1B45 Mathematical Methods Problem Sheet 10 2005/2006

Staple securely your answer sheets together and put **your name** and your **tutor's name** (Prof. T. W. Jones if you are not in the P+A department) on your script.

Please put your solutions in Prof. T. W.Jones's mail box by Friday 13th. January 2006.

1.

Identify the following surfaces, defined by the position vector \vec{r} where k, l, n and m are fixed scalars, and \hat{u} a fixed unit vector:

(a)
$$|\vec{r}| = k$$
;

$$(\mathbf{b})\vec{r}\cdot\hat{u}=l$$
:

$$(c)\vec{r}\cdot\hat{u}=m|\vec{r}| \text{ for } -1\leq m\leq +1 \text{ and}$$

$$(\mathbf{d})|\vec{r} - (\vec{r} \cdot \hat{u})\hat{u}| = n.$$

Find the angle between the position vectors to the points (3, -4, 0) and (-2, 1, 0) and find the direction cosines (ie the cosines of the angles a vector makes w. r. t. the \hat{i}, \hat{j} and \hat{k} unit vectors), of a vector perpendicular to both position vectors. [6]

Use the vector product to determine the direction of the line of intersection of the two planes

$$x + 2y + 3z = 0$$
 and $3x + 2y + z = 0$.

Find the direction cosines of the line of intersection.

Repeat the above by determining two points common to both planes. [2]

[3]

[3]

2.

(a) Evaluate
$$Re(e^{2iz})$$
 where $z = x + iy$.

(b) Use the Argand diagram to show that $(-1+\sqrt{3}i)=2e^{\frac{2}{3}\pi i}$.

Then determine
$$(-1+\sqrt{3}i)^{\frac{1}{2}}$$
. [4]

(c) Show that $\sqrt{i} = \frac{1+i}{\sqrt{2}}$ and $\frac{-1-i}{\sqrt{2}}$.

Then evaluate
$$|e^{\sqrt{i}}|$$
 recalling that $|z| = (zz^*)^{\frac{1}{2}}$. [4]

(d)Show that
$$i^i = e^{-\frac{\pi}{2} - 2\pi n}$$
. [2]

(e) A is an oscillating physical quantity of the form $A = ReA_0e^{i\omega t}$. If the physical quantity B, $B = ReB_0e^{i\omega t}$ is predicted by theory to be related to A by a relationship of the form

$$B_0 = \sqrt{i} \ C \ A_0$$
 where C is a constant

what can you conclude about the inter relationship of B and A?