UNIVERSITY OF LONDON
(University College London)
PHYSICS 2B21: Mathematical Methods in Physics and Astronomy 20-MAY-02

All questions may be attempted. Credit will be given for all work done correctly. Numbers in square brackets show the provisional allocation of marks per sub-section of the question.

1. State the divergence theorem.

Calculate the integral of the divergence of the vector field

$$
\underline{F}=x^{2} \underline{\hat{e}}_{x}+4 \underline{\hat{e}}_{y}+(z+1)^{2} \underline{\hat{\hat{e}}}_{z}
$$

over the volume bounded by $0 \leq z \leq 1, x \geq 0, y \geq 0$ and the curved surface $x^{2}+y^{2} \leq 1$.

Calculate explicitly the flux of \underline{F} through the top and bottom, and the flat and curved sides of the quarter-cylinder. Hence verify the divergence theorem in this case.

Note that in cylindrical polar coordinates,

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z,
$$

the volume element is

$$
d V=r d r d \theta d z
$$

and the surface element at constant r is

$$
d S=r d \theta d z
$$

2. (a) By writing the equation in Cartesian coordinates, show that

$$
\underline{\nabla} \cdot(\underline{A} \times \underline{B})=\underline{B} \cdot(\underline{\nabla} \times \underline{A})-\underline{A} \cdot(\underline{\nabla} \times \underline{B}),
$$

where \underline{A} and \underline{B} are vector functions of (x, y, z).
Evaluate the right hand side of the identity for the vectors $\underline{A}=(x, y, z)$ and $\underline{B}=(y, z, x)$.
(b) A function $u(x, y)$ of two independent variables x and y satisfies the first order partial differential equation

$$
x \frac{\partial u}{\partial x}-\frac{1}{2} y \frac{\partial u}{\partial y}=0 .
$$

By first looking for a separable solution of the form $u(x, y)=X(x) \times Y(y)$, find the general solution of the equation.
Determine the $u(x, y)$ which satisfies the boundary condition $u(1, y)=1+\sin y$.
3. (a) Write the simultaneous equations

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =2 \\
2 x_{1}-x_{2}+x_{3} & =3 \\
3 x_{1}+5 x_{2}+2 x_{3} & =1
\end{aligned}
$$

in matrix form $\underline{A} \underline{x}=\underline{b}$, where \underline{x} and \underline{b} are column vectors.
Find the inverse matrix \underline{A}^{-1}.
Use \underline{A}^{-1} to solve for x_{1}, x_{2}, and x_{3}.
(b) - If ${ }^{\dagger}$ denotes Hermitian conjugation, show that

$$
(\underline{A} \underline{B})^{\dagger}=\underline{B}^{\dagger} \underline{A}^{\dagger} .
$$

- The trace of a matrix \underline{C} is the sum of its diagonal elements,

$$
\operatorname{Tr}\{\underline{C}\}=\sum_{i} C_{i i}
$$

By writing out the matrix multiplication explicitly in terms of components, show that for any matrix \underline{S} the trace of $\underline{C}=\underline{S}^{\dagger} \underline{S}$ can never be negative.
Verify this result explicitly in the case where

$$
\underline{S}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text {. }
$$

4. A real quadratic form F is defined by

$$
F=\underline{X}^{T} \underline{A} \underline{X}=\left(x_{1}, x_{2}, x_{3}\right)\left(\begin{array}{rrr}
1 & 3 & 0 \\
3 & -2 & -1 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
$$

Show that two of the eigenvalues of the matrix \underline{A} are $\lambda_{1}=1$ and $\lambda_{2}=3$ and determine the third one.
Derive the three corresponding normalised eigenvectors and, by working out their scalar products, show that they are mutually perpendicular.
By performing an orthogonal transformation to a new vector \underline{y},

$$
\underline{x}=\underline{R} \underline{y}
$$

with

$$
\underline{R}^{T} \underline{R}=\underline{I}
$$

find the form of \underline{R} such that F can be written in the diagonal form

$$
\begin{equation*}
F=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2} . \tag{*}
\end{equation*}
$$

[2 marks]

Express y_{1}, y_{2} and y_{3} in terms of x_{1}, x_{2} and x_{3}.
By substituting these expressions for the y_{i} into equation $\left(^{*}\right)$, show that one recovers the original form for F in terms of the x_{i}.
[2 marks]
5. Prove that the second order differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+2 x^{2} \frac{d y}{d x}-2 y=0
$$

has two solutions of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+k}, \quad a_{0} \neq 0
$$

with $k=-1$ or $k=2$.

Show that for both series the ratio

$$
\frac{a_{n+1}}{a_{n}}=-\frac{2(n+k)}{(n+k+2)(n+k-1)}
$$

Show that the series expansion for the $k=-1$ solution terminates at $n=1$ and verify explicitly that the resultant expression does satisfy the differential equation.

Show that the $k=2$ series converges for all values of x,
and that the first two terms are proportional to the series expansion of

$$
y=\left(1+\frac{1}{x}\right) e^{-2 x}+\left(1-\frac{1}{x}\right)
$$

6. The function $f(x)$ is periodic with period 2π. In the interval $-\pi<x<+\pi$, it is given by

$$
f(x)=\sin \left(\frac{1}{2} x\right) .
$$

Is $f(x)$ even or odd?
If $f(x)$ has a Fourier series expansion of the form

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

show, by quoting the orthogonality of the sine and cosine functions, that the Fourier coefficients are given by

$$
\begin{aligned}
a_{n} & =0 \\
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

For the particular $f(x)$, obtain the coefficients b_{n} and show that the Fourier series is

$$
f(x)=\frac{8}{\pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{n}{\left(1-4 n^{2}\right)} \sin n x
$$

Evaluate the Fourier series at $x=\pi$ and comment on the answer.

State Parseval's theorem and use it to evaluate

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n^{2}}{\left(4 n^{2}-1\right)^{2}} \tag{6marks}
\end{equation*}
$$

N.B. You may assume the relations

$$
\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]
$$

and

$$
\int_{-\pi}^{+\pi} \sin n x \sin m x d x=\int_{-\pi}^{+\pi} \cos n x \cos m x d x=\pi \delta_{n m}
$$

where n and m are positive integers.
7. The definite integral of two Legendre polynomials

$$
\int_{-1}^{+1} P_{n}(x) P_{m}(x) d x
$$

vanishes unless $n=m$. By using the generating function for $t \leq 1$,

$$
g(x, t) \equiv\left(1-2 x t+t^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty} P_{n}(x) t^{n}
$$

show that, when $n=m$,

$$
\int_{-1}^{+1}\left[P_{n}(x)\right]^{2} d x=\frac{2}{2 n+1} .
$$

The polynomials satisfy the recurrence relations

$$
\begin{aligned}
(2 n+1) x P_{n}(x) & =(n+1) P_{n+1}(x)+n P_{n-1}, \\
(2 n+1) P_{n}(x) & =P_{n+1}^{\prime}(x)-P_{n-1}^{\prime}(x) .
\end{aligned}
$$

Use these relations, together with normalisation integrals, to evaluate

$$
\int_{-1}^{+1} P_{n+1}(x) x P_{n}(x) d x
$$

and show that

$$
\int_{-1}^{+1} P_{n+1}^{\prime}(x) P_{n}(x) d x=2
$$

Verify both relations by explicit integration for the case of $n=1$.

You may assume that

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) .
$$

