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1. By separating variables, show that the solution of the differential equation

(1 + x2)
dy

dx
− 2x3y = 0 ,

for which y = 1 at x = 0 is y = (1 + x2)−1 ex2

. [4 marks]

Now solve by the Frobenius method, finding the indicial equation and [2 marks]

recurrence relation. [2 marks]

By expanding the exact solution, show that the two approaches give the same
result up to at least the x4 term. [6 marks]

2. Show that the second order differential equation

(2x + x2)
d2y

dx2
+ (1 + x)

dy

dx
− p2y = 0

has two solutions of the form below with k = 0 or k = 1
2
:

y =
∞∑

n=0

an xn+k , a0 6= 0 [6 marks]

Derive the recurrence relation

an+1

an

= − (n + k)2 − p2

(n + k + 1)(2n + 2k + 1)
· [4 marks]

Use the d’Alembert ratio test to determine the range of values of x for which
the series converges. [3 marks]

In the special case where p is a positive integer, show that the k = 0 series
terminates at n = p. [3 marks]

Denote the resulting polynomial by Tp(x). If Tp(0) = 1, show that to order x
the polynomials satisfy

2 Tp(x) Tq(x) = Tp+q(x) + Tp−q(x) ,

where q is another positive integer with p ≥ q. [4 marks]
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