UNIVERSITY OF LONDON
 (University College London)

BSc Degree 1999

PHYS2B21

MATHEMATICAL METHODS IN PHYSICS AND ASTRONOMY QUESTIONS

Credit will be given for all correct work done. [For guidance: a student should aim to answer correctly the equivalent of four complete questions in the time available.]

The numbers in square brackets at the right-hand edge of the paper indicate the provisional allocation of maximum marks for each section of a question.

1. (a) Show that there is a value of the constant a for which the vector

$$
\mathbf{A}=\left(a x y-z^{3}\right) \hat{\mathbf{i}}+(a-2) x^{2} \hat{\mathbf{j}}+(1-a) x z^{2} \hat{\mathbf{k}}
$$

is conservative?
(b) Use Stokes' theorem to relate the line integral

$$
\oint_{C} \mathbf{A} \cdot d \mathbf{r}
$$

of the vector

$$
\mathbf{A}=2 y \hat{\mathbf{i}}+3 x \hat{\mathbf{j}}-z^{2} \hat{\mathbf{k}}
$$

around the contour C to a surface integral. If C is the closed curve which bounds the surface S of the hemisphere

$$
x^{2}+y^{2}+z^{2}=9 ; z \geq 0
$$

use spherical polar co-ordinates to evaluate the surface integral directly.
(c) Use the identity

$$
(\mathbf{a} \wedge \mathbf{b}) \wedge(\mathbf{c} \wedge \mathbf{d})=\mathbf{b}[\mathbf{a} \cdot(\mathbf{c} \wedge \mathbf{d})]-\mathbf{a}[\mathbf{b} \cdot(\mathbf{c} \wedge \mathbf{d})]
$$

to show that

$$
[(\mathbf{A} \wedge \mathbf{B}) \wedge(\mathbf{B} \wedge \mathbf{C})] \wedge(\mathbf{C} \wedge \mathbf{A})=\sin \theta \cos \theta \mathbf{C}
$$

where \mathbf{A} and \mathbf{B} are unit vectors, such that $\mathbf{A} \wedge \mathbf{B}=\sin \theta$, and \mathbf{C} is a unit vector in the direction of $\mathbf{A} \wedge \mathbf{B}$.
2. (a) Find the directional derivative of the scalar field

$$
\phi=2 x y-z^{2}
$$

at the point $(2,-1,1)$ in the direction towards the point $(3,1,-1)$.
(b) Use the divergence theorem to evaluate the integral

$$
\oiint_{S}(\mathbf{F} \cdot \mathbf{n}) d S
$$

where

$$
\mathbf{F}=4 x z \hat{\mathbf{i}}-y^{2} \hat{\mathbf{j}}+y z \hat{\mathbf{k}}
$$

\mathbf{n} is a unit vector normal to the surface element $d S$, and S is the surface of the cube bounded by $x=0,1 ; y=0,1 ; z=0,1$.
[6 marks]
(c) Verify Green's theorem in the plane

$$
\iint_{A}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\oint_{C}(P d x+Q d y)
$$

for the vector

$$
\mathbf{F}=\left(x y+y^{2}\right) \hat{\mathbf{i}}+x^{2} \hat{\mathbf{j}}
$$

taken around the closed curve of the region bounded by $y=x$ and $y=x^{2} . A$ is the area enclosed by the closed curve C, and the line integral is taken in a counter-clockwise direction,
[9 marks]
3. (a) Use Cramer's method to solve, for y only, the simultaneous linear equations

$$
\left.\begin{array}{r}
2 x-3 y+2 z=5 \\
x+y-2 z=2 \\
-3 x+2 y-3 z=3
\end{array}\right\}
$$

(b) If \mathbf{A} and \mathbf{B} are square matrices of the same order,

$$
\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})
$$

Use this result to prove that for any orthogonal matrix \mathbf{O},

$$
\operatorname{det}(\mathbf{O})= \pm 1
$$

Prove that a real unitary matrix is a orthogonal and a real hermitian matrix is symmetric.
[8 marks]
(c) The equations

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = \frac { 1 } { 2 } (x + \sqrt { 3 } y) } \\
{ y ^ { \prime } = \frac { 1 } { 2 } (- \sqrt { 3 } x + y) }
\end{array} \quad \left\{\begin{array}{l}
x^{\prime \prime}=\frac{1}{2}\left(-x^{\prime}+\sqrt{3} y^{\prime}\right) \\
y^{\prime \prime}=-\frac{1}{2}\left(\sqrt{3} x^{\prime}+y^{\prime}\right)
\end{array}\right.\right.
$$

represent two successive rotations of axes in two dimensions. Use matrix methods to find the combined geometrical result of the two rotations.
[6 marks]
4. Explain what is meant by the terms regular point, singular point, regular singular point and essential singularity as applied to a linear second order differential equation. What is their relation to the possibility of finding series solutions of the equation?
[7 marks]
Verify that $x=0$ is a regular singular point of the equation

$$
2 x \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+2 y=0
$$

and show that one solution is of the form

$$
y(x)=A x^{3 / 2}\left[1-\frac{2}{5} x+\frac{2}{35} x^{2}-\ldots . .\right]
$$

[13 marks]
5. The quadratic form

$$
x^{2}+y^{2}-3 z^{2}+2 x y+6 x z-6 y z
$$

may be written in the matrix form $\mathbf{X}^{T} \mathbf{M X}$, where

$$
\mathbf{X}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \quad \text { and } \quad \mathbf{M}=\left(\begin{array}{ccc}
1 & 1 & 3 \\
1 & 1 & -3 \\
3 & -3 & -3
\end{array}\right)
$$

Show that the eigenvalues of \mathbf{M} are $\lambda_{1}=2, \lambda_{2}=3, \lambda_{3}=-6$ and find the corresponding normalised eigenvectors. Hence find the orthogonal matrix \mathbf{S} which diagonalises \mathbf{M}, ie

$$
\mathbf{S}^{T} \mathbf{M S}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

If the quadratic form is written

$$
\alpha x^{\prime 2}+\beta y^{\prime 2}+\gamma z^{\prime 2}
$$

show that $\alpha=\lambda_{1}, \beta=\lambda_{2}, \gamma=\lambda_{3}$, and find the relation between the primed and unprimed variables.
6. The function

$$
f(x)=(x-1)^{2}
$$

is defined in the interval $[0,2]$. Sketch a continuation to the interval $[-2,0]$ such that it can be represented by a Fourier cosine series and show that the series may be written in the form

$$
f(x)=\frac{1}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\cos (n \pi x)}{n^{2}}
$$

[12 marks]

State Parseval's theorem and apply it to the above result to find the value of

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

You may assume the integral

$$
\int(x-1)^{2} \cos (a x) d x=\frac{(x-1)^{2}}{a} \sin (a x)+\frac{2(x-1)}{a^{2}} \cos (a x)-\frac{2}{a^{3}} \sin (a x)
$$

7. A two-dimensional rectangular plate is of width $x=w$ and infinitely long in the y direction. The long sides are kept at a temperature of zero except along the bottom edge where the temperature is given by $T(x, 0)=f(x)=x$ (This is strictly inconsistent at the point $x=w, y=0$, but you may ignore this). Solve the Laplace equation

$$
\nabla^{2} T(x, y)=0
$$

by the method of separation of variables, taking the separation constant in the x variable to be $-k^{2}$, where k is a positive real constant, and show that the solution is

$$
T(x, y)=\frac{2 w}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} e^{-n \pi y / w} \sin \left(\frac{n \pi x}{w}\right)
$$

[20 marks]
Useful integrals are:

$$
\int x \sin x d x=\sin x-x \cos x
$$

and

$$
\frac{1}{2 L} \int_{-L}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0 & (m \neq n) \\ \frac{1}{2} & (m=n \neq 0)\end{cases}
$$

