3.2.x Sutherland Potential

The general form of the interaction between atoms or molecules comprises a repulsive
part at short distances and an attractive part at large distances. The Lennard-Jones 6-
12 potential is often used as an analytical representation of the interaction. The
attractive tail, a consequence of fluctuation-induced electric dipole moments, is well-
described by the 7~° law. However the *? description of the repulsive core is but a
simple power law approximation to the actual close-range interaction. The popularity
of the 6-12 potential lies principally in its mathematical elegance.

The Sutherland potential treats the short-distance repulsion in a different way; it
approximates the interaction as a hard core. The attractive tail is described by the
conventional dipolar 7~° law. However it is instructive — and possible — to consider a
generalisation of this model whereby the long-range attraction is described by a
general power ™ law.
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Fig. 3.x Sutherland potential

The form of the Sutherland potential is shown in Fig. 3.x. The generalised Sutherland
potential, incorporating the parameter m is given by
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As with the Lennard-Jones potential, this potential has a universal form, scaled with
an energy parameter ¢ and a distance parameter o.

The second virial coefficient is given by
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so using the mathematical form for U(r), the integral splits into two parts
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We substitute x=r/c and 7 =kT/¢, so that

B,(7)= %7[0‘3 {1— ST x° (el/”m —1) dx} .
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We may evaluate the integral as a series in 1/t by expanding the exponential and
integrating term by term. This gives
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but the Ieading 1inthe bracket may be subsumed as the » = 0 term of the sum:
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For the special case of the Sutherland potential we have m = 6, so that
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However, in this case it is possible to express B,(z) in terms of the imaginary error

function Erfi, as
2 . /72 .1
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This is plotted in Fig. 3.y below.

B,@) 1

2
%TEO'BO . ||/’|- M
0.5 5 10 50
-1k
2L
-3F

Fig. 3.y Second virial coefficient for the Sutherland potential

The Boyle temperature and the inversion temperature for this gas may be found from
their definitions



to give
T,=1171¢/k
T =2.215¢/k.

The tangent construction for the inversion temperature (Section 3.3.4 and Fig. 3.8) is
shown in Fig. 3.z.
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Fig. 3.z Boyle temperature and inversion temperature

The ratio is then
T /T, =1.259.

The interesting point about the Sutherland potential is that it gives the high-
temperature behaviour of the B,(7) as

BZ(T)*’%?rGS(l—%—...j :

the limiting value at high temperatures is the hard core 27[03/3, while the leading
deviation goes as 7.

[Compare with square well potential:

B,(T) ‘“%72'0'3[1%..}.

Again the limiting high temperature value is the hard core expression and the leading
deviation goes as 7. Note R is dimensionless, greater than unity. And ¢ is different in
the two cases, i.e.

& =(R*-1)g,. ]



By contrast, the second virial coefficient for the Lennard-Jones gas does not have
such a simple high-temperature behaviour — a consequence of the *softness’ of the
hard core. In the high temperature limit
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so that in this case B, (7)) — 0 as T — oo; the second virial coefficient tends to zero
rather than the hard core limiting value.
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