1B45 Mathematical Methods Problem Sheet 8 2005/2006

Staple securely your answer sheets together and put your name and your tutor's name (Prof. T. W. Jones if you are not in the P+A department) on your script.

Please hand in your solutions in the Monday lecture 5th December 2005.

This problem sheet is one of the two you will be required to attain a mark of at least 24/30 before you can complete the course. You can have as many attempts as you need to attain this mark and the solutions will not be put on the web. A reasonable level of presentation is expected.

1(a) If
$$\vec{A} = 3\hat{i} + 5\hat{j} - 7\hat{k}$$
 and $\vec{B} = 2\hat{i} + 7\hat{j} + \hat{k}$, find

 $\vec{A} + \vec{B}$, $\vec{A} - \vec{B}$, $|\vec{A}|$, $|\vec{B}|$, $|\vec{A} \cdot \vec{B}|$ and the cosine of the angle between the vectors.

- (b) Find the unit vector perpendicular to $\hat{i} + \hat{j} \hat{k}$ and $2\hat{i} \hat{j} + 3\hat{k}$.
- (c) If $\vec{a}=\hat{i}+2\hat{j}+\hat{k}$, $\vec{b}=-\hat{i}+\hat{k}$ and $\vec{c}=3\hat{i}+\hat{j}-\hat{k}$ obtain $\vec{a}\cdot\vec{b}$, $\vec{a}\times\vec{b}$, $\vec{a}\cdot(\vec{b}\times\vec{c})$ and $\vec{a}\times(\vec{b}\times\vec{c})$.

(d) Let \vec{A} be an arbitrary vector and \hat{n} a unit vector pointing in an arbitrary direction. Show that \vec{A} may be expressed as

[3]

[6]

$$\vec{A} = (\vec{A} \cdot \hat{n})\hat{n} + (\hat{n} \times \vec{A}) \times \hat{n} .$$

(e) Show that the position vector \vec{r} of an aircraft circling above an airfield at height h in a circle of radius a with constant speed V can be expressed as

$$\vec{r} = a \left(\hat{i}cos(Vt/a) + \hat{j}sin(Vt/a) \right) + h\hat{k}$$

in terms of the time t.

Find the velocity and acceleration vectors of the aircraft.

- (f) A particle is moving with constant velocity $\vec{v} = u\hat{i}$ along the line y = 2. Describe \vec{v} in polar coordinates.
- (g) A bead moves along the spoke of a wheel at constant speed u meters per second. The wheel rotates with uniform angular velocity $d\theta/dt = \omega$ about an axis perpendicular to the xy plane. At t=0 the spoke is along the x axis, and the bead is at the origin. Find the velocity at time t

in polar coordinates,

in cartesian coordinates. [6]