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Preface

These notes are intended for use with Part II of PHAS3135, The Physics of Stars. A
pre-requisite of this course is PHAS2112, which I used to teach, and for which I developed
substantial notes, including additional material for my own interest. The 3135 syllabus includes
some of that additional material, so what follows is a distinct, self-contained set of 3135 notes
(partly drawn from my extended 2112 notes), followed by my original 2112 notes (starting here
as Chapter 11), provided both as an ‘aide-memoire’ for the student, and to allow me to
explicitly reference 2112 topics where necessary.

Do bear in mind that these are notes, written principally for my own use. Boxed items, and
indented or small-font sections, are ‘extras’, not part of the syllabus (and therefore not
examinable). You will find sections of incomplete text flagged up; some repetition (especially
between the ‘3135’ and ‘2112’ notes); a numbering system that probably departs from lectures
(as the written notes are under continual revision); and, probably, outright errors. If you think
you’ve found any mistakes, please let me know.
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PHAS3135 – Part II, Stellar Structure & Evolution



Section 1

The Equations of Stellar Structure

1.1 Introduction: motivation

In this part of the course, we consider aspects of the internal operation of (principally) single
stars: their structure and evolution. Our overarching aim in this is to interpret observations
such as the Hertzsprung–Russell diagrams shown in Fig. 1.1

For the present purposes, we use a working definition of a star as an isolated body that is
bound by self-gravity, and which radiates energy supplied by an internal source. Self-gravity
ensures that the star is approximately spherical (rotation introduces centrifugal forces which,
for sufficiently fast rotation, may introduce distortions); the internal source of energy is nuclear
fusion for most of the stellar lifetime (although for, e.g., white dwarfs, stored thermal energy is
responsible for the observed luminosity).

The essence of stellar structure is the competition between the force of gravity, which always
wants to make a star collapse, and the outward force of pressure. For almost the entire lifetime
of a star, these forces are in balance; the star is in (or very close to) hydrostatic equilibrium,
but as internal energy is released, the internal composition, and hence structure, must evolve.
Thus ‘stellar structure’ and ‘evolution’ are intimately linked.

1.2 Review: Basic Equations of Stellar Structure

For reference, we remind ourselves of the basic equations of stellar structure, introduced in
PHAS 2112 and Dr. Zane’s notes:

1



Figure 1.1: Hertzsprung–Russell (colour–magnitude) diagrams. Left, Hipparcos volume-limited
sample (stars of different ages); right, HST observations of the globular cluster 47 Tuc (coeval
sample).

1.2.1 Hydrostatic (pressure) equilibrium

dP (r)

dr
=
−Gm(r)ρ(r)

r2
= −ρ(r) g(r) (1.1)

or

dP (r)

dr
+ ρ(r) g(r) = 0

[In the supplementary 2112 notes, eqtn. 20.1; this numbering may well differ from that in use
when you took in PHAS 2112].

The principal sources of pressure throughout a ‘normal’ (non-degenerate) star are gas pressure,
and radiation pressure.1 We will take the corresponding equations of state to be, in general,

PG = nkT ;

= (ρkT )/(µm(H)) (1.2)

PR =
1

3
aT 4 (1.3)

for number density n at temperature T , density ρ; µ is the mean molecular weight, and m(H)
the hydrogen mass; a is the radiation constant, a = 4σ/c; with σ the Stefan-Boltzmann
constant, and k Boltzmann’s constant.

1Electron degeneracy pressure is important in white dwarfs, and neutron degeneracy pressure in neutron stars.
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1.2.2 Mass Continuity

For spherical symmetry, the equation of mass continuity for static configurations is

dm
dr

= 4πr2ρ(r) (1.4)

[PHAS 2112 eqtn. 20.3; in a spherically symmetric flow, such as may apply in a stellar wind
with mass-loss rate Ṁ , we instead have

Ṁ = 4πr2ρ(r)v(r)

where ρ(r), v(r) are the density and (radial) flow velocity at radius r.]

1.2.3 Energy continuity

dL
dr

= 4πr2 ρ(r)ε(r) (1.5)

[PHAS 2112 eqtn. 20.7].

where

• r is radial distance measured from the centre of the star

• P (r) is the total pressure at radius r

• ρ(r) is the density at radius r

• g(r) is the gravitational acceleration at radius r

• m(r) is the mass contained with radius r

• L(r) is the total energy transported through a spherical surface at radius r

• ε(r) is the energy generation rate per unit mass at radius r

The stellar radius is R, the stellar mass is M ≡ m(R), and the emergent luminosity L ≡ L(R)

(dominated by radiation at the stellar surface).
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Section 2

Energy transport

We suppose stars to be hotter inside than outside (so that, e.g., nuclear fusion may occur), so
there must be an energy flow. We are familiar with three basic mechanisms of energy transport:
– radiation
– convection
– conduction

In the context of stellar astrophysics, conduction is important only under the degenerate
conditions found in white dwarfs and neutron stars (since gases in general are poor
conductors). For ‘normal’ stars, therefore, the key processes transporting energy are radiation
and convection.

Radiative transport: Energy is transported by photons. In stellar interiors the opacities are
high, and the mean free path correspondingly low – about 1 mm in the case of the Sun
(Section 22.4). In this sense, the radiation doesn’t flow outwards, but rather diffuses outwards.

Convective transport: If the radiation is unable to escape a layer at a rate that matches the
energy input, then ‘something’s got to give’. What gives is the static nature of the layer:
convection is initiated and starts to transport energy. This suggests that hydrostatic
equilibrium breaks down, but the dynamical timescale is short compared to the flow timescale
(Section 22), so in practice HSE continues to be an excellent approximation.

The nett energy flux is, under most circumstances, simply the sum of radiative and convective
terms,

L(r) = Lrad(r) + Lcnv(r)
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2.1 Radiative energy transport in stellar interiors

In order to determine under what circumstances convection is important, we first evaluate how
much energy can be transported by radiation alone.

2.1.1 The equation of radiative transfer in stellar interiors

In optically thick environments – in particular, stellar interiors – radiation is often the most
important transport mechanism, but, to repeat, for large opacities the radiant energy doesn’t
flow directly outwards; instead, it diffuses slowly outwards.

To express this transport quantitatively, the same general principles may be applied as led to
the equation of radiative transfer in plane-parallel stellar atmospheres

µ
dIν
dτν

= Iν − Sν . (2.1)

[PHAS 2112 eqtn. (14.6), and Dr. Zane’s lectures]. In the interior the photon mean free path is
(very) short compared to the radius, so ‘plane parallel’ is fine.

We recall that, in general, the intensity, Iν , at some position is direction-dependent; i.e., is
Iν(θ, φ) (although the explicit angular dependence is generally dropped for economy of
nomenclature); the same is true in principle of the source function, although in practice any
such dependence is negligible. Multiplying eqtn. (2.1) by µ ≡ cos θ and integrating over solid
angle, using dΩ = sin θ dθ dφ = dµ dφ, then

d
dτν

∫ 2π

0

∫ +1

−1
µ2Iν(µ, φ) dµ dφ =

∫ 2π

0

∫ +1

−1
µIν(µ, φ) dµ dφ−

∫ 2π

0

∫ +1

−1
µSν(µ, φ) dµ dφ;

The radiation field in the interior is axially symmetric, (i.e., no azimuthal dependence), so∫ 2π
0 dφ = 2π on both sides, and cancels, whence

d
dτν

∫ +1

−1
µ2Iν(µ) dµ =

∫ +1

−1
µIν(µ) dµ−

∫ +1

−1
µSν(µ) dµ. (2.2)

The first two terms should be familiar in the context of moments of the radiation field:

1

2

+1∫
−1

µ2Iν(µ) dµ = Kν (2.3)

[the second-order moment, or K integral; PHAS 2112 eqtn. (11.14)] and

2π

+1∫
−1

µIν(µ) dµ = Fν (2.4)

= 4πHν
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[where Hν is the Eddington flux, or first-order moment of the radiation field; PHAS 2112
eqtn. (11.9)]. This is progress: the flux is the rate of energy transport, which is what we’re
seeking to evaluate.

Since the radiation field is locally isotropic to a very good approximation (see Box 2.2) we can
take Iν out of the K integral, whence

Kν =
1

2

µ3

3
Iν

∣∣∣∣+1

−1

=
1

3
Iν

[
≡ 1

3
Jν for isotropy

]
(2.5)

[PHAS 2112 eqtn. (11.15)].

Using these equations for the first two terms in eqtn. (2.2), and assuming that the emissivity
also has no preferred direction (true to an excellent approximation in stellar interiors) so that
the source function is isotropic (i.e., so that the final term in eqtn. 2.2 is zero), we obtain

dKν

dτν
=
Fν
4π

or, from eqtn. (2.5),

1

3

dIν
dτν

=
Fν
4π
.

Because the photon mean free paths are very short, conditions in the interior are very close to
local thermodynamic equilibrium (LTE; PHAS 2112 Sec. 21.1). In LTE we may set
Iν = Bν(T ), the Planck function; and by definition, dτν = −kν dr (where the minus arises
because the optical depth is measured inwards, and decreases with increasing r). Making these
substitutions, and integrating over frequency,∫ ∞

0
Fν dν = −4π

3

∫ ∞
0

1

kν

dBν(T )

dT
dT
dr

dν (2.6)

To simplify this further, we introduce the Rosseland mean opacity, kR (= κRρ),1,2 defined by

1

kR

∫ ∞
0

dBν(T )

dT
dν =

∫ ∞
0

1

kν

dBν(T )

dT
dν;

conveniently, kR can be evaluated, as a function of temperature and density, separately from
any other factors.

1Recall that opacity may be expressed in several ways, most commonly as ‘per unit mass’ or ‘per unit volume’.
We use k to denote opacity per unit volume, and κ where reference is made to opacity per unit mass; clearly,
then, k = κρ.

2The Rosseland mean opacity represents the harmonic mean of kν , weighted by dBν(T )/dT . This weighting
factor is small for very low and very high frequencies, and peaks at νp = 4kT/h.
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Recalling that

∫ ∞
0

πBν dν = σT 4 (PHAS 2112, eqtn. (11.21))

we also have

∫ ∞
0

dBν(T )

dT
dν =

d
dT

∫ ∞
0

Bν(T )dν

=
4σT 3

π

(at given T ) so that eqtn. (2.6) can be written as

∫ ∞
0

Fν dν = −4π

3

1

kR

dT
dr

acT 3

π
(2.7)

where a is the radiation constant, 4σ/c; that is, the total (frequency-integrated) radiant energy
flux is

F = −4π

3

1

kR

dT
dr

acT 3

π
, (2.8)

(with no direct dependence on the rate of energy generation!). The minus sign simply means
that the energy flows in the opposite direction to the temperature gradient (i.e., outwards, not
inwards, for stars).

[Incidentally, eqtn. 2.8 shows that radiative diffusion is completely analogous to conduction;

F ∝ dT
dr
,

which is equivalent to Fourier’s law of thermal conduction.]

Equation 2.8 is our adopted form for the radiative flux, or transport of energy by radiation. It
may be applied in environments where the photon mean free path is short compared to the
scales over which physical parameters (notably temperature) change; it therefore becomes
inappropriate as the stellar surface is approached, where a more detailed approach to radiative
transfer is required.
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Box 2.1. The radiative energy density is U = aT 4 [PHAS 2112, eqtn. (11.27)], so
that dU/dT = 4aT 3, and we can express eqtn. (2.7) as

F =

∫ ∞
0

Fν dν

= − c

3kR

dT
dr

dU
dT

= − c

3kR

dU
dr

This ‘diffusion approximation’ shows explicitly how the radiative flux relates to the
energy-density gradient; the constant of proportionality, c/3kR, is called the diffusion
coefficient. The larger the opacity, the less the flux of radiative energy, as one might
intuitively expect.

2.1.2 Radiative temperature gradient

The stellar luminosity at some radius r is given by

L(r) = 4πr2

∫ ∞
0

Fν dν

so, from eqtn. 2.8

L(r) = −16π

3

r2

kR

dT
dr
acT 3, (2.9)

We can simply rearrange eqtn. (2.9) to express the temperature gradient where energy
transport is radiative:

dT
dr

= − 3

16π

kR

r2

L(r)

acT 3
= − 3

16π

κRρ(r)

r2

L(r)

acT 3
. (2.10)

We’ll need this in a slightly different form later on, so combining this result with hydrostatic
equilibrium,

dP (r)

dr
=
−Gm(r)ρ(r)

r2
, (1.1)

we obtain

dT
dP

= − 3κRL(r)

16π acT 3Gm(r)
(2.11)

or equivalently,

d lnT

d lnP
= − 3κRL(r)P

16π acT 4Gm(r)
(2.12)

(a form that we’ll use in Section 2.3).
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2.1.3 Von Zeipel’s law (not in lectures)

From eqtn. (2.7),

F ∝ T 3

κR ρ

dT
dr

(2.13)

∝ T 3

κR ρ

dT
dψ

dψ
dr

(2.14)

where ψ is the gravitational potential (and hence dψ/dr is the local gravity,3 g). In
hydrostatic equilibrium (see eqtn. 1.1)

dP
dr

= −ρ(r)g(r) ∝ ρdψ
dr

(1.1)

so that the pressure P is a function of the potential ψ – and hence the density must also be
a function of ψ.4 For an equation of state of the general form

T = T (P, ρ) (2.15)

we therefore see that T must also be a function of ψ,

T = T (ψ). (2.16)

The coeffiecent of dψ/dr in eqtn. (2.14) is therefore a function of ψ alone, whence

F ∝ dψ
dr
∝ g (2.17)

or, equivalently,

Teff ∝ g0.25 (2.18)

which is known as von Zeipel’s law. Although it relies on the assumption of radiative
energy transport by diffusion, which breaks down in a stellar atmosphere, the atmosphere
is usually very thin compared to the radiative envelope, so even the surface flux can be
expected to obey eqtn. (2.18) for stars in hydrostatic equilibrium and for which energy
transport through the outer envelope is radiative.

Von Zeipel’s law is of particular interest for close binary stars and rapidly rotating single
stars. In either case, the local gravity, and hence the local temperature, can vary over the
stellar surface (which is conventionally defined by a constant potential). Although
increasing gravity results in increasing flux, the practical effects have come to be known as
gravity darkening, because rapid rotation, or a close companion star, both serve to reduce a
star’s local gravity (and hence reduce the temperature locally).

It’s of interest that von Zeipel also demonstrated that a rotating star cannot be
simultaneously in strict hydrostatic and radiative equilibrium, undermining the basis of his

3In circumstances where von Zeipel’s law is important, gravity is, in general, not a central force, so we should
actually set g = ∇ψ; but the central-force approximation is adequate for our purposes (and the correct general
result is obtained).

4Since ρ is a scalar, the gradients of P and ψ are everywhere parallel.
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‘law’. In practice, as shown by Eddington and by Sweet, rotation induces circulation
currents in the stellar interior; however, these currents are sufficiently slow as to not lead to
significant departures from hydrostatic equilibrium (the circulation timescales are long
compared to the dynamical timescales discussed in Section 22.1.1), and gravity darkening is
observed to occur in practice.

2.2 Mass–Luminosity Relationship

We can now put together our basic stellar-structure relationships to demonstrate a scaling
between stellar mass and luminosity. From hydrostatic equilibrium,

dP (r)

dr
=
−Gm(r)ρ(r)

r2
→ P ∝ M

R
ρ (1.1)

but our (gas) equation of state is P = (ρkT )/(µm(H)), so

T ∝ µM

R

(and dT/dcR ∝ R−2 ∝ T/R). For stars in which the dominant energy transport is radiative,
we have

L(r) ∝ r2

kR

dT
dr
T 3 ∝ r2

κRρ(r)

dT
dr
T 3 (2.9)

so at the surface (r = R)

L ∝ RT 4

κRρ
.

From mass continuity (or by inspection) ρ ∝M/R3, giving

L ∝ R4T 4

κRM

∝ R4

κRM

(
µM

R

)4

;

i.e.,

L ∝ µ4

κR
M3.

This simple dimensional analysis (which makes no assumptions about energy sources) yields a
dependency which is in quite good agreement with observations; for solar-type main-sequence
stars, the empirical mass–luminosity relationship is L ∝M3.5.
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Figure 2.1: A (potentially) convective ‘blob’ in a stellar envelope, defining the terminology used
in Section 2.3.

2.3 Convection in stars

2.3.1 Schwarzschild criterion

For convection to occur, there must be some temperature gradient (in the case of stars, a radial
temperature gradient). We have seen that the temperature gradient is given by

dT
dr

= − 3

16π

kR

r2

L(r)

acT 3
(2.10)

where energy transport is radiative; that is, high opacity leads to large temperature gradients
(as we might expect intuitively; the opacity blocks the flow of radiant energy from hotter to
cooler regions). If the energy flux isn’t contained by the temperature gradient, we have to
invoke another mechanism – convection – for energy transport (recall, conduction is negligible
in ordinary stars.) Under what circumstances will this arise? Karl Schwarzschild5 (1906)
developed a standard criterion for determining if convection occurs or not. (Here we’ll derive it
as a criterion for stability, although we could equally well establish a criterion for instability.)

To follow Schwarzschild’s reasoning, we suppose that we start with a stellar envelope in
radiative equilibrium – in some sense, its ‘natural state’ – and that, through some minor
perturbation, an element (or cell, or blob, or bubble) of gas is displaced upwards within a star.

5Perhaps better know for finding the first exact solutions to the field equations of Einstein’s general theory
of relativity, leadin to the ‘Schwarzschild radius’ for the event horizon of nonrotating black holes.
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Our essential assumptions are that the cell rises slowly enough that it remains in pressure
equilibrium (essentially, that it moves subsonically, so that hydrostatic equilibrium is
maintained); but fast enough that it doesn’t lose energy to its surroundings (i.e., that the cell
cools adiabatically, while that the ambient temperature is determined by radiative equilibrium).

As the cell rises into a lower-pressure regime, it will expand to bring it into pressure
equilibrium with the surroundings (a process whose timescale is naturally set by the speed of
sound and the linear scale of the perturbation), but not, in general, into thermal equilibrium;
that is, its pressure, but not its density and temperature, will match conditions in the
surrounding gas. If it cell gas is less dense, then simple buoyancy comes into play; the cell will
continue to rise, and convective motion occurs.6

The essence of the Schwarzschild criterion is thus: we obtain stability (rising cell denser than
surroundings7) if

|∆ρad| < |∆ρrad|

(where the ‘ad’, ‘rad’ subscripts indicate adiabatic and radiative conditions). Since

∆ρ =

(
dρ
dr

)
∆r

(and ∆r is the same for the cell and the ambient gas) we can express this statement as∣∣∣∣dρdr
∣∣∣∣
ad

<

∣∣∣∣dρdr
∣∣∣∣
rad

(2.19)

The Schwarzschild criterion is conventionaly expressed in terms of temperature gradients
(rather than density gradients). We therefore use our assumption of pressure equilibrium; since
the pressure is the same inside the cell and in the ambient gas at both between r1 and r2, so

∆Pad = ∆Prad;

but P ∝ ρT (equation of state, eqtn. 1.2), so

∆ρadTad = ∆ρradTrad.

In other words, an increase in density is matched by a decrease in temperature, hence∣∣∣∣dTdr
∣∣∣∣
ad

>

∣∣∣∣dTdr
∣∣∣∣
rad

(2.20)

6Another way of looking at this is that the entropy (per unit mass) of the blob is conserved, so the star is
unstable if the ambient entropy per unit mass decreases outwards.

7We could follow identical arguments for stability by requiring a descending cell to be less dense than its
surroundings
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is equivalent to eqtn. (2.19) – i.e., is the condition for stability.

Finally, we invoke the equation of hydrostatic equlibrium

dP (r)

dr
= −ρ(r) g(r) (1.1)

and the (gas-pressure) equation of state,

P = (ρkT )/(µm(H)) (1.2)

to write∣∣∣∣dTdr
∣∣∣∣ ≡ ∣∣∣∣dTdP dP

dr

∣∣∣∣
=

∣∣∣∣dTdP gρ

∣∣∣∣ (HSE)

=

∣∣∣∣dTdP
∣∣∣∣ gµm(H)

kT
P (EOS)

=

∣∣∣∣d lnT

d lnP

∣∣∣∣ gµm(H)
k

(2.21)

Substituting this into eqtn. (2.20) we obtain∣∣∣∣d lnT

d lnP

∣∣∣∣
ad

>

∣∣∣∣d lnT

d lnP

∣∣∣∣
rad

.

This is frequently written in the more compact notation

∇ad > ∇rad, (2.22)

which tells us that if the temperature gradient in the stellar envelope is larger than the
adiabatic temperature gradient, convection occurs.

The astute student will’ve noticed that we didn’t really need to suppose that the ambient
conditions are radiative; only that they exist(!), and differ from convective conditions. So we
can write, more generally, that a condition for instability is

∇ad < ∇, (2.23)

which is the form in which the Schwarzschild criterion for convective instability is often
expressed. It tells us that if a superadiabatic temperature gradient exists (i.e., if the actual
temperature gradient exceeds the adiabatic value, given by eqtn. 2.24, below), convection will
occur.
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2.3.2 When do superadiabatic temperature gradients occur?

Since large temperature gradients arise in (initially) radiative envelopes if the opacity is high
(eqtn. 2.10), we interpret this as meaning that convection occurs when the opacity is too high
for radiative transport to be efficient. To demonstrate this analytically we appeal to
thermodynamic arguments.

Under the adiabatic conditions appropriate to our rising cell,

PV γ = constant

where γ = CP /CV , the ratio of specific heats at constant pressure and constant volume. Thus,
for a gas cell of constant mass (V ∝ ρ−1),

P ∝ ργ ; but also

P ∝ ρT, whence (1.2)

P γ−1 ∝ T γ

or ∣∣∣∣d(lnT )

d(lnP )

∣∣∣∣
ad

=
γ − 1

γ
(2.24)

The Schwarzschild criterion for stability∣∣∣∣d lnT

d lnP

∣∣∣∣
rad

<

∣∣∣∣d lnT

d lnP

∣∣∣∣
ad

(2.22)

can therefore be written as

∇rad <
γ − 1

γ
(2.25)

or, in terms of temperature gradient (cp. eqtn. 2.21)∣∣∣∣dTdr
∣∣∣∣
rad

<
γ − 1

γ

∣∣∣∣TP dP
dr

∣∣∣∣ . (2.26)

We know the radiative temperature gradient (eqtn. 2.10); whence, by reference to eqtns (2.12)
and (2.24), the Schwarzschild criterion for stability can be written as

3κRL(r)P

16πacT 4Gm(r)
<
γ − 1

γ
. (2.27)

This shows us explicitly that the product of the luminosity and the opacity must be ‘small’ (in
some sense) if the system is to be stable against convection, as we’ve already asserted on
intuitive physical grounds.
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Finally, rearranging and differentiating the equation of state P = nkT = (ρkT )/(µm(H)) gives

d lnT

d lnP
= 1 +

d lnµ

d lnP
− d ln ρ

d lnP
, (2.28)

which demonstrates that compositional changes can also influence whether or not convection
occurs (separately to the effect of composition on the opacities). This can be important
wherever there is a ‘mu gradient’ (i.e., composition change), such as at the boundary between
the stellar core and envelope.

2.3.3 Physical conditions associated with convection

From equations 2.25–2.28 we can see several ways in which convection may, in principle be
induced, but eqtn. (2.25) argues that the essential requirements are either:
∇rad becomes large (compared to ∇ad), or
∇ad becomes small (compared to ∇rad). Alternatively, from eqtn. (2.27), we can see what this
means in terms of luminosity, opacity, and the adiabatic exponent γ.

In nature, convectively unstable regions occur:

(i) In the cores of massive stars, where the radiation flux L(r)/4πr2 can be very large,
driving convection.

(ii) Where the opacity is too great to allow the radiation to flow at an equilibrium rate (e.g.,
protostars).

(iii) In the envelopes of cool stars, where the adiabatic exponent γ can approach unity (and
hence (γ − 1)/γ can become very small; the γ effect).

For a monatomic ideal gas (representative of stellar interiors),8 γ = 5/3 and so
(d lnT/d lnP )ad = 0.4, but under changing conditions of ionization this exponent changes.
For a simple pure-hydrogen composition it can be shown that∣∣∣∣d lnT

d lnP

∣∣∣∣ =
2 +X(1−X) ((5/2) + E1/(kT ))

5 +X(1−X) ((5/2) + E1/(kT ))
2

where

X =
ne

nP + n(H0)

is the degree of ionization, and E1 is the ionization potential. For X = 0 or 1, this recovers
(d lnT/d lnP )ad = 0.4, but in regions of partial ionization lower values apply, with a
minimum at X = 0.5 [(d lnT/d lnP )ad = 0.07] which occurs (e.g.) near the base of the
solar photosphere.

8Radiation obeys a ‘gas law’ with γ = 4/3
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The switch from radiative core/convective envelope to convective core/radiative envelope
occurs on the main sequence at masses only very slightly more than the Sun’s. This is related
to the core energy-generation mechanism, as the principal hydrogen-burning process switches
from proton-proton chains (which generate energy at a rate that can be transported
radiatively) to CNO processing.

2.4 Convective energy transport: mixing-length ‘theory’

So far, we have only tested whether or not convection is likely to occur; we have not addressed
how energy is transported by this mechanism – i.e., we don’t yet know the convective flux.
Unfortunately, convection is a complex, hydrodynamic process. Although much progress is
being made in numerical modelling of convection over short timescales, it’s not feasible at
present to model convection in detail in stellar-evolution codes routinely, because of the vast
disparities between convective and evolutionary timescales. Instead, we appeal to simple
parameterizations of convection, of which mixing-length ‘theory’ is the most venerable, and the
most widely applied.

We suppose that
(i) the envelope becomes convectively unstable at some radius r0, and that a convective cell
then rises, hydrostatically and adiabatically, through some characteristic distance ` – the
mixing length;
(ii) the excess thermal energy of the cell is released into the ambient medium; and
(iii) the cooled cell sinks back down (or, if you prefer, is displaced downwards by the next rising
cell).
Because we are moving energy from deeper to shallower regions, the temperature gradient is
shallower for the cell than the pure radiative case.

From hydrostatic equilibrium (eqtn. 1.1) and the perfect gas equation (eqtn. 1.2) we have

dP
dr

= −gP µm(H)
kT

, or

dP
P

= −gµm(H)
kT

dr,≡ −dr
H
. (2.29)

The solution of eqtn. 2.29 is

P = P0 exp (−r/H)

so H, the pressure scale height, is the vertical distance over which the pressure drops by a
factor e. The mixing length is conveniently expressed in terms of this scale height; typically, we
expect ` ' H, but, since the detailed physics is not well understood, a scale factor (or fudge
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factor!) is usually introduced, whereby

` = αH,

with α ∼ 0.5–1.5.

For simplicity (given the weakness of other assumptions), we suppose that ` is the same for all
cells, and that the velocity of all cells is also the same.

For a cell moving with velocity v the flux of energy across unit area is given by the mass flux
times the heat energy per unit mass:

Fconv = ρv × dQ

= ρv × CP∆T (2.30)

where CP is the specific heat at constant pressure. To progress we need an estimate of the
velocity v, which we obtain by considering the buoyancy force,

fb = −g∆ρ. (2.31)

Here ∆ρ is the density difference between the cell and ambient gas which we can determine
from the equation of state, eqtn. 1.2,

∆P

P
=

∆ρ

ρ
+

∆T

T
− ∆µ

µ
. (2.32)

In hydrostatic pressure equlibrium ∆P = 0, whence

∆ρ

ρ
=

∆µ

µ
− ∆T

T

or

∆ρ = −ρ∆T

T

(
1− ∆µ

µ

T

∆T

)
(2.33)

= −ρ∆T

T

(
1− d lnµ

d lnT

)
(2.34)

so the buoyancy force, eqtn. 2.31, is

fb = gρ
∆T

T

(
1− d lnµ

d lnT

)
but force equals mass (per unit volume) times acceleration,

= ρ
dv
dt

(2.35)
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so

dv
dt

= g
∆T

T

(
1− d lnµ

d lnT

)
(2.36)

where , the excess temperature of the cell (compared to the ambient gas) can be written

∆T =

{∣∣∣∣dTdr
∣∣∣∣
rad

−
∣∣∣∣dTdr

∣∣∣∣
ad

}
× ∆r (2.37)

For constant acceleration the mean velocity over distance ` is given by Torricelli’s equation,

v '

√{
dv
dt
`

}
(2.38)

so, substituting eqtn. 2.37 for ∆T in eqtn. 2.36 (setting ∆r = ` and neglecting a factor
√

2),
the required velocity is

v =

{
g

T

∣∣∣∣1− d lnµ

d lnT

∣∣∣∣}1/2 {∣∣∣∣dTdr
∣∣∣∣
rad

−
∣∣∣∣dTdr

∣∣∣∣
ad

}1/2

× ` (2.39)

We can now rewrite eqtn. 2.30 as

Fconv = ρCP

{
g

T

∣∣∣∣1− d lnµ

d lnT

∣∣∣∣}1/2 {∣∣∣∣dTdr
∣∣∣∣
rad

−
∣∣∣∣dTdr

∣∣∣∣
ad

}3/2

× `2. (2.40)

Rearranging the equation of state, eqtn. (1.2),∣∣∣∣dTdr
∣∣∣∣ =

gµm(H)
k

∣∣∣∣d lnT

d lnP

∣∣∣∣
=
T

H

∣∣∣∣d lnT

d lnP

∣∣∣∣ (2.41)

and so

Fconv = ρCP α
2T

{
gH

∣∣∣∣1− d lnµ

d lnT

∣∣∣∣}1/2{∣∣∣∣d lnT

d lnP

∣∣∣∣
rad

−
∣∣∣∣d lnT

d lnP

∣∣∣∣
ad

}3/2

(2.42)

which is our final formulation.

In calculating actual temperature structures in stellar envelopes, we require the total energy
flux to obey

F = Frad + Fconv = σT 4
eff (2.43)

The initial temperature structure is calculated on the basis of radiative transfer only
(Frad = σT 4

eff), then a correction ∆T (r) computed iteratively, for given α, if the Schwarzschild
criterion indicates convective transport.
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Box 2.2. It may not be immediately obvious that the radiation field in stellar interiors is,
essentially, isotropic; after all, outside the energy-generating core, the full stellar luminosity
is transmitted across any spherical surface of radius r. However, if this flux is small compared
to the local mean intensity, then isotropy is justified.
The flux at an interior radius r (outside the energy-generating core) must equal the flux at
R (the surface); that is,

F = σT 4
eff

R2

r2

while the mean intensity is

Jν(r) ' Bν(T (r)) = σT 4(r).

Their ratio is

F

J
=

(
Teff

T (r)

)4(
R

r

)2

.

Temperature rises rapidly below the surface of stars, so this ratio is always small; for example,
in the Sun, T (r) ' 3.85 MK at r = 0.9R�, whence F/J ' 10−11. That is, the radiation field
is isotropic to better than 1 part in 1011.
Equivalently, the temperature gradient from the centre of the Sun (for example) to the surface
is

∆T

∆r
=
Tc − Teff

R�
' 10−2 K m−1 (2.44)

The photon mean free path is ` = 1/κ ' 1 mm (from detailed models), so the temperature
change over this distance is of order 10−5 K. The radiant energy density is U = aT 4, so the
relative anisotropy ∆U/U = 4∆T/T ' 10−11 at 106 K.

Although the anisotropy is very small, the nett outflow is large – in fact, equal to the stellar

luminosity.
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Section 3

Ways to make a star

Polytropes and the Lane-Emden Equation

3.1 Introduction

We’ve already assembled a set of equations that embody the basic principles governing stellar
structure; these are

dm(r)

dr
= 4πr2ρ(r) Mass continuity; (1.4)

dP (r)

dr
=
−Gm(r)ρ(r)

r2
Hydrostatic equilibrium; (1.1)

dL(r)

dr
= 4πr2 ρ(r)ε(r) Energy continuity. (1.5)

Our aim is to use these to investigate (or to predict) the properties of real stars. To do this we
also need descriptions of the quantities P , ε, and kR (pressure, energy-generation rate, and
Rosseland mean opacity), which enter these equations. These are each functions (often complex
functions) of density, temperature, and composition, and in modern work are computed
explicitly, separately from the stellar-structure problem itself. However, progress in analytical
models can be made by adopting power-law dependences,

kR(r)/ρ(r) = κ(r) = κ0ρ
a(r)T b(r) (3.1)

and (2112 Section 23)

ε(r) ' ε0ρ(r)Tα(r), (3.2)

together with an equation of state. We’ll discuss this in detail in the next section.
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3.2 Polytropes

A polytropic equation of state is such that the pressure is assumed to be proportional to density
to some power,

P = Kργ (3.3)

(i.e., PV n is a constant), where
K is the polytropic constant (of proportionality),
γ = (n+ 1)/n is the polytropic exponent (equivalent to the ratio of specific heats, CP/CV), and
n is the polytropic index (not to be confused with number-density n).
A sphere of gas satisfying eqtn. (3.3) is said to be a ‘polytrope of index n’. The importance of
polytropes is that they allow simple solutions to the equations of stellar structure; Eddington
was able to calculate the first realistic model of the solar interior in this way. The price is the
assumed decoupling of pressure from temperature; however, this turns out to be less restrictive
than one might initially suppose. We’ll explore this before returning to solving the equations of
stellar structure

3.2.1 Convective stars as polytropes

The first law of thermodynamics states that the change in internal energy of a system, dU , is
given by the heat added to the system, dQ, less the work done by the system, dW :

dU = dQ− dW.

For fully convective stars, all the convective cells are supposed to be adiabatic, so dQ ≡ 0; and
for a quasistatic process dW = PdV , whence

dU = −PdV.

For an ideal gas1

P = nkT =
N

V
kT

U =
3

2
NkT =

3

2
PV (where N = nV )

1A gas is close to ideal if it is fully ionized, or entirely neutral. If the gas is partially ionized, then some energy
goes into ionization/dissociation, and U 6= 3/2NkT .
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so that

dU = −PdV ;

d
(

3

2
PV

)
= −PdV ;

3

2
(PdV + V dP ) = −PdV ;

5

2
PdV = −3

2
V dP ;

dP
P

= −5

3

dV
V

;

P ∝ V −5/3, but V ∝ ρ−1 so

P ∝ ρ5/3. (3.4)

That is, fully convective stars are approximately polytropic, with n (= 1/(γ − 1)) = 3/2.

or. . .

In a fully convective star, P ' PG (i.e., radiation pressure is unimportant); then, from
P = (ρkT )/µm(H), we have T ∝ (P/ρ).

If we have an adiabatic temperature gradient

(
∂T

∂P

)
≡ ∇ad → P ∝ T 1/∇ad

so

P 1−(1/∇ad) ∝ ρ−1/∇ad , or

P = Kρ1/(1−∇ad)

(and for a perfect gas, P ∝ ρ5/3).

3.2.2 Radiative stars as polytropes: the Eddington Model

The total pressure P is the sum of gas pressure PG and radiation pressure PR,2 where

PG =
ρ

µm(H)
kT, and (1.2)

PR =
1

3
aT 4. (1.3)

We define

PR ≡ (1− βP)P (3.5)

i.e.,
PG

PR
=

βP

1− βP
.

2Plus degeneracy pressure, which is negligible fornormal stars.
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We can therefore write

P =
PG

βP

=
ρkT

βPµm(H)
;

rearranging for T , substituting the result into eqtn. (1.3) and inserting the result into
eqtn. (3.5) gives

P 4

(
βPµm(H)

ρk

)4

=
3(1− βP)

a
P

i.e.,

P =

{
k

µm(H)

}4/3{3(1− βP)

aβ4
P

}1/3

ρ4/3,

≡ Kρ4/3 if βP (and µ) are constant. (3.6)

That is, for constant βP and constant µ, P ∝ ρ4/3 – a polytropic equation of state with
polytropic index n = 3. The behaviour of n = 3 polytropes was investigated by Eddington, and
is embodied in the ‘Eddington Standard Model’.

The assumption of constant µ is likely to be reasonable, at least for main-sequence stars, but is
constant βP plausible? We know that radiative energy transport is described by

dT
dP
≡ dT

dPR

dPR

dP
= − 3κRL(r)

16π acT 3Gm(r)
. (2.11)

Since PR = 1
3aT

4 (eqtn.1.3) we have

dT
dPR

=
3

4aT 3
,

whence

dPR

dP
=

κRL(r)

4πcGm(r)
.

Integrating gives3

PR

P
' κRL

4πcGM
.

assuming negligible surface pressures and constant κR (not unreasonable for hot stars). That
is, for stars where energy transport is radiative, there is a constant ratio of gas pressure to
radiation pressure (i.e., constant βP), and so the Eddington model is indeed applicable.

3The astute student may note the connection with the Eddington limit to luminosity.
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3.2.3 Degenerate stars as polytropes: white dwarfs

White dwarfs are supported by electron degeneracy pressure (or ‘Fermi pressure’), so we
anticipate an equation of state that is independent of temperature. The uncertainty principle
tells us that, in general,

∆p∆x ≥ ~/2

where p is the momentum and x is some spatial co-ordinate. The electron momentum must be
of the order of the uncertainty, i.e.,

pe ' ~/∆x.

If the electron density is ne then the average spacing between electrons is of order

∆x ∼ n−1/3
e , so

pe ∼ ~n1/3
e

but, in the non-relativistic limit, pe = mev; i.e.,

v ∼ n1/3
e .

Finally, the electron degeneracy pressure (momentum per unit area per unit time) is

Pe ∼ ne · v p; that is,

Pe ∝ n5/3
e , ∝ ρ5/3.

Detailed calculations give the constant of proportionality.

Pe,n =
h2

20mem(H)µe

(
3

πm(H)µe

)2/3

ρ5/3

≡ K1ρ
5/3 (3.7)

(where µe is the mean number of nucleons per electron), showing that non-relativistic white
dwarfs are well approximated by polytropes with P ∝ ρ5/3(n = 3/2).

In the relativistic limit v ' c, so

Pe ∼ ne · c p; i.e.,

Pe ∝ ρ4/3,

or in detail

Pe,r =
hc

8m(H)µe

(
3

πm(H)µe

)1/3

ρ4/3,

≡ K2ρ
4/3 (3.8)

so that relativistic white dwarfs are also polytropic, though with a different polytropic index
(n = 3).

[The same general arguments apply to neutron stars, though with different K coefficients.]
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3.2.4 Summary of ∼polytropic stars

To summarize, the following systems are reasonably approximated as polytropes:
– convective stars

P ∝ ρ5/3 n = 1.5. (3.4)

– stars with constant βP) (∼radiative stars)

P ∝ ρ4/3 n = 3; (3.6)

– non-relativistic white dwarfs,

Pe,n ∝ ρ5/3 n = 1.5; (3.7)

– relativistic white dwarfs,

Pe,r ∝ ρ4/3 n = 3; (3.8)

3.3 The Lane-Emden Equation

We can now proceed with using results we’ve assembled so far to investigate stellar structure,
using polytropic models. The Lane-Emden equation represents a solution of the equations of
stellar structure for such models, expressed in a dimensionless form.

We start with the ‘mechanical’ equations of hydrostatic equilibrium and mass continuity,

dP (r)

dr
= −Gm(r)ρ(r)

r2
(1.1)

dm
dr

= 4πr2ρ(r). (1.4)

Rearranging and differentiating eqtn. (1.1) gives us

d
dr

(
r2

ρ

dP
dr

)
= −Gdm(r)

dr

whence, from eqtn. (1.4),

1

r2

d
dr

(
r2

ρ

dP
dr

)
= −4πGρ (3.9)
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This already embodies the essential aspects of the Lane-Emden equation.4 It describes (in
principle) how P , ρ vary with radius r in a star. We need to eliminate one or other of these,
which amounts to determining T as a function of r.

Therefore, having dealt with ‘mechanical’ issues, we now need to turn to the thermal structure.
It might appear that we can’t solve hydrostatic equilibrium without knowing something about
the pressure, i.e., the temperature, which in turn suggests needing to know about energy
generation processes, opacities, and other complexities. Surprisingly, however, we can find
interesting results without these details, under some not-too-restrictive assumptions about the
equation of state. Specifically, we adopt our (temperature-independent!) polytropic law,

P = Kργ = Kρ
(n+1)/n (3.3)

where we recall that K is a constant, γ is the ratio of specific heats,5 and n is the polytropic
index. In adopting this form, we see the virtue of polytropes – eqtn. (3.3) is, of course,
independent of temperature.

Introducing eqtn. (3.3) into (3.9) gives

K

r2

d
dr

(
r2

ρ

dργ

dr

)
= −4πGρ. (3.10)

At least in principle, we can now solve for ρ(r), given some boundary conditions; if we wanted
to, we’d now do this by some numerical computational method. Before the era of electronic
computers, this wasn’t feasible, so the pioneer investigators of stellar structure proceeded to
simplify eqtn. (3.10) by introducing dimensionless scaled variables in place of the physical
variables r and T :

ξ =
r

α
, (3.11)

θ =
T

Tc
(3.12)

4It’s also, essentially, Poisson’s equation; from hydrostatic equilibrium,

1

ρ

dP (r)

dr
= −g(r)

=
dψ
dr

whence

∇2ψ = 4πGρ

in spherical coördinates.
5This relation need not necessarily be taken to be an equation of state – it simply expresses an assumption

regarding the evolution of pressure with radius, in terms of the evolution of density with radius. The Lane-Emden
equation has applicability outside stellar structures.
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(where α is a constant with units of length, and Tc is the core temperature). The scaled density
follows from the so-called Emden transformation and to the polytropic equation of state
(eqtn. (3.3):

ρ

ρc
=

(
P

Pc

)1/γ

=

(
ρT

ρcTc

)1/γ

; i.e.,(
ρ

ρc

)(γ−1)/γ

=

(
T

Tc

)1/γ

= θ1/γ , or

ρ

ρc
= θ

1/(γ−1), = θn (3.13)

(where we have also used P ∝ ρT ). We can therefore think of θ as being a measure of either
temperature (eqtn. 3.12) or density (eqtn. 3.13).

Then eqtn. (3.10) becomes

K

(αξ)2

d
d(αξ)

(αξ)2

ρcθn

d
(
{ρcθ

n}(n+1)/n
)

d(αξ)

 = −4πGρcθ
n.

This looks pretty intimidating, but since

d
dξ

(θn+1) = (n+ 1)θn
dθ
dξ

this reduces to

(n+ 1)Kρ
(1−n)/n
c

4πGα2

1

ξ2

d
dξ

(
ξ2dθ

dξ

)
= −θn.

This is still ‘symbol soup’, but letting the constant α (which is freely selectable, provided its
dimensionality – length – is preserved) be

α ≡

{
(n+ 1)Kρ

(1−n)/n
c

4πG

}1/2

, (3.14)

we obtain a compact second-order differential equation relating (scaled) radius to (scaled)
temperature or, equivalently (scaled) density:

1

ξ2

d
dξ

(
ξ2dθ

dξ

)
= −θn

[
= − ρ

ρc

]
(3.15)

which is the standard form of the Lane-Emden equation.6,7

6If desired, we can expand this to

1

ξ2

(
2ξ

dθ
dξ

+ ξ2 d2θ

dξ2

)
+ θn =

d2θ

dξ2
+

2

ξ

dθ
dξ

+ θn = 0.

7The essential physics entering this derivation was described by the American astronomer Jonathan Lane in
1870; the equation, in this form, was published by the Swiss Jacob Robert Emden (who was Karl Schwarzschild’s
brother-in-law) in 1907, although it was first given by Ritter in 1880.
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3.3.1 Solutions

The Lane-Emden equation is a dimensionless form of eqtn. (3.10), and its solutions give us,
essentially, density (and other quantities) as a function of radius, for appropriate boundary
conditions. Because it is a second-order differential equation, we need two boundary conditions.

A first is obtained trivially from the definition of θ;

θ(ξ = 0) = 1;

i.e., T = Tc (or ρ = ρc) at r = 0. Since dP/dr → 0 as r → 0, we also have

dθ
dξ

∣∣∣∣
ξ=0

= 0

at ξ = 0.

Numerical solutions are fairly straightforward to compute with these boundary conditions;
analytical solutions are possible for polytropic indexes n = 0, 1 and 5 (i.e., ratios of specific
heats γ =∞, 2, and 1.2); these are, respectively,8

θ(ξ) = 1− ξ2/6 ξ1 =
√

6,

= sin ξ/ξ = π, and

=
(
1 + ξ2/3

)−1/2
=∞

where ξ1 is the first root of θ (i.e., the smallest positive value of ξ for which θ = 0) – that is,
the rescaled radius of the star, R/α. ‘Solutions’ of the Lane-Emden equation are very often
expressed solely in terms of surface (‘ξ1’) values of ξ and dθ/dξ (or −ξ2 dθ/dξ), as in the
following table (which I calculated using a very simple numerical integration):

8Details of the solutions are available at http://mathworld.wolfram.com/Lane-EmdenDifferentialEquation.html
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Solutions of the Lane-Emden Equation

n ξ1 −ξ2
1

dθ
dξ

∣∣∣
ξ1

0.0 2.4495 4.8990
0.5 2.7527 3.7887
1.0 3.1416 3.1416
1.5 3.6538 2.7141
2.0 4.3529 2.4111
2.5 5.3553 2.1872
3.0 6.8968 2.0182
3.5 9.5358 1.8906
4.0 14.972 1.7972
4.5 31.836 1.7378
5.0 ∞ 1.7321

Solutions of the Lane-Emden equation for several values of the polytropic index n (increasing left to

right).

A polytrope with index n = 0 has a uniform density, while a polytrope with index n = 5 has an
infinite radius. In general, the larger the polytropic index, the more centrally condensed the
density distribution; and only polytropes with n ≤ 5 are bound systems (Section 3.5). [A
polytrope with index n =∞ corresponds to a so-called ‘isothermal sphere’, a self-gravitating,
isothermal gas sphere, used to analyse collisionless systems of stars (in particular, globular
clusters).]
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3.4 Astrophysical Solutions

We’ve done a lot of algebra; what about the physical interpretation of all this? Recall that the
Lan-Emden equation is the solution of the equations of hydrostatic equilibrium and mass
continuity, for a polytropic equation of state, expressed in dimensionless form.

That is, the solution of Lane-Emden equation depends only on the polytropic index, n, but is
expressed in terms of scaled parameters. If we want to obtain astrophysically more interesting
solutions (in terms of actual stellar masses, radii, etc.) then we need two physical parameters
to transform the scaled ones. We might choose actual numerical values for K and ρc, for
example, but other pairings (e.g., stellar mass and radius) would serve. Under these
circumstances, we can then evaluate:

• The stellar radius,

R ≡ αξ1 (3.11)

=

{
K(n+ 1)

4πG

}1/2

ρ(1−n)/(2n)
c ξ1 (3.16)

(from eqtn. 3.14).

• The stellar mass,

M =

∫ R

0
4πr2ρdr

but r = αξ (eqtn. 3.11) and ρ = ρcθ
n (eqtn. 3.13), so

M = 4πα3ρc

∫ ξ1

0
ξ2θndξ;

then using the Lane-Emden equation, (3.15), for θn,

M = −4πα3ρc

∫ ξ1

0

d
dξ

(
ξ2dθ

dξ

)
dξ

= 4π

{
K(n+ 1)

4πG

}3/2

ρ(3−n)/(2n)
c

{
−ξ2dθ

dξ

∣∣∣∣
ξ1

}
(3.17)

• The stellar density,

ρ =
3M

4πR3

= ρc
3

ξ3
1

{
−ξ2dθ

dξ

∣∣∣∣
ξ1

}
, (3.18)

(where we use our previous results, eqtns. (3.17) and (3.16) for M and R).
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• The central pressure can be expressed trivially as

Pc = Kρ(n+1)/n
c , (3.3)

or, in terms of the mass and radius,

=

4π(n+ 1)

(
dθ
dξ

∣∣∣∣
ξ1

)2

−1

GM2

R4
(3.19)

(obtained by eliminating ρc between eqtns (3.16) and (3.17) to obtain K in terms of M
and R, and using eqtn. (3.18) for ρc).

3.4.1 Application to white dwarfs: mass–radius relation

The central density, ρc, can be eliminated between equations (3.16) and (3.17) to give

R(3−n)M (n−1) =

{
4π

(
−ξ2 dθ

dξ

∣∣∣∣
ξ1

)}(n−1){
K

G

n+ 1

4π

}n
ξ3−n

1 . (3.20)

The right-hand side is a (dimensionless) number that depends only on the polytropic index. We
see that polytropes therefore follow a mass–radius relationship,

M ∝ R(n−3)/(n−1). (3.21)

We know that non-relativistic white dwarfs are polytropes with P ∝ ρ5/3 (i.e., n = 3/2;
Section 3.2.3), whence M ∝ R−3. Using eqtn. (3.7) in eqtn. (3.20), and inserting numerical
values, we obtain a quantitative mass-radius relation for non-relativistic white dwarfs,

R =
K1

0.4242GM1/3
. (3.22)

Evaluating the numerical factors, we find

R

R�
' 10−2 M

M�

−1/3

,

showing that when a star like our Sun becomes a white dwarf it will have about the same
radius as that of the Earth (∼6000 km),and hence a density of ∼ 109 kg m−3.

With increasing mass, the radius decreases, and the density rises, eventually entering the
relativistic regime. (As the particles get squeezed into smaller and smaller volumes, the
uncertainty principle implies that the velocities are larger and larger.) Then

P = Pe,r = K2ρ
4/3,
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where

K2 =
h2

20mem(H)µe

(
3

πm(H)µe

)2/3

, (3.8)

Again inserting numerical values

M =

(
K2

0.3639G

)3/2

= 1.142× 1031µ−2
e kg,

= 5.74µ−2
e M�

This is the maximum mass that can be supported by electron degeneracy pressure; for a helium
white dwarf, µe ' 2, and this ‘Chandrasekhar mass’ is MCh ' 1.44M�. A star more massive
than the Chandraskhar limit that has no other significant sources of pressure will continue to
collapse, to a neutron star (supported by neutron degeneracy pressure) or black hole.9

3.4.2 The Eddington model

Some results for the Eddington model (n = 3, constant β) are set in Problem Sheet 1. We note
one additional result, namely that from eqtn. (3.6) we have

K ∝
{

(1− βP)

β4
P

}1/3

(where PR = (1− β)P , while from eqtn. (3.17), with n = 3

K ∝M2/3;

that is,{
(1− βP)

β4
P

}
∝M2.

This shows us that as M increases, βP decreases (the left-hand side is a monotonically
decreasing function of βP) – that is, with increasing mass, radiation pressure becomes
increasingly important. While stars like the Sun are largely supported by gas pressure, the
most massive stars are almost entirely supported by radiation.

9The equation of state for nuclear matter is not well established, so that the upper limit for a neutron-star
mass – the ‘Tolman–Oppenheimer–Volkoff limit’ – is less certain than is the Chandrasekhar limit. The most
accurate determinations of neutron-star masses (from binary-star systems) are all remarkably close to 1.4M�, but
with a range of ∼1–2M�.
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3.4.3 An alternative look at the mass-radius relation: white
dwarfs [not for lectures]

The kinetic energy of a particle of mass m, velocity v, is

Ep =
1

2
mv2;

and the uncertainty principle tells us that

∆x∆p ≥ ~/2

where p is the momentum and x is some spatial co-ordinate such that

∆x3 = V/N

for a star of volume V containing N particles. That is, the uncertainty principle shows us
that

p2 ∝ ~2N2/3/R2

whence the total kinetic energy of the entire star (∝ N) is

E∗ ∝ (~2N5/3)/(mR2)

The star is in equilibrium when the kinetic energy equals the gravitational energy; that is,
when

(~2N5/3)/(mR2) ∝M5/3/R2 ' GM2/R,

or

R ∝M−1/3

as before.

As the mass increases the radius gets smaller, so we must eventually enter the relativistic
regime (∆x decreases so ∆p increases). The relativistic form for the energy in the limit
v → c is

Ep = pc;

then repeating the arguments from above leads to

M2/3 ≈ ~cm−4/3
p /G ' 1.4M�.

That is, the maximum mass of a star that can be supported by electron degeneracy pressure
depends only on physical constants, and not on any other property of the star.
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3.5 Binding energy [not for lectures]

It’s of interest also to investigate the total energy of a polytrope. We start by considering
the gravitional potential energy; this is given in the usual way by

Ω = −
∫ s

c

Gm

r
dm (3.23)

≡ −
∫ s

c

G

2r
d(m2)

(where the c, s limits mean ‘centre’ and ‘surface’). Integrating by parts,

Ω = −GM
2

2R
−
∫ s

c

Gm2

2r2
dr,

but from hydrostatic equlibrium, dr = −(r2dP )/(Gmρ), so this can be written as

Ω = −GM
2

2R
+

∫ s

c

��Gmm

2��r
2

��r
2

��Gm

dP
ρ
. (3.24)

We now use the polytropic equation of state,

P = Kργ = Kρ(n+1)/n, (3.3)

to obtain

dP
dρ

= K
n+ 1

n
ρ1/n;

we also use the trick of writing eqtn. (3.3) as

P

ρ
= Kρ1/n

to write

d (P/ρ)

dρ
=
K

n
ρ(1−n)/n

d (P/ρ)

��dρ
=

dP
ρ��dρ

1

n+ 1
; i.e.,

dP
ρ

= (n+ 1) d (P/ρ) (3.25)

Substituting back into eqtn. (3.24) gives us

Ω = −GM
2

2R
+
n+ 1

2

∫ s

c

md (P/ρ); (3.26)

integrating by parts for a second time,

= −GM
2

2R
+

[
n+ 1

2
m
P

ρ

]s

c

− n+ 1

2

∫ s

c

P

ρ
dm.
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The term in [brackets] vanishes (m = 0 at the centre, P/ρ = 0 at the surface), so, using
mass continuity (eqtn. 1.4),

Ω = −GM
2

2R
− n+ 1

2

∫ s

c

P

ρ
4πr2ρ dr (3.27)

= −GM
2

2R
− n+ 1

2

∫ s

c

P
4π

3
dr3. (3.28)

Integrating by parts yet again,

Ω = −GM
2

2R
−
[
n+ 1

2

4π

3
Pr3

]s

c

+
n+ 1

6

∫ s

c

4πr3 dP . (3.29)

The second term again vanishes rc = 0, Ps = 0); then, using the equation of hydrostatic
equilibrium once more,

Ω = −GM
2

2R
− n+ 1

6

∫ s

c

4πr3Gmρ

r2
dr, (3.30)

and mass continuity,

Ω = −GM
2

2R
− n+ 1

6

∫ s

c

Gm

r
dm (3.31)

– but the integral is the definition of Ω (eqtn. 3.23) that we started with! That is,

Ω = −GM
2

2R
− n+ 1

6
Ω, or (3.32)

Ω =

(
3

n− 5

)
GM2

R
. (3.33)

We can then appeal to the virial theorem to obtain the total energy,

E = Ω + U =
1

2
Ω =

(
3

n− 5

)
GM2

2R
.

We see that for n > 5 the energy is E > 0, meaning the system is unbound; only polytropes
with n < 5 are gravitationally bound, and hence potentially of interest as stellar models.
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Section 4

Pre-main-sequence evolution:
polytropic models

4.1 Introduction: review

We now turn to evolution of stars. We’ll divide this into three broad sections, namely
– Pre-main-sequence evolution;
– Main-sequence evolution; and
– Post-main-sequence evolution.

For reference, we’ll remind ourselves of the Virial theorem, and some relevant timescales (from
PHAS2112) that will be of use:

• Virial Theorem The virial theorem expresses the relationship between the gravitational
energy Ω and thermal energy U in a ‘virialised system’ (such as a star):

2U + Ω = 0 (4.1)

or U = −Ω/2; thus the total energy is

E = U + Ω = Ω/2,

(which must be negative for the star to be bound).

• The dynamical timescale, on which departures from hydrostatic equilibrium are restored
in stellar systems,

tdyn '

√
r3

Gm(r)
(4.2)

' 1/
√

(Gρ) ∼ 2000 s for the Sun

37



• The Kelvin-Helmholtz timescale, the time taken for the gravitational potential energy to
be radiated away:

tKH =
|Ω|
L

where

Ω =

∫ R

0
−G16π2

3
r4ρ2(r) dr

' −16

15
π2Gρ2R5

= − 9

15

GM2

R

(assuming ρ(r) = ρ(R)). The Kelvin-Helmholtz timescale for the Sun
(ρ = 1.4× 103 kg m−3, Ω = 2.2× 1041 J) is tKH ' 107 yr.

• The thermal timescale, the time taken for thermal energy to be radiated away, is a factor
2 smaller (through the Virial theorem), but is of the same order of magnitude; i.e.,

tth ' tKH

• The nuclear timescale is a measure of how long it takes the reservoir of nuclear energy to
be released,

tN =
fNMc2

L
(4.3)

where fN is just the fraction of the rest mass available to the relevant nuclear process. In
the case of hydrogen burning the fractional ‘mass defect’ is 0.007, so we might expect

tN =
0.007M�c2

L�
(' 1011 yr for the Sun).

However, in practice, only the core of the Sun – about ∼10% of its mass – takes part in
hydrogen burning, so fN ' 10−3, and the nuclear timescale for hydrogen burning is
∼ 1010 yr for the Sun. Other evolutionary stages have their respective (shorter)
timescales.

Overall, tdyn < tKH ' tth < tN. We will see that each of these timescales is appropriate, in turn,
in the evolution of stars.

4.2 Jeans mass

Observationally, we know that stars form from interstellar matter, typically in groups (clusters
and associations). The essential physical process is evidently one of gravitational collapse,
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which occurs on a dynamical timescale. However, because the densities are low, even in the
‘dense’ clouds associated with star formation (n ∼ 104 cm−3,∼ 10−17kg m−3), even this
timescale is quite long (∼ 106 yr).

We’ll consider collapse from a simple, idealised perspective. The thermal energy of our initial
system is

U =
3

2
NkT

where N is the number of particles, nV . The gravitational potential energy is

Ω = −f GM
2

R

where f is a factor, of order unity, that depends on the mass distribution; for uniform density,
f = 3/5, but more centrally condensed systems yield larger values of f . So, the Virial theorem
for an initially uniform gas cloud becomes

3NkT =
3

5

GM2

R

If the equality actually holds, then the system is in virial equilibrium (and nothing much
happens). If the left-hand side is larger, thermal energy exceeds the gravitational potential
energy, and the cloud disperses. If the right-hand side is greater, gravity wins, and the cloud
collapses to a protostar. Thus our condition for collapse is

3NkT <
3

5

GM2

R
. (4.4)

For mean density ρ and cloud mass M , the corresponding characteristic length scale is

R =

(
3M

4πρ

)1/3

(smaller clouds collapse) and, substituting N = M/(µm(H)), eqtn. (4.4) can be written as

M >

(
5kT

Gµm(H)

)3/2( 3

4πρ

)1/2

'
(

kT

Gµm(H)

)3/2

ρ−1/2 (4.5)

(to order of magnitude); i.e., MJ ∝ T 3/2ρ−1/2. This is the constraint on cloud mass required for
collapse. This sort of argument was first put forward by Sir James Jeans, and this critical mass
is therefore known as the Jeans mass, MJ. We see that the easiest clouds to collapse are cold,
dense ones (typically, dense molecular clouds).

[Jeans himself derived this limiting mass by supposing that a cloud collapses if the
sound-crossing time is greater than the free-fall time. Jeans’ original argument was actually
flawed, but his general results still provides a useful rule of thumb indicating whether or not a
given system is liable to collapse.]
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We can also arrange eqtn. (4.4) to solve for R,

R =

(
15

8π

kT

Gµm(H)ρ

)1/2

, (4.6)

the Jeans length – larger clouds (at the specified density and temperature) will collapse.

What actually causes a molecular cloud to collapse? Observationally, star formation is observed
to be triggered by density waves in spiral galaxies, or sequentially by (presumably) supernova
blast waves.

4.3 Protostars: contraction

The Virial Theorem tells us how a virialised system responds to changing conditions, namely

∆U = −∆Ω

2
.

Thus as a gas cloud contracts it gets hotter (U becomes more positive as Ω becomes more
negative; that is, as the system becomes more tightly bound). Only half the change in Ω has
been accounted for; the remaining energy is ‘lost’ – in the form of radiation.

As the temperature rises, first molecules (principally H2) dissociate, then ionization of
hydrogen and helium occurs. Eventually, hydrostatic equilibrium is established as a result of
rising pressure, and the collapsing gaseous condensation has become a protostar.

We can therefore roughly estimate the properties of the protostar by supposing that all the
available gravitational potential energy initially released in collapse (from infinity to some
protostellar radius Rps) is used in dissociation and ionization; that is, that

GM2

Rps
' M

m(H)

(
X

2
· χ(H2) +X · χ(H) +

Y

4
· χ(He)

)
(4.7)

(neglecting some factors of order unity), where
X,Y (' 1−X) are the abundances by mass of hydrogen and helium,
χ(H2) is the dissociation energy of molecular hydrogen (4.5 eV), and
χ(H), χ(He) are the ionization potentials of hydrogen and helium (13.6 eV, and 24.6+54.4 eV),
giving

Rps

R�
' 43

(1− 0.2X)

M

M�
(4.8)

∼ 50 for a solar-mass star.

In reality, additional energy is lost through other mechanisms (outflows etc.), and this ‘back of
the envelope’ calculation significantly overestimates Rps. Nevertheless, it provides us with a
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simple, if crude, estimate of the maximum radius for a protostar as it begins its evolution. We
can also estimate the average internal temperature, from the Virial theorem,

T ' µm(H)
3k

GM

Rps

∼ 105 K.

Even though the core is hotter than this mean value, temperatures are not high enough, at this
stage, to ignite hydrogen fusion.

The opacity is high at this stage (largely due to H−), as is the luminosity. As a consequence,
the system is effectively fully convective, and can therefore be well approximated by a
polytrope with n = 1.5 (Section 3.2.1).

4.4 Protostars: Hayashi tracks

The relevant behaviour of the protostar in this phase was investigated by the Japanese
astronomer Chushiro Hayashi. We investigate this behaviour through a polytropic model.

4.4.1 Interior properties

For a polytrope of index n,

P = Kρ(n+1)/n, (3.3)

=
ρ

µm(H)
kT (1.2)

if gas pressure dominates. Eliminating ρ between eqtns. (3.3) and (1.2) we obtain

P = K−n
(

k

µm(H)

)(1+n)

T (1+n); (4.9)

that is,

P = C1T
(1+n) (4.10)

where

C1 = K−n
(

k

µm(H)

)(1+n)

is a constant for a given model.
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From our mass-radius relation for polytropes,

R(3−n)M (n−1) ∝ Kn, (3.20)

we have, for n = 1.5,

K ∝M1/3R

whence

C1 ∝
(
M1/3R

)−n
,

∝M−1/2R−3/2

for n = 1.5. So, finally, from eqtn. (4.10),

P = C2M
−1/2R−3/2T 5/2 (4.11)

where C2 is a constant (for given polytropic index and mean molecular weight).

4.4.2 Boundary condition

To solve for the constant of proportionality in eqtn. (4.11), we consider an outer boundary
condition – the photosphere. The photosphere is defined by optical depth τ = 2/3; that is, since

τ ≡
∫ ∞
r

κρdr,

and assuming constant opacity in the atmosphere,

2

3
= κ

∫ ∞
R

ρdr.

From hydrostatic equilibrium,

P (R) =

∫ ∞
R

gρdr

' GM

R2

∫ ∞
R

ρdr

=
GM

R2

2

3κ
.

We’ve assumed constant κ in the atmosphere of a given protostar, but it will vary between
different objects according to pressure and temperature. We adopt a power-law dependence,

κ = κ0P
aT b,
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as a plausible generic opacity law, so

P (R) =
GM

R2

2

3κ0P aT b

or

P (R) =

(
GM

R2

2

3κ0
T−beff

)1/(1+a)

(4.12)

(where T ≡ Teff at the photosphere).

4.4.3 Solution

At the photosphere, both eqtn. (4.11) and (4.12) are true; i.e.,(
GM

R2

2

3κ0
T−beff

)1/(1+a)

= C2M
−1/2R−3/2T

5/2
eff .

So, for any given mass, there is a single-valued relationship between R and Teff ; but
L = 4πR2σT 4

eff , so this is equivalent to a single-valued relationship between Teff and L – that is,
a track in the HR diagram. Such tracks are called Hayashi tracks. Taking logs on both sides,
some algebra yields

lnTeff = A lnL+B lnM + constant (4.13)

with

A =
0.75a− 0.25

5.5a+ b+ 1.5
, B =

0.5a+ 1.5

5.5a+ b+ 1.5
.

Opacity calculations indicate a ' 1, b ' 3 (the principal source of opacity is H−) whence
A ' 0.05

B ' 0.2

From eqtn. 4.13,

∂ lnL

∂ lnTeff
= 1/A;

since A is small, the track must be steep (i.e., nearly constant temperature) in the HR diagram.
We also see that

B =
∂ lnTeff

∂ lnM

is positive, so that the tracks move slightly to the left with increasing mass; but the dependence
is weak, so all fully-convective stars lie on almost the same ‘Hayashi track’ (or Hayashi line).
For a given mass and chemical composition, no fully convective star can lie to the right of the
Hayashi track (because convection is the most efficient means of energy transport). The region
to the right of the Hayashi track is the Hayashi ‘forbidden zone’ (Teff . 4 kK).
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4.5 Henyey track

As the contracting protostar descends the Hayashi track the internal temperature continues to
rise until ionization is complete, and the opacity drops in the core. This fall in opacity allows
energy to be transported radiatively for solar-type stars, and the nascent star develops a
radiative core. The star then moves away from the Hayashi track, to higher Teff , following a
near-horizontal ‘Henyey’ track (for M & 0.5M�).

From the equation of radiative energy transport

L(r) ∝ r2

κRρ

dT
dr
T 3, (2.9)

but we also have

ρ ∝ M

R3
,

dT
dr
' Tc

R
,

and we adopt

κR ∝ ρT−3.5

(Kramer’s opacity). Finally, the core temperature scales as

Tc ∝
M

R
(20.17)

(from PHAS2112). Combining these results yields

L ∝M5.5R−0.5

and (since L ∝ R2T 4
eff)

Teff ∝ R−5/8. (4.14)

That is, for given mass M , the luminosity and temperature increase as the star shrinks.

4.6 Protostar to star

Until fusion ignites, the relevant timescale is the Kelvin-Helmholtz timescale (since the star is
radiating gravitational potential energy). This timescale is short, and the contracting protostar
is still shrouded in the dusty molecular cloud from which it formed. The increasing core
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temperature eventually results in ignition of hydrogen burning; the protostar is now a star, on
the zero-age main sequence (ZAMS).

Of course, the true circumstances are more complex in detail than the simple Hayashi picture;
protostars show circumstellar accretion disks, and outflows such as jets and stellar winds.
Magnetic fields also play a role. Material falling onto the protostar generates accretion
luminosity, potentially through shocks. This extra energy loss results in protostellar radii
smaller than simple estimates (eqtn. 4.8). Furthermore, the most massive stars may ignite
hydrogen burning at the core while still accreting at the surface.

Stars more massive than ∼ 5M� become stable against convection very quickly; most of their
pre-main-sequence evolution is on the Henyey branch, while stars with M . 0.5M� never
become stable against convection, and evolve vertically onto the MS as fully convective stars.
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Figure 4.1: The approach to the main sequence for (proto)stars of different masses. From Iben, ApJ, 141, 993
(1965).
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Section 5

The main sequence: homologous models

We know that stars on the main sequence share many basic characteristics, as a consequence of
their common energy source. We also know that many properties vary along the main
sequence, i.e., vary with mass. Both aspects are accommodate by supposing that stars along
the main sequence are essentially just scaled version of each other. This will give us insight into
(e.g.) main-sequence mass–luminosity relationships.

5.1 Transformed equations

The basic equations of stellar structure are normally cast in such a way as to describe the run
of physical properties with radius; but mass is the more fundamental physical property of a
star (the radius of a solar-mass star will change by orders of magnitude over its lifetime, while
its mass remains more or less constant), so for practical purposes it is customary to reformulate
these structure equations in terms of mass as the independent variable. We start by simply
inverting eqtn. 1.4, the equation of mass continuity, giving

dr
dm(r)

=
1

4πr2ρ(r)
; (5.1)

and the remaining basic structure equations are just multiplied by eqtn. 5.1, giving

dP (r)

dm(r)
=
−Gm(r)

4πr4
(hydrostatic equilibrium) (5.2)

dL(r)

dm(r)
= ε(r) (energy continuity) (5.3)

dT (r)

dm(r)
= − 3kRL(r)

16π2r4acT 3(r)
(radiative energy transport) (5.4)

(where all the radial dependences have been shown explicitly).
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5.2 Homologous models

Homologous stellar models are defined such that their properties scale in the same way with
fractional mass m ≡ m(r)/M . That is, for some property X (which might be temperature, or
density, etc.), a plot of X vs. m is the same for all homologous models. Such models may
reasonably be applied to zero-age main-sequence stars which have uniform chemical
composition and which are in thermal, hydrostatic, and radiative equilibrium.

Our aim in constructing such models is to formulate the stellar-structure equations so that they
are independent of absolute mass, but depend only on relative mass. We therefore recast the
variables of interest as functions of fractional mass, with the dependences on absolute mass
assumed to be power laws:

r = Mx1r0(m) dr = Mx1dr0

ρ(r) = Mx2 ρ0(m) dρ(r) = Mx2dρ0

T (r) = Mx3 T0(m) dT (r) = Mx3dT0 (5.5)

P (r) = Mx4 P0(m) dP (r) = Mx4dP0

L(r) = Mx5 L0(m) dL(r) = Mx5dL0

where the xi exponents are constants to be determined, and r0, ρ0 etc. depend only on the
fractional mass m. We also have

m(r) = mM dm(r) = Mdm

and, from eqtns. (3.1, 3.2)

κ(r) = κ0ρ
a(r)T b(r) = κ0ρ

a
0(m)T b0 (m)Max2M bx3

ε(r) ' ε0ρ(r)Tα(r), = ε0ρ0(m)Tα0 (m)Mx2Mαx3 ,

We can now substitute these into our structure equations to express them in terms of
dimensionless mass m in place of actual mass m(r):

Mass continuity:

dr
dm(r)

=
1

4πr2ρ(r)
becomes (5.1)

M (x1−1)dr0(m)

dm
=

1

4πr2
0(m)ρ0(m)

M−(2x1+x2) (5.6)

The condition of homology requires that the scaling be independent of actual mass, so we can
equate the exponents of M on either side of the equation to find

3x1 + x2 = 1 (5.7)
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Hydrostatic equilibrium:

dP (r)

dm(r)
=
−Gm(r)

4πr4
becomes (5.2)

M (x4−1)dP0(m)

dm
= − Gm

4πr4
0

M (1−4x1) (5.8)

whence 4x1 + x4 = 2 (5.9)

Energy continuity:

dL(r)

dm(r)
= ε(r)

= ε0ρ(r)Tα(r) becomes (5.3)

M (x5−1)dL0(m)

dm
= ε0ρ0(m)Tα0 (m)Mx2+αx3 (5.10)

whence x2 + αx3 + 1 = x5 (5.11)

Radiative transport:

dT (r)

dm(r)
= − 3kRL(r)

16π2r4acT 3(r)
becomes (5.4)

M (x3−1)dT0(m)

dm
= − 3(κ0ρ

a
0T

b
0 )L0

16π2r4
0acT

3
0 (m)

M (x5+(b−3)x3+ax2−4x1) (5.12)

whence 4x1 + (4− b)x3 = ax2 + x5 + 1 (5.13)

Equation of state:
If gas pressure dominates, then

PG(r) = n(r)kT (r)

=
ρ(r)kT (r)

µm(H)
; (1.2)

neglecting any radial dependence of µ we find

Mx4P0(m) =
ρ0(m)kT0(m)

µm(H)
M (x2+x3) (5.14)

whence x2 + x3 = x4. (5.15)

Alternatively, if radiation pressure dominates,

PR(r) =
1

3
aT 4(r) (1.3)

Mx4P0(m) =
1

3
a (Mx3T0(m))4 (5.16)

whence x4 = 4x3 (5.17)
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5.3 Solutions

We now have five equations1 for the five exponents xi, which can be solved for given values of
a, b, and α (that is, the exponents in eqtns. (3.1) and (3.2)).

For low-mass stars (∼ 0.7 .M . 2M�, corresponding roughly to spectral types F and later)2

we adopt Kramers opacity

κ ∝ ρT−3.5

(i.e., a = 1, b = −3.5) and a nuclear generation rate appropriate to proton-proton fusion,

ε ∝ T 4

(α = 4).

Higher-mass stars have energy generation on the main sequence dominated by the CNO cycle,
where

ε ∝ T 16,

and we suppose that the opacity is dominated by simple Thompson scattering (mass opacity
independent of density and temperature; a = b = 0).3

The algebra to obtain solutions is straightforward (if, in general, tedious). Results for the cases
of ‘low-mass’ and ‘high-mass’ stars are:

Regime a b α x1 x2 x3 x4 x5

Low-mass 1 −3.5 4 1/13 10/13 12/13 22/13 71/13
High-mass 0 0 16 15/19 −26/19 4/19 −22/19 3

1Eqtns. (5.7), (5.9), (5.11), (5.13), and (5.15/5.17)
2For masses much below 0.7M� energy transport is convective, so our numerical analysis, which uses radiative

transport, becomes invalid.
3Our analysis breaks down again for very high masses, when radiation becomes the dominant source of

pressure.
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5.4 Results

Collecting the set structure equations that describe a sequence of homologous models:

dr0(m)

dm
=

1

4πr2
0(m)ρ0(m)

(5.6)

dP0(m)

dm
= − Gm

4πr4
0

(5.8)

dL0(m)

dm
= ε0ρ0(m)Tα0 (m) (5.10)

dT0(m)

dm
= − 3(κ0ρ

a
0T

b
0 )L0

16π2r4
0acT

3
0 (m)

(5.12)

P0(m) =
ρ0(m)kT0(m)

µm(H)
. (5.14)

These can be solved numerically using the boundary conditions

r0 = 0, L0 = 0 at m = 0,

P0 = 0, ρ0 = 0 at m = 1.

However, we can draw some useful conclusions analytically. First, it’s implicit in our definition
of homologous models, eqtns (5.5), that there must exist mass–luminosity and mass-radius
relations for them; since

L = Mx5L0(1) R = Mx1r0(1)

it follows immediately that

L ∝M71/13 ∼M5.5 R ∝M1/13 ∼M0.1 (low-mass)

∝M3 R ∝M15/19 ∼M0.8 (high-mass)

which is not too bad compared to the actual main-sequence mass–luminosity relationship.

Secondly, since

L ∝ R2T 4
eff and R = Mx1r0(1),

L = Mx5L0(1),

it follows that

Mx5L0(1) ∝M2x1r2
0(1)T 4

eff ,
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or

Teff ∝M (x5−2x1)/4, ∼ ∝M1.2 (low-mass)

∼ ∝M0.35 (high-mass)

Combining this with the mass–luminosity relationship gives

L ∝ T 4x5/(x5−2x1)
eff ∼ ∝ T 4.5

eff (low-mass)

∼ ∝ T 8.5
eff (high-mass)

which is not too bad – indeed, the qualitative result that there is a luminosity–temperature
relationship is, in effect, a prediction that a main sequence exists in the HR diagram.4

4Although there is some circularity in this argument, since we supposed homology as a starting premise.
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Section 6

Stellar evolution

6.1 Mass limits for stars

We showed in Section 3.4 that the central density and pressure of a star are readily estimated
for a polytropic model, with

ρ =
3M

4πR3
= ρc

3

ξ3
1

{
−ξ2dθ

dξ

∣∣∣∣
ξ=ξ1

}
; (3.18)

i.e.,

ρc =
ξ3

1M

4πR3

{
−ξ2dθ

dξ

∣∣∣∣
ξ=ξ1

}−1

Pc = Kρ(n+1)/n
c , (3.3)

=

4π(n+ 1)

(
dθ
dξ

∣∣∣∣
ξ1

)2

−1

GM2

R4
. (3.19)

For a given polytropic index n we can therefore estimate the core temperature (e.g., through
the perfect gas equation if gas pressure dominates). These estimates of core conditions allow us
to estimate the minimum mass for which thermonuclear fusion can take place (Tc ' 106 K);
this turns out to be ∼0.1M�.

There’s also an upper limit to the possible mass of a star. Classically, this is determined by the
Eddington limit. The inward force of gravity is proportional to mass, while the outward
radiation-pressure force scales with luminosity, which increase with mass to the power ∼3; thus
there must be a point at which radiation overcomes gravity, and the star cannot be stable. This
limit is generally thought to be at ∼150M�. Only a few dozen stars are known that are more
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Figure 6.1: Evolutionary tracks for stars of different initial masses, starting at the ZAMS (based
on calculations by the Geneva group). The tracks of intermediate-mass stars, with initial masses
of ∼2–10M�, all show broadly similar characteristics.

massive than 100M�, although the most massive star has a reported mass of ∼200M�. Possibly
this mass estimate is in error, or perhaps there are ways round the Eddington limit (e.g.,
inhomogeneous atmospheres that allow radiation to ‘leak’ out through lower-density routes).

6.2 Classifying stellar evolution

Within this allowed range of ∼ 10−1–102M�, a star, by our definition, spends most of its
lifetime on the main sequence, burning hydrogen to helium in the core. However, even on the
main sequence there are different evolutionary behaviours, depending on mass. In this context,
it’s convenient to divide the MS into the ‘upper’ main sequence (M & 2M�, Teff & 104 K) and
‘lower’ main sequence:

Lower main sequence. Spectral types ∼F and later. Energy generation is through the
proton-proton chain, with radiative cores and convective envelopes. The extent of the
envelope varies with mass; at 1M� the envelope accounts for ∼3% by mass (∼30% by
radius), increasing to ∼40% at 0.5M�. Stars less massive than ∼0.25M�are fully
convective.
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Upper main sequence. Energy generation is through the CNO cycle; the high energy fluxes
result in convective cores, but lower envelope opacities result in radiative envelopes. The
fractional core mass increases with total mass, because of the strong dependence of energy
generation rate on temperature (i.e., mass); ∼0.17M at 3M�, rising to ∼0.38M at 15M�.

6.2.1 Mass dependence of subsequent evolution

The discussion of subsequent evolution can be structured in several ways – for example,
according to the minimum mass required for a star to form its first degenerate core. We can
therefore elaborate our simple ‘high-mass/loss-mass’ division to discuss this subsequent
evolution.

First degenerate cores as a function of mass
Mass range Category First degenerate

(M�) core
≤2 Low He
2–8 Intermediate C/O
8–11 High O/Ne/Mg
≥11 High –

• Low-mass stars develop a degenerate helium core while ascending the red-giant branch
(discussed below; Section 6.4). Core contraction is slow, leading to a slow ascent of the
RGB. Core helium ignition takes place explosively in a thermonuclear runway; in this
‘helium flash’ enormous energy (∼ 1011L�!) is generated for a few seconds, lifting the
degeneracy; the core expands and helium burning becomes stable. This helium flash isn’t
directly observable because the energy is absorbed by the envelope, and is released slowly
(on a thermal timescale).

Helium burns to a C/O core, which never gets hot enough to ignite. The star ends its life
as a C/O white dwarf.

• Intermediate-mass stars are discussed in detail below. They have core temperatures high
enough to ignite helium without going through a degenerate phase. The star again ends
as a white dwarf of degenerate C/O.

• High-mass stars are hot enough to ignite core carbon burning before developing O/Ne/Mg
degenerate cores. For initial masses in excess of ∼11M� subsequent stages of nuclear
fusion can occur, all the way to Fe; these stars end their lives as core-collapse supernovae.
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6.3 Evolution on the main sequence

Homology implies for two stars 1, 2

r1(m)

R1
=
r2(m)

R2
, (6.1)

m1(m)

M1
=
m2(m)

M2
(6.2)

whence we can obtain the density scaling from

dm2

dr2
=

dm1

dr2

M2

M1
(from eqtn. 6.2)

=
dm1

dr1

R1

R2

M2

M1
(from eqtn. 6.1). (6.3)

We also have

dm2

dr2
= 4πr2

2ρ2 (from mass continuity, eqtn. 1.4)

= 4πr2
1

(
R2

R1

)2

ρ2 (from eqtn. 6.1), (6.4)

so, from eqtns 6.3 and 6.4,

dm1

dr1
= 4πr2

1

(
M1

M2

)(
R2

R1

)3

ρ2,

= 4πr2
1ρ1

or

ρ2

ρ1
= ρ1

(
M2

M1

)(
R1

R2

)3

(6.5)

(where ‘ρ1’ = ρ1(m)’, etc.). Mass continuity and hydrostatic equilibrium give

dP
dm

=
−Gm
4πr4

(5.2)

(6.6)

so

dP1

dm1
≡ dP2

dm2

dm2

dm1

dP1

dP2

=
−Gm2

4πr4
2

(
M2

M1

)
dP1

dP2

=
−Gm1

4πr4
1

; that is,

dP2

dP1
=

(
M2

M1

)(
m2

m1

)(
r1

r2

)4

=

(
M2

M1

)2(
R1

R2

)4

.
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Integrating (and taking the surface pressure to be zero),

P2

P1
=

(
M2

M1

)2(
R1

R2

)4

. (6.7)

Finally, for an equation of state

P1 = (ρ1kT1)/(µ1m(H)) (1.2)

we find, from eqtns. (6.5) and (6.7),

T2

T1
=
µ2

µ1

M2

M1

R1

R2
(6.8)

(provided that µ1/µ2 is independent of radius).

Evolution on the main sequence is driven by the slow (nuclear-timescale) conversion of
hydrogen to helium in the core, with a consequent increase in mean molecular weight. To
maintain the pressure (i.e., to maintain hydrostatic equilibrium) the core contracts, causing the
core temperature to rise (eqtn. 6.8).

Because of the temperature dependence of energy generation, this results in an increase in
luminosity, and the star moves upwards in the HRD. (Now half-way through its main-sequence
lifetime, the Sun is currently about 30% more luminous than it was on the zero-ag main
sequence.) The shrinking core is also accompanied by expansion of the envelope (the ‘mirror
effect’; Section 6.4.1).

Precise details of main-sequence evolution depend on the effectiveness of mixing in the core.
This can be seen in the different evolutionary tracks shown in Fig. 6.1; for lower main-sequence
stars (M . 2M�), there is little or no mixing in the radiative core, and the mean molecular
weight in the centre builds up relatively quickly. Energy production becomes concentrated in a
‘thick shell’ around the centre. Consequently, there is a gradual transition to subsequent
evolutionary phases where fusion occurs in a shell around a core consisting of helium (and
heavier elements).

More massive stars have fully mixed (convective) cores, so exhaust hydrogen at roughly the
same time throughout the core. In the final stages of core hydrogen fusion the entire star
contracts to try to maintain energy generation, increasing Teff and producing a short-lived ‘blue
hook’ in the HRD. Again, as core hydrogen is exhausted, the star establishes a
hydrogen-burning shell around the core.

The main-sequence lifetime is

τ ∝M/L ∝M (1−x5)
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Figure 6.2: Evolutionary track for a 4-M� star (calculated using EZ-Web, schematically extended
to include the thermal-pulsing AGB at H).

for our homologous models (i.e., τ ∝M−2 for high mass stars); more massive star have shorter
lifetimes than less mass ones. The main-sequence lifetime of the Sun is ∼ 1010 yr, while a
massive star is much less (∼ 106–107 yr for ∼ 20M�).

The evolution of the most massive (O- and B-type) stars are also affected by mass loss through
stellar winds. A 25M� star with a main-sequence lifetime of 6× 106 yr losing mass at a rate of
∼ 10−6 M� yr−1 will lose a quarter of its ZAMS mass in this way. The paradoxical
consequence of losing mass is that the star’s main-sequence lifetime is extended.

6.4 Evolution off the main sequence: intermediate-mass stars

6.4.1 Red-giant branch: shell hydrogen burning

As an example of post-main-sequence evolution, we’ll discuss in detail intermediate-mass stars,
which illustrate a number of features of interest (specifically, a 4M� star; Fig. 6.2). When core
hydrogen is exhausted (the ‘terminal age main sequence’, or TAMS; point B in Fig. 6.2) the star
has, essentially, an inert helium core surrounded by a hydrogen-burning shell. The core mass
increases (gaining mass from the shell), and contracts under gravity. As the core contracts, the
response of the envelope is to expand: the ‘mirror principle’ (or ‘shell-burning law’).
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Evolutionary timescales for a 4-M� star
(based on Geneva models)

Phase Fig. 6.2 t (yr) ∆t Energy source
Main sequence A–hook 1.62+8 – Core H burning

hook–B 1.65+8 5.30+6
Hertzsprung gap B–C 1.66+8 0.97+6 Shell H burning
RGB C–D 1.66+8 0.66+6
CHeB D–E 1.74+8 8.11+6 Core He + shell H
CHeB E–F 1.92+8 1.77+7
AGB F–G 1.94+8 1.78+6 Shell He + pulsing

All numerical stellar-evolution models predict this transition, and yet we lack a simple,
didactic physical explanation:

“Why do some stars evolve into red giants though some do not? This is a classic
question that we consider to have been answered only unsatisfactorily.” – D.
Sugimoto & M. Fujimoto (ApJ, 538, 837, 2000)

Nevertheless, semi-phenomenological descriptions afford some insight; these can be
presented in various degrees of detail, of which the most straighforward argument is as
follows.

We simplify the stellar structure into an inner core and an outer envelope, with masses and
radii Mc,Me and Rc, Re(= R∗) respectively. At the end of core hydrogen burning, we
suppose that core contraction happens quickly – faster than the Kelvin-Helmholtz
timescale, so that the virial theorem holds, and thermal and gravitational potential energy
are conserved to a satisfactory degree of approximation. We formalize this supposition by
writing

Ω + 2U = constant (Virial theorem)

Ω + U = constant (Energy conservation)

These two equalities can only hold simultaneously if both Ω and U are individually
constant, summed over the whole star. In particular, the total gravitational potential
energy is constant

Stars are centrally condensed, so we make the approximation that Mc �Me; then, adding
the core and envelope,

|Ω| ' GM2
c

Rc
+
GMcMe

R∗

We are interested in evolution, so we take the derivative with respect to time,

d|Ω|
dt

= 0 = −GM
2
c

R2
c

dRc

dt
− GMcMe

R2
∗

dR∗
dt
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i.e.,

dR∗
dRc

= −Mc

Me

(
R∗
Rc

)2

.

The negative sign demonstrates that as the core contracts, the envelope must expand – a
good rule of thumb throughout stellar evolution, and, in particular, what happens at the
end of the main sequence for solar-type stars.

As the radius increases, the effective temperature falls, and the star moves rightwards across
the HRD. The temperature and density gradients between core and envelope are initially
shallow, and the shell is quite extensive (in mass); this phase is referred to as ‘thick-shell
burning’. As the core contracts and the envelope expands, these gradients increase, and the
shell occupies less mass. During this ‘thin-shell burning’, a significant part of the energy goes
into expanding the envelope, leading to a drop in luminosity.

The increasing opacity that accompanies cooling temperatures favours convection, and the star
approaches the Hayashi track (Fig. 6.2, point C). As the core continues to shrink, and the
envelope expands in response, further decreases in Teff are not possible (the star can’t transport
energy efficiently enough), so the luminosity increases and the star ascends the ‘red-giant
branch’ (RGB).

The transition from main sequence to red giant is rapid, so few stars are observed in this region
of the HRD (points B–C) – the so-called ‘Hertzsprung gap’. The expansion C–D occurs on a
thermal timescale, so the hydrogen shell-burning phase is short-lived for intermediate-mass
stars (it is much longer for lower-mass stars).

First dredge-up

As an intermediate-mass star ascends the RGB, it develops an extensive convective envelope
which reaches down to the hydrogen-burning shell (echoing the fully convective phase of the
Hayashi track), bring CNO-processed material to the surface - the first dredge-up. Because the
C–N cycle reaches equilibrium before the O–N cycle, C–N processed material is exposed at the
surface; surface N is typically enriched by a factor ∼2, C is depleted by ∼30% (and O is
unchanged). The observation of this CN-processed material is important evidence that it is the
CNO cycle (not proton-proton burning) that occurs in the H-burning shell.

Stellar winds

Red giants are observed to lose mass in the form of slow winds (v ' 5–30 km s−1,
Ṁ ∼ 10−8 M� yr−1). Depending on luminosity, the star can lose several tenths of a solar mass
through this wind.
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6.4.2 Horizontal branch: core helium (+shell hydrogen) burning

The helium ‘ashes’ of shell hydrogen burning increase the mass of the core, which contracts
under increasing pressure. According to the virial theorem, half the energy released by the
gravitational contraction of the core is radiated away, and half goes into heating the core.
Eventually the core temperature is high enough to ignite core helium burning in the triple-α
process (T ∼ 108 K; point D).1 The star now has two energy sources: the helium-burning core,
and the hydrogen-burning shell.

The core expands as a result of the energy input (heating) and the density in the adjacent
hydrogen shell drops. The shell contributes most (∼70%) of the energy, so the drop in density
leads to a fall in total energy generation (luminosity), while the shrinkage of the envelope
(mirror law) leads to to a rise in effective temperature – the star moves down and to the left in
the HRD (to point E).

The star is now in a relatively stable stage of core-helium (+shell-hydrogen) burning (E–F). In
the HRDs of globular clusters (coeval low-metallicity systems), these stars form a ‘horizon
branch’, as a result of bluewards loops at constant luminosity (not obvious for the 4-M� track
shown in Fig. 6.2, but clear for the 6–10-M� tracks in Fig. 6.1); this relatively long-lived phase
(∼10% of the main-sequence lifetime) is therefore called the horizontal branch.2

6.4.3 Early asymptotic giant branch (E-AGB): shell helium burning [G]

Eventually core helium is exhausted (point F), leaving an inert core composed principally of
carbon and oxygen. Helium continues to burn outside the core, in a thick shell. Core
contraction is accompanied by expansion of the envelope, and the drop in density and
temperature quenches the shell hydrogen burning; the sole energy source is now the
helium-burning shell. Cooling of the envelope is accompanied by an increase in opacity, and the
envelope becomes strongly convective; the star moves back onto the Hayashi track, and ascends
the asymptotic giant branch (AGB; G). For intermediate-mass stars, the contracting CO core
becomes degenerate (Table 6.2.1). The AGB phase lasts about 10% of the horizontal-branch
lifetime.

1For low-mass stars M ∼0.8–2.3M�) the core is degenerate, with a mass of ∼0.45M�; the degeneracy is lifted
by the ignition, in a ‘helium flash’, which raises the core luminosity to as much as 1010–1011L�, but only briefly
(a few minutes).

2The horizontal branch of the globular cluster 47 Tuc (Fig. 1.1) is evident at V ' 13.8, (B − V ) ' 0.7. The
stars at the red end of the horizontal branch (typically of higher metallicity than globular-cluster stars) form a
‘red clump’, used as a distance indicator for extragalactic systems in particular.
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Paczynski relation.

The star’s luminosity at this stage is largely determined not by the total mass, but by the mass
of the degenerate core (although the latter is a function of the former, of course). We know that
there exists a mass–radius relationship for degenerate bodies (Section 3.4.1); thus the pressure,
and hence the energy-generation rate, in a shell outside the core is principally dependent on the
core mass. Paczynski (1970) quantified this idea; a modern version (from Langer) is

L∗ ' 5.9× 104 (Mc/M� − 0.52)L�

(where Mc is the core mass).

Stars with higher initial masses will have higher-mass cores, and hence higher AGB
luminosities. Since, ultimately, the luminosity of the helium-burning shell drives the envelope
expansion, stars with higher core masses also evolve to larger radii (∼300R� for the model
shown in Fig. 6.2).

Second dredge-up.

The convective envelope reaches down to the now-dormant hydrogen-burning shell, cycling the
CNO-processed material to the surface. In this second dredge-up, surface abundances of He and
N are enhanced, and C and O depleted. (The second dredge-up only occurs for stars with
initial masses &3–4M�; at lower masses, the convective zone doesn’t extend down to the
hydrogen discontinuity.)

Stellar winds.

The stellar-wind mass-loss rate increases dramatically during the AGB phase, reaching
∼ 10−8–∼ 10−6 M� yr−1; this wind is believed to be powered by radiation pressure on dust
forming in the cool outer regions of the photosphere.

6.4.4 Thermal pulsing AGB (TP-AGB); mostly shell H burning [H]

As the helium-burning shell uses up the available helium fuel, its mass decreases; the overlying
hydrogen layers contract, heating a shell of hydrogen to the point where it can ignite. Two shell
sources now exist, but because their rates of energy generation are so different, the situation is
unstable, leading to a phase of thermal pulsing. During most of this phase, the energy comes
from hydrogen shell burning, with relatively brief helium shell ‘flashes’.
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Schematically, the cycle proceeds as follows:

1. We start with a degenerate CO core and a helium-burning shell.

2. As the star ascends the AGB, the ‘ash’ from the helium-burning shell adds mass to the
CO core, driving the luminosity up (as described above). The helium-shell mass is
reduced (by He burning, and the continuing second dredge-up); when it reaches ∼0.02M�,
the temperature at the H/He interface is sufficient to ignite shell hydrogen burning.

The structure of the star is now:

a degenerate CO core;

a helium-burning shell;

a hydrogen-burning shell; and

an outer (hydrogen-rich) envelope.

3. Burning in the helium shell is unstable because of the thinness of the shell, coupled with
the strong temperature dependence of the 3α reaction. Essentially, the energy liberated
raises the pressure, initiating expansion; once the expansion has progressed far enough,
cooling sets in and the helium burning stops (Iben & Renzini 1983).

4. The hydrogen shell continues to burn, increasing the mass of the underlying helium layer
between the CO core and the H-burning shell. H-shell burning is providing practically all
the luminosity; this phase lasts ∼ 103–105 yr, depending on core mass (smaller cores lead
to longer cycles).

5. The helium layer between the core and hydrogen-burning shell is mildly degenerate. As
mass is added from the hydrogen-burning shell, the pressure and temperature rise in this
zone.

6. Eventually, helium is reignited explosively in a ‘helium flash’ when the temperature
reaches ∼ 108 K. The fusion raises the temperature, which increases the reaction rate,
which raises the temperature. . . The helium-burning layer doesn’t expand at first because
of the degeneracy (pressure support isn’t thermal), so there is no regulation of the rate of
fusion (hence a ‘flash’), but then the temperature reaches the point where the degeneracy
is lifted.

7. Considerable energy is generated in the flash (∼ 108L�for ∼a year), but much of it goes
into expanding the helium zone. The helium-burning region stabilises and stable burning
ensues for ∼ 102 yr. As a result of expansion and cooling, shell hydrogen burning is
extinguished, which restores the conditions at the end of the E-AGB phase (step 1); and
the cycle repeats.
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The thermal pulse cycle can repeat many times, but is barely noticeable at the surface of the
star. The helium shell is dormant for more than 99% of the cycle; hydrogen shell burning is the
main luminosity source averaged over the time.

Third dredge-up.

The large energy flux above the helium shell at step 7 above demands convective energy
transport. If this merges with the convective outer envelope, the products of helium burning
(notably carbon) can be exposed at the surface, in a third dredge-up.3 This can lead to the
formation of ‘carbon stars’ (surface C/O> 1; cp. solar, C/O' 0.4).

However, for sufficiently massive stars (M & 4–5M�), the base of the convective envelope can
reach T & 5× 107 K, hot enough to convert dredged-up carbon to nitrogen through the CN
cycle (‘hot bottom burning’).

Furthermore, 14N is a product of CNO burning in the hydrogen shell. During a thermal pulse,
this can be burnt to neon through

14N(α, γ)18F(β+, ν)18O(α, γ)22Ne

and then, for stars with cores masses &1M�(i.e., high enough temperatures),

22Ne(α, n)25Mg,

generating a flux of neutrons at every thermal pulse. This provides ‘fuel’ for the s process; and
the repeated application of neutron fluxes generates heavier and heavier elements. The third
dredge-up can (and does) reveal such elements, including, famously, 99Tc, a radioactive isotope4

with a half-life of only ∼ 2× 105 yr.

Mass loss.

TP-AGB stars show dusty, massive, slow stellar winds, with Ṁ reaching up to
∼ 10−4 M� yr−1. Since this can continue for ∼ 105 yr, the star can lose a substantial fraction
of its original mass through such winds.

The dust composition depends on the C/O ratio (i.e., on the nature of the third dredge-up). If
C/O< 1 (by number), then all the carbon is locked into the stable CO molecule, and the
remaining oxygen forms silicate dust; if C/O> 1, then all the oxygen is locked into CO, and the

3The dredge-up of helium-burning products is always called a third dredge-up, even if a second dredge-up did
not occur; and multiple third dredge-ups can occur in a star.

4Technetium was discovered in red-giant spectra by Paul Merrill in 1952.
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dust is carbon-rich (containing, e.g., SiC and CnHn molecules). The mechanism responsible for
the substantial mass loss is not well understood; radiation pressure must play a role, but
pulsational instabilities may be involved (many AGB stars are long-period variables).

6.4.5 Post-AGB evolution

The mass of the convective envelope decreases steadily through the AGB phase, through shell
burning (removes mass from the bottom of the envelope) and stellar winds (removes mass from
the top of the envelope). When the mass of the hydrogen envelope becomes very small
(∼ 10−3–10−2M�), convection can no longer be sustained and the envelope contracts into
radiative equilibrium.

Hydrogen shell burning is still taking place, so the luminosity is unchanged (following the
Paczynski relation); the star therefore leaves the AGB, moving leftwards in the HRD. As it gets
hotter it ionizes the circumstellar envelope generated principally through AGB mass loss, and
develops a fast, radiation-driven wind (Ṁ ' 10−7 M� yr−1, v ' 2000 km s−1). These two
effects produce the diversity of planetary nebulae observed.

When the envelope mass falls to ∼ 10−5M�, the H-burning shell dies out, and the remnant core
becomes a cooling white dwarf at ∼3–10×104 K, slowly radiating away its thermal energy over
∼a Hubble time.5

6.4.6 Summary

To review the key evolutionary stages of an intermediate-mass star:

Main-sequence stars: powered by core hydrogen burning; longest evolutionary phase.

RGB stars: powered by shell hydrogen burning. First dredge-up.

Horizontal-branch stars: powered by shell hydrogen burning and core helium burning.
Second-longest evolutionary phase (∼10% of MS lifetime).

Early-AGB stars: powered by shell helium burning. Second dredge-up (of CNO processed
material from dormant H-burning shell).

TP-AGB stars: thermally pulsing. Hydrogen shell burning is the main energy source,
with repeating brief helium shell flashes (thermal pulses). Third dredge-up (of
He-burning products and s-process elements).

Planetary nebula; white dwarf.

5In some cases a late thermal pulse can bring the star back as a ‘born-again’ AGB star.
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