
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Differentiating the generating function with respect to x gives

∂g(x, t)

∂x
= −

(
t

1− t

)
g(x, t) =

∞∑
n=0

L′n(x) tn . [1]

Expanding g(x, t) as a power series and multiplying through by (1− t) results
in

t
∞∑

n=0

Ln(x) tn = (1− t)
∞∑

n=0

L′n(x) tn .

∞∑
n=0

Ln(x) tn+1 =
∞∑

n=0

L′n(x) tn −
∞∑

n=0

L′n(x) tn+1 . [1]

Now change the summation index n → n + 1 in the first term on the right
hand side and compare the coefficients of tn+1;

Ln(x) = L′n+1(x)− L′n(x) . [2]

Now

g(x, t) =
exp (−xt/(1− t))

1− t
=

∞∑
n=0

Ln(x) tn

g(x, u) =
exp (−xu/(1− u))

1− u
=

∞∑
n=0

Ln(x) un [1]

I =
∫ ∞

0
e−xg(x, t) g(x, u) dx =

1

(1− t)(1− u)

∫ ∞

0
exp

[
−x

(
1 +

t

1− t
+

u

1− u

)]
dx

=
1

(1− t)(1− u)

∫ ∞

0
exp

[
−x

(
1− ut

(1− t)(1− u)

)]
dx =

1

1− ut
=

∞∑
n=0

untn . [2]

Using the expansion formulae, the integral must also be given by

I =
∞∑

n=0

∞∑
m=0

tntm
∫ ∞

0
e−xLn(x) Lm(x) dx . [1]

On the left hand side the power of u is always equal to the power of t. Hence
only n = m is non-vanishing on the RHS so that the required integral is
proportional to δnm. [1]
Then, comparing powers of untn on both sides, this shows that∫ ∞

0
e−xLn(x) Ln(x) dx = 1 . [1]

This gives the normalisation integral for the Coulomb wave functions that is
of use in the 2B22 course.
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