UNIVERSITY OF LONDON
(University College London)
PHYSICS 2B21: Mathematical Methods in Physics and Astronomy
17-MAY-01

All questions may be attempted. Credit will be given for all work done correctly. Numbers in square brackets show the provisional allocation of marks per sub-section of the question.

You may find useful the relation between the basis vectors in spherical polar and Cartesian coordinates:

$$
\begin{aligned}
& \underline{\hat{e}}_{r}=\sin \theta \cos \phi \underline{\hat{e}}_{x}+\sin \theta \sin \phi \underline{\hat{e}}_{y}+\cos \theta \underline{\hat{e}}_{z}, \\
& \hat{e}_{\theta}=\cos \theta \cos \phi \phi \hat{e}_{x}+\cos \theta \sin \phi \underline{\underline{e}}_{y}-\sin \theta \underline{\hat{e}}_{z}, \\
& \hat{\underline{e}}_{\phi}=-\sin \phi \underline{\underline{e}}_{x}+\cos \phi \underline{\underline{e}}_{y},
\end{aligned}
$$

1. (a) By expressing both sides of the equation explicitly in Cartesian coordinates, show that

$$
\underline{C} \times(\underline{\nabla} \times \underline{S})=\underline{\nabla}(\underline{C} \cdot \underline{S})-(\underline{C} \cdot \underline{\nabla}) \underline{S},
$$

where \vec{S} is a vector function of (x, y, z) and \vec{C} is a constant vector.
(b) State Stokes' theorem in integral form.

Calculate the line integral $I=\oint_{\gamma} \underline{W} \cdot \underline{d s}$ of the vector

$$
\underline{W}=\left(2 y^{2}-3 z^{2}\right) \underline{\hat{e}}_{x}-x z^{2} \underline{\hat{e}}_{y}-x y^{2} \underline{\hat{e}}_{z} .
$$

The closed contour γ is the perimeter of the triangle with vertices $a=(1,0,0)$, $b=(0,1,0), c=(0,0,1)$ in that order.

Verify Stokes' theorem for the vector \underline{W} by carrying out an integration over the three faces $o a b, o b c$ and $o c a$ of the tetrahedron in the $z=0$, $x=0$ and $y=0$ planes respectively.
2. (a) In spherical polar coordinates $(x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi$, $z=r \cos \theta$), the line element is given by

$$
d \underline{r}=d r \underline{\hat{e}}_{r}+r d \theta \underline{\hat{e}}_{\theta}+r \sin \theta d \phi \underline{\hat{e}}_{\phi}
$$

where $\underline{\hat{e}}_{r}, \underline{\hat{e}}_{\theta}$, and $\underline{\underline{\hat{e}}}_{\phi}$ are basis vectors in the directions of increasing r, θ and ϕ respectively. Show that in these coordinates

$$
\underline{\nabla} f=\left(\frac{\partial f}{\partial r}\right) \underline{\hat{e}}_{r}+\frac{1}{r}\left(\frac{\partial f}{\partial \theta}\right) \underline{\hat{e}}_{\theta}+\frac{1}{r \sin \theta}\left(\frac{\partial f}{\partial \phi}\right) \underline{\hat{e}}_{\phi} .
$$

If $f=x^{2}+y^{2}$, evaluate $\underline{\nabla} f$ in both Cartesian and spherical polar coordinates and show that they are equal in magnitude and direction.
(b) The function $u(x, t)$ satisfies the differential equation

$$
\left(\frac{\partial^{2} u}{\partial t^{2}}\right)+\alpha^{2} u=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}\right)
$$

where c and α are real constants. By seeking a solution of the equation in the separable form $u(x, t)=X(x) \times T(t)$, find the most general solution for which $u(0, t)=0, u(L, t)=0$, and $u(x, 0)=0$.
3. (a) By considering the action on the basis vectors \underline{e}_{x} and \hat{e}_{y}, show that a counter-clockwise rotation in a two-dimensional space may be represented by the matrix

$$
\underline{R}(\theta)=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

and a reflection in a line making an angle α with the x-axis by

$$
\underline{A}(\alpha)=\left(\begin{array}{rr}
\cos 2 \alpha & \sin 2 \alpha \\
\sin 2 \alpha & -\cos 2 \alpha
\end{array}\right) .
$$

Demonstrate by matrix techniques that a reflection in a line making an angle α with the x-axis followed by a rotation through an angle 2θ is equivalent to a reflection in a line making an angle $\alpha+\theta$ with the x-axis. What would the combined effect be if the actions of the two operations were interchanged?
(b) The matrices $\underline{A}, \underline{B}$, and \underline{D} are related by $\underline{D}=\underline{A} \underline{B}$. Given that

$$
\underline{A}=\left(\begin{array}{rrr}
1 & 0 & 2 \\
3 & -1 & 0 \\
0 & 5 & 1
\end{array}\right) \quad \text { and } \quad \underline{D}=\left(\begin{array}{rrr}
7 & -1 & 0 \\
3 & 1 & -1 \\
3 & 9 & 5
\end{array}\right)
$$

evaluate \underline{A}^{-1}.
Hence derive the value of \underline{B}.
[3 marks]
[4 marks]
[1 marks]
4. A real quadratic form F is defined by

$$
F=\underline{X}^{T} \underline{A} \underline{X}=\left(x_{1}, x_{2}, x_{3}\right)\left(\begin{array}{rrr}
1 & 1 & 3 \\
1 & 1 & -3 \\
3 & -3 & -3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
$$

Show that two of the eigenvalues of the matrix \underline{A} are $\lambda_{1}=2$ and $\lambda_{2}=3$ and determine the third one.

Derive the three corresponding normalised eigenvectors and show that they are mutually orthogonal.
[8 marks]
By performing an orthogonal transformation to a new vector \underline{y},

$$
\underline{x}=\underline{R} \underline{y}
$$

with

$$
\underline{R}^{T} \underline{R}=\underline{I},
$$

show that F can be written in the diagonal form

$$
\begin{equation*}
F=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2} \tag{*}
\end{equation*}
$$

Express y_{1}, y_{2} and y_{3} in terms of x_{1}, x_{2} and x_{3}.
By substituting these expressions for the y_{i} into equation $\left({ }^{*}\right)$, show that one recovers the original form for F in terms of the x_{i}.
5. Show that the second order differential equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+m(m+2) y=0
$$

where m is a non-negative integer, has two solutions of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+k}, \quad a_{0} \neq 0
$$

with $k=0$ or $k=1$.

Find the ratio a_{n+2} / a_{n} for both series.

Show that the series expansion for one of the solutions terminates at $n=m-k$.

For $m=0,1,2$, expand $y_{m}=C_{m} \sin (m+1) \theta / \sin \theta$ as a polynomial in $x=\cos \theta$. Show that, for C_{m} constant, the resulting polynomial is a solution of the original differential equation.
6. The even function $f(x)$ is periodic with period 2π. In the interval $-\pi<x<\pi$, it is given by

$$
f(x)=\left\{\begin{array}{ccc}
\pi+x, & \text { if } & -\pi<x<-\frac{1}{2} \pi \\
\frac{1}{2} \pi, & \text { if } & -\frac{1}{2} \pi<x<\frac{1}{2} \pi \\
\pi-x, & \text { if } & \frac{1}{2} \pi<x<\pi
\end{array}\right.
$$

Sketch the function in the above interval.

If $f(x)$ is expanded in a Fourier series of the form

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x
$$

show, by using the orthogonality of the cosine functions, that the Fourier coefficients are given by

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x
$$

Evaluate the coefficients a_{n} and show that the Fourier series for $f(x)$ is

$$
f(x)=\frac{3 \pi}{8}+\frac{2}{\pi}\left[\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}} \cos [(2 n+1) x]-2 \sum_{n=0}^{\infty} \frac{1}{(4 n+2)^{2}} \cos [(4 n+2) x]\right] .
$$

State Parseval's theorem and apply it to the above series to evaluate

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{4}}
$$

7. The Legendre polynomials $P_{n}(x)$ may be defined by the generating function

$$
g(x, t) \equiv\left(1-2 x t+t^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty} P_{n}(x) t^{n} .
$$

By differentiating $g(x, t)$ partially with respect to t or x, derive the recurrence relations:
(a) $(2 n+1) x P_{n}(x)=(n+1) P_{n+1}(x)+n P_{n-1}(x)$,
(b) $\quad P_{n}(x)=\frac{d P_{n+1}(x)}{d x}+\frac{d P_{n-1}(x)}{d x}-2 x \frac{d P_{n}(x)}{d x}$.

By differentiating (a) with respect to x, and substituting into (b), show that
(c) $\quad \frac{d P_{n+1}(x)}{d x}=(n+1) P_{n}(x)+x \frac{d P_{n}(x)}{d x}$.

As $x \rightarrow \infty$ the Legendre polynomials behave as

$$
P_{n}(x) \approx \frac{(2 n)!}{2^{n}(n!)^{2}} x^{n}
$$

Show that this behaviour is consistent with relations (a) and (c).

