
PHYSICS 2B21: Mathematical Methods in Physics and Astronomy

Mid–Sessional Examination December 2003

College regulations do not allow us to return regular examination scripts to you
in order that you can (hopefully) learn from your mistakes. The Christmas mock
examinations are exceptions to this rule but you must realise that the examiner is
in general not marking to give feedback to the candidate; rather is he explaining his
reasoning to any second examiner checking the paper. Please note that this paper
(worth 2%) has not been checked by a second examiner.

The percentage has been obtained by dividing the mark by 0.8. A percentage of 50
or over yield a continuous assessment mark of 2, one between 25 and 49% results in
1 extra continuous assessment mark. As a rough guide, the pass mark on this scale
in the summer is likely to correspond to about 28%. This is to be compared to the
class average of 34.9% achieved in this mock exam.

Before describing the most common errors on the different questions, let me mention
some overall points.

• When the string is tied too tightly, the examiner has to tear the paper in order
that it lie down flat on the table. This is very irritating.

• Some students do not always start a new question on a different page.

• You should not write in the columns of the answer books.

• When students answer more than four questions, I mark the first four and
ignore completely the fifth.

Some comments on individual questions

1. By chance, I was requested to go over much of this material on the day before
the test — but it didn’t do much good!

• φ is a scalar function. Many candidates wrote φx etc. and then got
nowhere afterwards.

• Many students seemed to neglect the necessity of writing basis vectors
when writing out vectors in terms of components.

• There was in fact much confusion between vectors and scalars which
should have been clear from the 1B21 course.

2. If D = B A then B = D A−1. The order is important.

3. The normalisation was done a bit better this year. However, students who
could not find the other two eigenvalues were completely lost after the first
five marks.
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4. When using d’Alembert, you must keep the |x| factor in or otherwise it is
meaningless. The differentiation of the cosh was not always very good.

5. Many students were not at ease with the standard bookwork at the beginning
of the Fourier question. This is silly because it tends to come up very often.
Candidates who tried this tended to use the integration by parts method. De
Moivre is a MUCH simpler way and this should have been realised since I put
it first.

6. There were VERY few attempts at this question and they were almost uni-
versally poor. Separation of variables is completely straightforward — much
easier than the Fourier series integration for example.

Model solutions

1. (a) In Cartesian coordinates,

∇ · (φS) =
∂

∂x
(φSx) +

∂

∂y
(φSy) +

∂

∂z
(φSz)

= φ
∂Sx

∂x
+ φ

∂Sy

∂y
+ φ

∂Sz

∂z
+

∂φ

∂x
Sx +

∂φ

∂y
Sy +

∂φ

∂z
Sz

= φ (∇ · S) + (∇φ) · S . [3]

Similarly

∇× (φS) =

∣∣∣∣∣∣∣
êx êy êz
∂
∂x

∂
∂y

∂
∂z

φSx φSy φSz

∣∣∣∣∣∣∣
The x-component of this is

∂

∂y
(φSz)−

∂

∂z
(φSy) = φ

∂Sz

∂y
+

∂φ

∂y
Sz − φ

∂Sy

∂z
− ∂φ

∂z
Sy

= φ

(
∂Sz

∂y
− ∂Sy

∂z

)
+

(
∂φ

∂y
Sz −

∂φ

∂z
Sy

)
= φ (∇× S)x + (∇φ× S)x .

The same is true for the other components, which proves that

∇× (φS) = ∇φ× S + φ (∇× S) . [3]

Now

P = ∇×S =

∣∣∣∣∣∣∣
êx êy êz
∂
∂x

∂
∂y

∂
∂z

Sx Sy Sz

∣∣∣∣∣∣∣ = êx

(
∂Sz

∂y
− ∂Sy

∂z

)
−êy

(
∂Sz

∂x
− ∂Sx

∂z

)
+êz

(
∂Sy

∂x
− ∂Sx

∂y

)
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Taking just the x-component,

(C × (∇× S))x = CyPz−CzPy = Cy

(
∂Sy

∂x
− ∂Sx

∂y

)
+Cz

(
∂Sz

∂x
− ∂Sx

∂z

)
.

Consider now x-component of the right hand side of the identity:

(∇ (C · S))x =
∂

∂x
(CxSx + CySy + CzSz) = Cx

∂Sx

∂x
+ Cy

∂Sy

∂x
+ Cz

∂Sz

∂x
·

Also

((C · ∇) S)x = Cx
∂Sx

∂x
+ Cy

∂Sx

∂y
+ Cz

∂Sx

∂z
·

Hence

(RHS)x = Cx
∂Sx

∂x
+ Cy

∂Sy

∂x
+ Cz

∂Sz

∂x
− Cx

∂Sx

∂x
− Cy

∂Sx

∂y
− Cz

∂Sx

∂z

= Cy

(
∂Sy

∂x
− ∂Sx

∂y

)
+ Cz

(
∂Sz

∂x
− ∂Sx

∂z

)
= (LHS)x .

The identity is true for the x-component. There is nothing special about
x compared to y or z so that it follows that

C × (∇× S) = ∇ (C · S)− (C · ∇) S . [4]

(b) In spherical polar coordinates (x = r sin θ cos φ, y = r sin θ sin φ,
z = r cos θ), the line element is given by

dr = dr êr + r dθ êθ + r sin θ dφ êφ ,

so that

(dr)2 = (dr)2 + r2 (dθ)2 + r2 sin2 θ (dφ)2 = h2
r (dr)2 + h2

θ (dθ)2 + h2
φ (dφ)2 .

Thus hr = 1, hθ = r, and hφ = r sin θ. One can then accept for the marks

∇f =
∑ 1

hi

(
∂f

∂xi

)
=

(
∂f

∂r

)
êr +

1

r

(
∂f

∂θ

)
êθ +

1

r sin θ

(
∂f

∂φ

)
êφ ·

Alternatively, an argument on physical grounds is that the component
of gradient along a particular basis vector ûi is the rate of change of f
with distance when ui changes by a small amount. The relation between
dr and dui can be read off from the original defining equation — it gives
the same answer! [4]
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For f = x2 + y2, in Cartesian coordinates

∇f = 2(x êx + y êy) . [1]

In polar coordinates, f = r2 sin2 θ, so that, using the above formula,

∇f = 2r sin2 θ êr + 2r sin θ cos θ êθ = 2r sin θ (sin θ êr + cos θ êθ) . [2]

One can go directly to check the equality of these two forms, but some
students might want to check the magnitudes first. In Cartesian coordi-
nates

| ∇f |2= 4(x2 + y2) = 4r2 sin2 θ ,

whereas in polars it is

| ∇f |2= 4r2(sin4 θ + sin2 θ cos2 θ) = 4r2 sin2 θ ,

and these two expressions are equal.

To show that the two vectors are identically equal, the student has either
to work geometrically or use the given relation between the basis vectors:

êr = sin θ cos φ êx + sin θ sin φ êy + cos θ êz ,

êθ = cos θ cos φ êx + cos θ sin φ êy − sin θ êz ,

êφ = − sin φ êx + cos φ êy ,

Now 2r sin θ (sin θ êr + cos θ êθ) =

2r sin θ [sin θ (sin θ cos φ êx + sin θ sin φ êy + cos θ êz)

+ cos θ (cos θ cos φ êx + cos θ sin φ êy − sin θ êz)]

= 2r sin θ(cos φ êx + sin φ êy) = 2(x êx + y êy) . [3]
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2. (a) The determinant of the matrix is

|A| =

∣∣∣∣∣∣∣
3 1 −3
1 4 2

−3 2 5

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

3 1 −3
1 4 2
0 3 2

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

0 −11 −9
1 4 2
0 3 2

∣∣∣∣∣∣∣
= −(−22 + 27) = −5 . [2]

The matrix of minors and the cofactor matrix are

M =

 16 11 14
11 6 9
14 9 11

 and C =

 16 −11 14
−11 6 −9

14 −9 11

 ·
[3]

The adjoint matrix
Aadj = CT = C [1]

because the matrix is symmetric.

Hence the inverse matrix

A−1 =
1

|A|
Aadj =

1

5

 −16 11 −14
11 −6 9

−14 9 −11

 ·
[1]

Now

B = D A−1 =
1

5

 −2 12 11
14 17 −3
−5 16 19


 −16 11 −14

11 −6 9
−14 9 −11

 =

 2 1 3
1 5 −2

−2 4 1

 ·
[3]

Students who do the multiplication the wrong way around should find
that

A−1 D =
1

5

 256 −229 −475
−151 174 310

209 −191 −390

 ,

but this gives a maximum of two marks.
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(b) The three matrices have many properties in common. Choose one from
Hermitean, zero trace, unitary, or having determinants equal to −1. [1]

σ2
1 =

(
0 1
1 0

) (
0 1
1 0

)
=

(
1 0
0 1

)
,

σ2
2 =

(
0 −i
i 0

) (
0 −i
i 0

)
=

(
1 0
0 1

)
,

σ2
3 =

(
1 0
0 1

) (
1 0
0 −1

)
=

(
1 0
0 1

)
. [2]

σ1 σ2 =

(
0 1
1 0

) (
0 −i
i 0

)
=

(
i 0
0 −i

)
= iσ3 . [1]

σ2 σ1 =

(
0 −i
i 0

) (
0 1
1 0

)
=

(
−i 0
0 i

)
= −iσ3 . [1]

Z = exp [iα σ2] =
∞∑

n=0

1

n!
(iα)n (σ2)

n .

Now if n is odd,
(σ2)

n = σ2 ,

whereas if n is even,
(σ2)

n = I . [2]

Hence

Z =
∑

n=even

1

n!
(iα)n I +

∑
n=odd

1

n!
(iα)n σ2

=
∞∑

m=0

(−1)m 1

(2m)!
α2m I+i

∞∑
m=0

(−1)m 1

(2m + 1)!
α2m+1 σ2 = I cos α+iσ2 sin α.

[3]
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3. For

A =

 1 1 2
1 −2 −1
2 −1 1



|A| =

∣∣∣∣∣∣∣
1 1 2
1 −2 −1
2 −1 1

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

1 1 2
0 −3 −3
0 −3 −3

∣∣∣∣∣∣∣ = 0 .

(Here we have subtracted 2R1 from R3 and R1 from R2.) Hence one of the
eigenvalues is λ1 = 0. [2]

To verify that v1 is the associated eigenvector,

(A− λ1I) v1 =
1√
3

 1 1 2
1 −2 −1
2 −1 1


 1

1
−1

 =

 1 + 1− 2
1− 2 + 1
2− 1− 1

 =

 0
0
0

 ,

as required. It is a normalised eigenvector by inspection. [3]

The general eigenvalue equation is

|A− λI| = 0 =

∣∣∣∣∣∣∣
1− λ 1 2

1 −2− λ −1
2 −1 1− λ

∣∣∣∣∣∣∣
= (1− λ)[(λ + 2)(λ− 1)− 1]− [(1− λ) + 2] + 2[−1 + 2(2 + λ)]

= (1− λ)(λ2 + λ− 3)− (3− λ) + 2(3 + 2λ) = −λ3 + 9λ .

Hence, the other two eigenvalues are λ2 = +3 and λ3 = −3. [3]

For the second eigenvalue,

(A− λ2I) v2 =

 −2 1 2
1 −5 −1
2 −1 −2


 v12

v22

v32

 =

 0
0
0

 ,

so that v22 = 0 and v12 = v32. The normalised eigenvector is therefore [2]

v2 =
1√
2

 1
0
1

 ·
[1]
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Similarly for the third eigenvalue,

(A− λ3I) v3 =

 4 1 2
1 1 −1
2 −1 4


 v13

v23

v33

 =

 0
0
0

 ,

so that
v13 + v23 − v33 = 0, ,

2v13 − v23 + 4v33 = 0.

This has solution v13 = −v33 and v23 = 2v33 and so

v3 =
1√
6

 −1
2
1

 ·
[2]

Now

v1 · v2 =
1√
6

+ 0− 1√
6

= 0 ,

v2 · v3 = − 1√
12

+ 0 +
1√
12

= 0 ,

v3 · v1 = − 1√
18

+
2√
18
− 1√

18
= 0 .

The vectors are therefore all mutually orthogonal. The normalisation factors
are not necessary to get these marks. [3]

Taking the cross product,

v1 × v2 =
1√
6

∣∣∣∣∣∣∣
ê1 ê2 ê3

1 1 −1
1 0 1

∣∣∣∣∣∣∣ =
1√
6

(ê1 − 2ê2 − ê3) = −v3 .
[2]

This last two results follow because:
a) they are orthogonal vectors due to the matrix A being real and symmetric
(thus Hermitean), [1]
b) the eigenvectors have length one — they were normalised. Otherwise there
would have been some overall scale in the cross-product relation. [1]
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4. Look for a solution of the second order differential equation

(1− x2)
d2y

dx2
− x

dy

dx
− y = 0 ,

in the form

y =
∞∑

n=0

an xn+k ,

y′ =
∞∑

n=0

an(n + k) xn+k−1 ,

y′′ =
∞∑

n=0

an(n + k)(n + k − 1) xn+k−2 . [1]

Inserting these into the equation, we obtain

∞∑
n=0

an(n + k)(n + k − 1) xn+k−2 −
∞∑

n=0

an(n + k)(n + k − 1) xn+k

−
∞∑

n=0

an(n + k) xn+k −
∞∑

n=0

an xn+k = 0 . [1]

Grouping like powers together, this simplifies to

∞∑
n=0

an (n + k)(n + k − 1) xn+k−2 =
∞∑

n=0

an

[
(n + k)2 + 1

]
xn+k . [2]

If this is to be true for a range of values of x, it must be true power by power
in x. The lowest power comes from n = 0 in the first term. Since there is no
xk−2 power in the second term, we demand that

a0 k(k − 1) = 0 .

However, by assumption, a0 6= 0 so that k = 0 or k = 1. [2]

To get the recurrence relation, change the dummy index so that we have the
same powers of x everywhere by putting n → n + 2 in the first term:

∞∑
n=−1

an+2 (n + k + 1)(n + k + 2) xn+k =
∞∑

n=0

an

[
(n + k)2 + 1

]
xn+k . [2]

This gives us immediately the recurrence relation

an+2

an

=
(n + k)2 + 1

(n + k + 2)(n + k + 1)
, [2]
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with k = 0 or k = 1.

The series converges if, when n →∞,∣∣∣∣∣an+2x
n+2

anxn

∣∣∣∣∣ =
∣∣∣∣an+2

an

∣∣∣∣ |x2| < 1 . [1]

This means that we need for convergence∣∣∣∣∣ (n + k)2 + 1

(n + k + 2)(n + k + 1)

∣∣∣∣∣ |x2| → |x2| < 1 .

Thus the series will converge for all −1 < x < +1. [2]

Trying
y = cosh (arcsin x) ,

y′ = sinh (arcsin x)
1√

1− x2
, [1]

y′′ = cosh (arcsin x)
1

1− x2
+ sinh (arcsin x)

x

(1− x2)3/2
. [2]

Inserting this into the differential equation gives

cosh (arcsin x)+sinh (arcsin x)
x√

1− x2
−x sinh (arcsin x)

1√
1− x2

−cosh (arcsin x) = 0,

as expected. [2]

Now the inverse sine function only gives real solutions for |x| < 1 and so we
should expect something strange to happen at these limits. In fact the series
diverges there. [2]

Students could argue instead that the equation has a regular singularity at
x = ±1. Though true, this is not what was asked for and would only get one
mark.
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5. We are given that

f(x) = 1
2
a0 +

∞∑
n=1

an cos nx +
∞∑

n=1

bn sin nx .

Integrating both sides with respect to x from −π to π gives∫ π

−π
f(x) dx = a0 π +

∞∑
n=1

an
1

n
sin nx

∣∣∣∣π
−π
−

∞∑
n=1

an
1

n
cos nx

∣∣∣∣π
−π

= a0 π . [1]

Multiplying both sides by cos mx and integrating from −π to π gives (for
m > 0) ∫ π

−π
f(x) cos mx dx =

∞∑
n=1

an

∫ π

−π
cos nx cos mx dx . [1]

We have here used the fact that the integrals of the terms involving a0 and bn

will vanish. But the cosine functions are orthogonal over this interval:∫ π

−π
cos nx cos mx dx = π δm n . [1]

The Kronecker-delta just picks out the term in the sum where m = n, which
means that

an =
1

π

∫ π

−π
f(x) cos nx dx , [1]

a formula that is also valid when n = 0.

In exactly the same way, multiplying both sides by sin mx and integrating
yields ∫ π

−π
f(x) sin mx dx =

∞∑
n=1

bn

∫ π

−π
sin nx sin mx dx , [1]

and thus

bn =
1

π

∫ π

−π
f(x) sin nx dx . [1]

∫ π

−π
eλxeinx dx =

∫ π

−π
eλx [cos nx + i sin nx] dx =

1

λ + in
e(λ+in)x

∣∣∣∣π
−π

= (−1)n 2

λ + in
sinh λπ . [2]

Comparing real and imaginary parts of this equation, we see that∫ π

−π
eλx cos nx dx = 2(−1)n sinh λπ

λ

λ2 + n2∫ π

−π
eλx sin nx dx = −2(−1)n sinh λπ

n

λ2 + n2
, [2]
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Using INSTEAD integration by parts, things get rather messy and the fol-
lowing shows the alternative distribution of the previous four marks.

I =
∫ π

−π
eλx cos nx dx =

1

λ

∫ π

−π
cos nx d

(
eλx
)

=
1

λ
cos nx eλx

∣∣∣∣π
−π

+
n

λ

∫ π

−π
sin nx eλx dx = (−1)n 2

λ
sinh λπ+

n

λ2

∫ π

−π
sin nx d

(
eλx
)

= (−1)n 2

λ
sinh λπ +

n

λ2
sin nx e−λx

∣∣∣∣π
−π
− n2

λ2

∫ π

−π
cos nx e−λx dx

= (−1)n 2

λ
sinh λπ − n2

λ2
I . (2)

Hence

I = 2(−1)n sinh λπ
λ

λ2 + n2
. (1)

The integral involving sin nx can be done in an analogous manner but one can
also recognise that this integral occurs during the above integration by parts.
Defining

J =
∫ π

−π
eλx sin nx dx ,

we see that

I = (−1)n 2

λ
sinh λπ +

n

λ
J ,

from which it follows that

J = −2(−1)n sinh λπ
n

λ2 + n2
. (1)

Use of these integrals in the Fourier series gives immediately

eλx =
1

λπ
sinh λπ + 2 sinh λπ

1

π

∞∑
n=1

λ

λ2 + n2
(−1)n cos nx

−2 sinh λπ
1

π

∞∑
n=1

n

λ2 + n2
(−1)n sin nx . [2]

Parseval’s theorem states that the average value of f 2 is given by

< f2(x) > =
1

2π

∫ +π

−π
[f(x)]2 dx =

(
a0

2

)2

+
1

2

∞∑
n=1

(a 2
n + b 2

n) . [2]

< f2(x) > =
1

2π

∫ +π

−π
e2λx dx =

1

4λπ
e2λx

∣∣∣π
−π

=
1

2λπ
sinh 2λπ . [2]
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The right hand side of Parseval’s identity in this case is

RHS =

(
sinh λπ

π

)2 [
1

λ2
+ 2

∞∑
n=1

(
λ2

(λ2 + n2)2
+

n2

(λ2 + n2)2

)]
[2]

Thus
1

λπ
sinh λπ cosh λπ = sinh2 λπ

1

π2

[
1

λ2
+ 2

∞∑
n=1

1

λ2 + n2

]
and so

∞∑
n=1

λ2

λ2 + n2
= 1

2
(πλ coth λπ − 1) . [2]
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6. (a) Look for a solution of the equation

1

r

∂

∂r

(
r
∂Z

∂r

)
+

1

r2

∂2Z

∂θ2
=

1

v2

∂2Z

∂t2
,

in the separated form

Z(r, θ, t) = R(r)×Θ(θ)× T (t) .

Hence

Θ T
d

dr

(
r

dR

dr

)
+ R T

1

r2

d2Θ

dθ2
= R Θ

1

v2

d2T

dt2
·

After dividing through by R Θ T ,

1

R

1

r

d

dr

(
r

dR

dr

)
+

1

Θ

1

r2

d2Θ

dθ2
=

1

T

1

v2

d2T

dt2
, [1]

we see that the RHS depends purely upon time, whereas the LHS is
independent of t. Therefore they are both equal to a constant, which we
put equal to −k2. Then

d2T

dt2
+ k2v2 T = 0 , [1]

r

R

d

dr

(
r

dR

dr

)
+ k2r2 +

1

Θ

d2Θ

dθ2
= 0 .

Now the third term above depends purely upon θ while the first two are
functions purely of r. Hence they must both be constant, say equal to
−n2. Then the r and θ dependence factorises into two equations

r
d

dr

(
r

dR

dr

)
+ (k2r2 − n2) R = 0 , [1]

d2Θ

dθ2
+ n2Θ = 0 . [1]

The θ equation has solutions

Θ = an cos nθ + bn sin nθ . [1]

The drumhead is clearly in the same position at θ and θ + 2π, which
means that n must be an integer. [1]

The solution for T (t) which vanishes at t = 0 is

T = sin(kvt) . [1]
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Since Bessel’s equation has not been covered in the course, students will
(in general) not have seen the equation for R(r). Letting ρ = kr, this
becomes

ρ
d

dρ

(
ρ

dR

dρ

)
+ (ρ2 − n2) R = 0 ,

which has solutions of the form Rn(ρ) = Rn(kr). Most students will [1]
probably miss the point about the argument being kr.

The full solution is therefore

Z = Rn(kr) sin(kvt) [an cos nθ + bn sin nθ] , [1]

where n is an integer.

We have not yet imposed the boundary condition on the circumference.
This requires that Rn(ka) = 0. This will make k a discrete variable, [1]
though this point is not needed for the mark.

(b) To obtain the first integral, multiply

(2n + 1)x Pn(x) = (n + 1)Pn+1(x) + nPn−1(x) ,

by Pn+1(x) and integrate to get

(2n + 1)
∫ +1

−1
Pn+1(x) x Pn(x) dx =

(n+1)
∫ +1

−1
Pn+1(x) Pn+1(x) dx+n

∫ +1

−1
Pn+1(x) Pn−1(x) dx = 2

n + 1

2n + 3
+0. [2]

Hence ∫ +1

−1
Pn+1(x) x Pn(x) =

2(n + 1)

(2n + 1)(2n + 3)
· [1]

For the second, multiplying

(2n + 1)Pn(x) = P ′
n+1(x)− P ′

n−1(x)

by Pn(x) and integrating gives

(2n+1)
∫ +1

−1
[Pn(x)]2 dx =

∫ +1

−1
Pn(x) P ′

n+1(x) dx−
∫ +1

−1
Pn(x) P ′

n−1(x) dx. [1]

However, the last integral vanishes because P ′
n−1(x) is a polynomial of

degree n− 2. [1]

Hence ∫ +1

−1
P ′

n+1(x) Pn(x) dx = 2 . [1]
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In the case of n = 1, Pn+1(x) = 1
2
(3x2 − 1) and Pn(x) = x.∫ +1

−1
Pn+1(x) x Pn(x) dx =

∫ +1

−1

1
2
x2(3x2 − 1) dx

=
(

3

5
− 1

3

)
=

4

15
,

which agrees with the formula. [2]

For the second identity, P ′
n+1(x) = 3x, and

∫ +1

−1
P ′

n+1(x) Pn(x) dx = 3
∫ +1

−1
x2 dx = 2 . [2]
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