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. We are given that
+1
| Pu@)Pa@) dz = 8.
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Starting with the cases where n # m, since P;(z) is odd and Py(z) and Pa(z)
are even, it follows immediately that

[ PP e = [T PR de = 0.

Furthermore,

/+1 Py(z)Py(x) de = é/ﬂ(?)xz ~1)dr =1 {x?’ .
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Forn=m =0,
Forn=m=1,

Forn=m =2,

+1 +1
/ [Pz(x)]Q dr = i/ (9x4—6x2+1)dx: i {%fa _23;3_’_3:}4: _2
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If P3(x) = a[z® + ba® + cx + d], orthogonality with Py(z) requires that

+1
/ (2% + ba® + co +d]dv = 2b+2d = 0.
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Similarly, orthogonality with P;(x) necessitates

+1
/ [2* + b2® + c2® + dz]dz = 2 + 2¢ = 0.
-1

wno



Finally, imposing orthogonality with respect to Py(z) means that

+1 +1
%/ [m5+bx4+cx3+dx2]dx+%/ [2° + bz® 4+ cx +d)dr =0,
1 —1

Now the second integral vanishes because of the orthogonality to Py(x). Hence
$h+1d=0. [1]

This result is incompatible with the previous relation obtained between b and
d. Hence b = d = 0. Students might get this result by claiming that Ps(x) is
an odd function. Though true, this was not given in the question and would
only receive a maximum credit of three marks.

Using the result for ¢, the Legendre polynomial reduces to
Pi(z)=a [a:?’ — %x} : [1]

The easiest way of determining the value of a is from the condition that the
Legendre polynomials are normalised by P,(x = 1) = 1. Therefore

lza[l—ﬂ:%a,

and a = 2. [3]

Alternatively, For n = m = 2,

+1 +1
/ [P3(2))” do = a? /1 (336 — 8t 4 2%:102) dx
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=a {;x — 5T +%x]_1—ﬁa =z.
Hence a? = 25/4 and we find once more that a = 2. [3]

. Expanding the left hand side of

exp (—zt/(1 —t
1-—-1¢

g(I,t) =

) _ f: L)

in powers of ¢ gives

g(z,t) = (L+t+1) exp(—at(1+1)) +O(’) = (L+t+ ) (1 —at —xt* + 12°%)  [1]
=1+t(l—xz)+*(G2” — 22+ 1)+ O(¢%) .

Hence Lo(z) =1, Ly(x) =1 — =, 1]

and Ly(z) = 5(2% — 4z + 2). [1]



Differentiating the generating function with respect to = gives

895; ) _ _ (175_) g(z,t) = ;:OL;(;U) . [1]

Expanding g(z,t) as a power series and multiplying through by (1 — ¢) results
in

' iLn(:z:) = (1—t) iOL;@;) .

i Ly(z) " = i L (z)t" - i L (z) ™+ [1]

Now change the summation index n — n + 1 in the first term on the right
hand side and compare the coefficients of t"*!;

Ln(z) = Ly (z) — Ly (2) - 2]

Now
g(:z:,t) _ exp (_‘ft_/(tl B t)) _ ZOLTLCU) n
gty = SLELILZ) 57 gy 2
> B 1 00 t U
I:/o e glxt) 9w, w)dr = Gy a /0 P [‘x (H1—t+ 1—u)] d

1 o 1—ut 1 = 5
:(1—75)(1—70/0 exp[—x<(1_t)(1_u)>1dle_utzzut_ [2]

n=0
Using the expansion formulae, the integral must also be given by

I= i i "t /OO e Ly(x) Ly (z) dx . [1]

n=0 m=0 0

On the left hand side the power of u is always equal to the power of t. Hence
only n = m is non-vanishing on the RHS so that the required integral is
proportional to d,,,. [1]
Then, comparing powers of u"t" on both sides, this shows that

/OOO e “Ly(x) Ly(x)de=1. [1]

This gives the normalisation integral for the Coulomb wave functions that is
of use in the 2B22 course.



