
3.2.x  Sutherland Potential 
 
The general form of the interaction between atoms or molecules comprises a repulsive 
part at short distances and an attractive part at large distances. The Lennard-Jones 6-
12 potential is often used as an analytical representation of the interaction. The 
attractive tail, a consequence of fluctuation-induced electric dipole moments, is well-
described by the r–6 law. However the r–12 description of the repulsive core is but a 
simple power law approximation to the actual close-range interaction. The popularity 
of the 6-12 potential lies principally in its mathematical elegance.  
 
The Sutherland potential treats the short-distance repulsion in a different way; it 
approximates the interaction as a hard core. The attractive tail is described by the 
conventional dipolar r–6 law. However it is instructive – and possible – to consider a 
generalisation of this model whereby the long-range attraction is described by a 
general power r–m law. 
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Fig. 3.x  Sutherland potential 

 
The form of the Sutherland potential is shown in Fig. 3.x. The generalised Sutherland 
potential, incorporating the parameter m is given by 
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As with the Lennard-Jones potential, this potential has a universal form, scaled with 
an energy parameter ε and a distance parameter σ. 
 
The second virial coefficient is given by 
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so using the mathematical  form for ( )U r , the integral splits into two parts  
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We substitute x r σ=  and kTτ ε= , so that 
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We may evaluate the integral as a series in 1/τ by expanding the exponential and 
integrating term by term. This gives 
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but the leading 1 in the bracket may be subsumed as the n = 0 term of the sum: 
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For the special case of the Sutherland potential we have m = 6, so that 
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However, in this case it is possible to express BB2(τ) in terms of the imaginary error 
function Erfi, as 
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This is plotted in Fig. 3.y below. 
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Fig. 3.y  Second virial coefficient for the Sutherland potential 

 
The Boyle temperature and the inversion temperature for this gas may be found from 
their definitions 
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The tangent construction for the inversion temperature (Section 3.3.4 and Fig. 3.8) is 
shown in Fig. 3.z. 
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Fig. 3.z  Boyle temperature and inversion temperature 

 
 
 
The ratio is then 
 i B 1.259T T = . 
 
The interesting point about the Sutherland potential is that it gives the high-
temperature behaviour of the BB2(T) as 
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the limiting value at high temperatures is the hard core 32πσ 3, while the leading 
deviation goes as T–1.   
 
[Compare with square well potential: 
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Again the limiting high temperature value is the hard core expression and the leading 
deviation goes as T–1. Note R is dimensionless, greater than unity. And ε is different in 
the two cases, i.e.  
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By contrast, the second virial coefficient for the Lennard-Jones gas does not have 
such a simple high-temperature behaviour – a consequence of the ‘softness’ of the 
hard core. In the high temperature limit 

 

1 4
3

2

1 4
3

2 1 1( ) ~
3 2 4

2~ 2.45 ,
3

B T
kT

kT

επσ

επσ

⎛ ⎞⎛ ⎞⎛ ⎞− Γ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

so that in this case  as ; the second virial coefficient tends to zero 
rather than the hard core limiting value. 

( )2 0B T → T →∞
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