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1. Rewrite the equations in matrix form,

d 2x

dt2
= A x ,

where

A =

(
−5

2
3
2

3
2

−5
2

)
. [1]

This has eigenvalues λ given by∣∣∣∣∣ (−5
2
− λ) 3

2
3
2

(−5
2
− λ)

∣∣∣∣∣ = 0 ,

which has solutions λ1 = −1 and λ2 = −4. The normal modes therefore satisfy [2]
the uncoupled equations

d2y1

dt2
+ y1 = 0 ,

d2y2

dt2
+ 4y2 = 0 . [1]

To relate the normal modes to the original coordinates, we must find the
rotation matrix R, i.e. the eigenvectors of A. For λ1 = −1, we require(

−3
2

3
2

3
2

−3
2

)(
r11

r21

)
=

(
0
0

)
.

By inspection, the (normalised) solution is

r1 =

(
1/
√

2

1/
√

2

)
. [2]

For the other eigenvalue of λ2 = −4, we require(
3
2

3
2

3
2

3
2

)(
r12

r22

)
=

(
0
0

)
.

By inspection, the (normalised) solution is

r2 =

(
1/
√

2

−1/
√

2

)
.
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[2]

The rotation matrix

R =

(
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)
[1]

and the two sets of coordinates are related by

x1 =
1√
2

(y1 + y2) : y1 =
1√
2

(x1 + x2) ,

x2 =
1√
2

(y1 − y2) : y2 =
1√
2

(x1 − x2) . [1]

The general solutions of the uncoupled differential equations are

y1 = α1 cos t + β1 sin t ,

y2 = α2 cos 2t + β2 sin 2t . [1]

At time t = 0, ẏ1 = ẏ2 = 0, y1 = a
√

2, and y2 = −a
√

2. At later times,
therefore,

y1 = a
√

2 cos t ,

y2 = −a
√

2 cos 2t . [2]

Rotating back to the original coordinates,

x1 = a(cos t− cos 2t) ,

x2 = a(cos t + cos 2t) . [1]

Students can actually solve this simple two-degree-of-freedom problem by much
easier methods. Adding and subtracting the two original equations gives

2
d2x1

dt2
+ 2

d2x2

dt2
= −2x1 − 2x2 ,

2
d2x1

dt2
− 2

d2x2

dt2
= −8x1 − 8x2 .

We can see directly here the uncoupled equations in x1 ± x2 and all the sub-
sequent manipulations should come out. However it does not use the matrix
diagonalisation technique asked for. The maximum mark is therefore only
10/14.

2



2. For the matrix

A =

 1 i 3i
−i 1 −3
−3i −3 −3


the eigenvalue equation is

| A− λI |=

∣∣∣∣∣∣∣
1− λ i 3i
−i 1− λ −3
−3i −3 −3− λ

∣∣∣∣∣∣∣
= (1− λ)[(1− λ)(−3− λ)− 9]− i[−i(−3− λ)− 9i] + 3i[3i + 3i(1− λ)]

= (1− λ)(λ2 + 2λ− 12) + (λ− 6) + 3(3λ− 6) = 0 .

The characteristic equation is therefore

λ3 + λ2 − 24λ + 36 = 0 . [3]

By inspection, λ = 2 is one solution and, factorising this out,

(λ− 2)(λ2 + 3λ− 18) = (λ− 2)(λ− 3)(λ + 6) = 0 ,

and hence the eigenvalues are λ1 = 2, λ2 = 3, and λ3 = −6. [2]

(i) The sum of the eigenvalues is 2+3−6 = −1, whereas the trace is 1+1−3 =
−1, as expected. [1]
(ii) The product of the eigenvalues is 2× 3×−6 = −36. The determinant

| A |=

∣∣∣∣∣∣∣
1 i 3i
−i 1 −3
−3i −3 −3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

1 i 3i
0 0 −6

−3i −3 −3

∣∣∣∣∣∣∣ = −36 ,

as predicted. [2]

The eigenvector equation in the case of λ = 2 is 1− λ i 3i
−i 1− λ −3
−3i −3 −3− λ


 u11

u21

u31

 =

 −1 i 3i
−i −1 −3
−3i −3 −5


 u11

u21

u31

 =

 0
0
0

 ,

leading to the two independent equations

−u11 + iu21 + 3iu31 = 0 ,

−3iu11 − 3u21 − 5u31 = 0 .

This has solution

u1 =
1√
2

 i
1
0

 , [3]

where the factor in front has been inserted to ensure that the eigenvector
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is normalised, u†
1 u1 = 1. Note that this involves complex conjugation and

students might forget this point.

For λ = 3,  −2 i 3i
−i −2 −3
−3i −3 −6


 u12

u22

u32

 = 0 .

This requires

−2u12 + iu22 + 3iu32 = 0 ,

−iu12 − u22 − 2u32 = 0 ,

from which

u2 =
1√
3

 i
−1
1

 · [3]

Finally, for λ = −6,  7 i 3i
−i 7 −3
−3i −3 3


 u13

u23

u33

 = 0 .

Hence

−iu13 + 7u23 − 3u33 = 0 ,

−3iu13 − 3u23 + 3u33 = 0 .

This has solution

u3 =
1√
6

 −i
1
2

 · [3]

Taking the scalar products,

u†
2 u1 ∝ −i× i− 1× 1 + 1× 0 = 0 ,

u†
3 u2 ∝ i× i + 1× (−1) + 2× 1 = 0 ,

u†
1 u3 ∝ −i× (−i) + 1× 1 + 0× 2 = 0 . [3]

Hence the eigenvectors are orthogonal to each other.
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