UNIVERSITY OF LONDON
 (University College London)

PHYSICS 2B21: Mathematical Methods in Physics and Astronomy

26-MAY-00

All questions may be attempted. Credit will be given for all work done correctly. Numbers in square brackets show the provisional allocation of marks per sub-section of the question.

1. State the divergence theorem.

Calculate the integral of the divergence of the vector field

$$
\underline{F}=x y \underline{\hat{e}}_{x}+y z^{2} \underline{\hat{e}}_{y}+\underline{\hat{e}}_{z}
$$

over the volume of the hemisphere defined by $x^{2}+y^{2}+z^{2} \leq 16$ and $z \geq 0$.

Write down the z and the radial components of \underline{F} and use them to calculate explicitly the flux of \underline{F} through the base and the curved surface of the hemisphere. Hence verify the divergence theorem in this case.

Note that in spherical polar coordinates

$$
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta
$$

and the radius vector points in the direction

$$
\hat{r}=\sin \theta \cos \phi \underline{\underline{e}}_{x}+\sin \theta \sin \phi \underline{\underline{e}}_{y}+\cos \theta \underline{\underline{e}}_{z}
$$

The element of area perpendicular to the radius vector is

$$
d A_{r}=r^{2} \sin \theta d \theta d \phi,
$$

and the corresponding element of volume is

$$
d V=r^{2} d r \sin \theta d \theta d \phi
$$

Integrals of the type $\int \sin ^{2 n+1} \theta \cos ^{2 m} \theta d \theta$ (m and n integers) can be evaluated by using the substitution $t=\cos \theta, d t=-\sin \theta d \theta$.
2. (a) By evaluating both sides explicitly in Cartesian coordinates, verify the identity

$$
\underline{\nabla} \times(\underline{\nabla} \times \underline{A})=\underline{\nabla}(\underline{\nabla} \cdot \underline{A})-\nabla^{2} \underline{A}
$$

for the vector field

$$
\underline{A}=x^{2} y z \underline{\hat{e}}_{x}+x y z^{2} \underline{\hat{e}}_{y}+y^{2} z \underline{\hat{e}}_{z}
$$

(b) A drumhead consists of a circular membrane attached to a rigid support along the circumference $r=a$. The vibrations are governed by the equation

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial Z}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} Z}{\partial \theta^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} Z}{\partial t^{2}}
$$

where Z is the displacement from equilibrium at polar coordinate (r, θ) and time t, and v is a constant. By assuming a solution of the form

$$
Z(r, \theta, t)=R(r) \times \Theta(\theta) \times T(t)
$$

derive ordinary differential equations for $R(r), \Theta(\theta)$, and $T(t)$.
Show that solutions which have $Z=0$ at $t=0$ are of the form

$$
Z=R_{n}(k r) \sin (k v t)\left[a_{n} \cos n \theta+b_{n} \sin n \theta\right]
$$

where n is an integer.
How can one find information on the possible values of k ?
3. (a) Write the simultaneous equations

$$
\begin{aligned}
& 3 x_{1}-2 x_{2}-x_{3}=4, \\
& 2 x_{1}+x_{2}+2 x_{3}=10, \\
& x_{1}+3 x_{2}-4 x_{3}=5
\end{aligned}
$$

in matrix form $\underline{A} \underline{x}=\underline{b}$, where \underline{x} and \underline{b} are column vectors.
Find the inverse matrix \underline{A}^{-1}.
Use \underline{A}^{-1} to solve for x_{1}, x_{2}, and x_{3}.
(b) For any real parameter α, the matrix

$$
\underline{H}=\alpha\left(\begin{array}{cc}
\cos \theta & i \sin \theta \\
-i \sin \theta & \cos \theta
\end{array}\right)
$$

is Hermitian. By expanding the exponential in a power series, verify to order α^{2} that $\underline{U}=\exp (i \underline{H})$ is unitary $\left(\underline{U}^{\dagger} \underline{U}=\underline{I}\right)$.
4. Three particles of equal masses, attached to a light spring, can move in a straight line, as illustrated in the diagram.

The equations of motion may be written in matrix form

$$
\frac{d^{2} \underline{x}}{d t^{2}}=\underline{A} \underline{x}
$$

where

$$
\underline{A}=\left(\begin{array}{rrr}
-3 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -3
\end{array}\right)
$$

and \underline{x} is a column vector of the displacements x_{i}.

Show that the eigenvalues of \underline{A} are $\lambda_{1}=-1, \lambda_{2}=-3$, and $\lambda_{3}=-4$.

Find the corresponding normalised eigenvectors.

By making the transformation $\underline{x}=\underline{R} \underline{y}$, where \underline{R} is an orthogonal matrix independent of t, the equations of motion may be transformed to

$$
\frac{d^{2} \underline{y}}{d t^{2}}=\Lambda \underline{y}
$$

where Λ is the diagonal matrix of the eigenvalues of \underline{A}. Find the general solutions for the y_{i} as functions of time.

Determine the elements of the matrix \underline{R} and hence solve for y_{2} in terms of the x_{i} and give a physical interpretation of this normal mode.
5. Show that the second order differential equation

$$
x \frac{d^{2} y}{d x^{2}}+(1+p-x) \frac{d y}{d x}+b y=0
$$

where b and p are constants with $p>0$, has two solutions of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+k}, \quad a_{0} \neq 0
$$

with $k=0$ or $k=-p$.

Derive the recurrence relation

$$
\frac{a_{n+1}}{a_{n}}=\frac{n+k-b}{(n+k+1)(n+k+1+p)} .
$$

Use the d'Alembert ratio test to show that both series converge for all values of x.

In the special case of $b=m$, a positive integer, show that the series with $k=0$ terminates at $n=m$ to yield a polynomial solution.

By differentiating the original differential equation with respect to x, show that if y is a solution for particular values of m and p, then $d y / d x$ is also a solution to the equation with $m \rightarrow m-1$ and $p \rightarrow p+1$.
6. The function $f(x)$ is periodic with period 2π. In the interval $-\pi<x<+\pi$, it is given by

$$
f(x)=\cos \left(\frac{1}{2} x\right) .
$$

Is $f(x)$ even or odd?

If $f(x)$ has a Fourier series expansion of the form

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

show, by using the orthogonality of the sine and cosine functions, that the Fourier coefficients are given by

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \\
b_{n} & =0
\end{aligned}
$$

Evaluate the coefficients a_{n} and show that the Fourier series for $f(x)$ is

$$
f(x)=\frac{2}{\pi}+\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\left(1-4 n^{2}\right)} \cos n x .
$$

State Parseval's theorem and use it to evaluate

$$
\sum_{n=0}^{\infty} \frac{1}{\left(4 n^{2}-1\right)^{2}}
$$

N.B. You may assume the relation

$$
\cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)] .
$$

7. The Legendre polynomials $P_{n}(x)$ satisfy the differential equation

$$
\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d}{d x} P_{n}(x)\right]+n(n+1) P_{n}(x)=0
$$

where n is a non-negative integer. Deduce the orthogonality relation

$$
\int_{-1}^{+1} P_{m}(x) P_{n}(x) d x=0, \quad(n \neq m)
$$

Given that

$$
\int_{-1}^{+1}\left[P_{n}(x)\right]^{2} d x=\frac{2}{2 n+1}
$$

and that a function $f(x)$ can be expressed as a series of Legendre polynomials,

$$
f(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x), \quad(-1 \leq x \leq+1)
$$

obtain a formula for the coefficients a_{n}.

If the function $f(x)$ is defined by

$$
f(x)=\frac{1}{(x+c)^{1 / 2}}, \quad(c>1)
$$

determine the coefficients a_{0} and a_{1}.

