
PH4211 Statistical Mechanics 2017

Outline Answers

Question 1

a)

Boltzmann entropy defined by S = k ln Ω where Ω is the number of microstates in the macrostate
(for an isolated system). [3]

Fundamental postulate of Statistical Mechanics: In an isolated system all microstates in the
macrostate are equally likely. [3]

=⇒ Most probable macrostate is the one with the largest number of microstates. [3]

— I.e. the macrostate with the largest entropy. [3]

part a: [[12]]

b)

We can work with S or Ω: we maximise either S = S1 + S2 or Ω = Ω1Ω2 with respect to the
allowed variations.

E0 = E1 + E2 so E2 = E0 − E1

V0 = V1 + V2 so V2 = V0 − V1

N0 = N1 + N2 so N2 = N0 − N1

Let’s work with entropy:
S = S1(E1, V1, N1) + S2(E2, V2, N2).

Maximise S with respect to E interchange – vary E1
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Maximise S with respect to V interchange – vary V1
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Maximise S with respect to N interchange – vary N1
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Now
dE = TdS − pdV + μdN
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Now (X) gives T1 = T2. [2]

Now (Y) gives p1/T1 = p2/T2. But since T1 = T2 by (X) it follows that p1 = p2. [2]

Now (Z) gives μ1/T1 = μ2/T2. But since T1 = T2 by (X) it follows that μ1 = μ2. [2]

part b: [[16]]

c)

i)

Condition (Y) gives
p1

T1

=
p2

T2

(P)

upon maximising the entropy.

If you forbid E interchange then you will not get T1 = T2 by (X); in other words T1 6= T2.

But mechanical equilibrium requires
p1 = p2 (Q)

See that (P) and (Q) are incompatible if T1 6= T2. This is the paradox. [3]

ii)

Simple answer:

If you don’t allow exchange of E then you cannot achieve thermodynamic equilibrium. So then
the maximization of S (or Ω) prescription is not applicable. [3]

So then p1/T1 = p2/T2 is not a valid inference. [3]

Further points:

The ‘mechanical’ condition p1 = p2 is a ‘stronger’ condition. You expect it to apply in the absence
of thermodynamic equilibrium. BUT if you release a piston in a cylinder then in the absence of
dissipation the piston would oscillate and not even the mechanical equilibrium would be reached.

[3]

part c: [[12]]

question total: [[[40]]]
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Question 2

a)

The repulsive and the attractive parts are taken into account differently:

• The ‘hard’ repulsion effectively prevents particles approaching closer than σ. Thus a certain
volume is unavailable and the approximation is simply to exclude this volume from the
partition function

V

Λ3
→

V − Vex

Λ3
. [3]

• The ‘weak’ attraction is treated in ‘mean field’, by adding a mean field energy ε to the (free
particle) energies in the partition function: e−Ei/kT → e−(Ei+ε)/kT so that

z → ze−ε/kT . [3]

(Note ε will be −ve for attraction).

So combining these two parts gives

z =
V − Vex

Λ3
e−ε/kT . [2]

part a: [[8]]

b)

F = −kT ln Z

= −kT ln

(
1

N !
zN

)

= −NkT ln z + kT ln N !

[4]

but, from Stirling’s approximation

ln N ! ≈ N ln N − N = N ln(N/e). [2]

So
F = −NkT ln

(ze

N

)
. [2]

part b: [[8]]
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c)

We need to use

p = −
∂F

∂V

∣
∣
∣
∣
T,N

.

So actually we need only the parts of Z that depend on V . Then let us write

ln
(ze

N

)
= ln z + . . .

= ln(V − Vex) − ε(V )/kT + . . .

since ε depends on volume.

So differentiating:
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[4]

or (
p + N

dε

dV

)(
V − Vex

)
= NkT. [2]

And this is equivalent to
(
p + a

N2

V 2

)(
V − Nb

)
= NkT [2]

when

a =
V 2

N

dε

dV
and b =

Vex

N
.

part c: [[8]]

4



d)

The curve gives the free energy of a homogeneous system.

So, from the figure, if the specific volume (volume per particle) is v0, the free energy of the
homogeneous system will be F0.

But if the system were inhomogeneous with a fraction (higher density: liquid) at specific volume
va and a fraction (lower density: gas) at vb, subject to the mean specific volume remaining v0, the
free energy would drop to F1. We have a straight line because the volume is extensive / additive.

Then with the free energy curve above (concave function) it is preferable for the system to go
inhomogeneous. [4]

It would be preferable for the free energy to go lower and lower, with va and vb getting further
and further apart. The lowest F could go is shown on the diagram below.

This is the double tangent construction. The free energy has droped to F ′
1, the lowest possible

(subject to the v0 constraint). [4]

part d: [[8]]

e)

At the critical point the distinction between the liquid and gas disappears: va − vb → 0. The
concavity just vanishes. The two tangent points become degenerate; the double tangent becomes
a simple tangent. part e: [[8]]

question total: [[[40]]]
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Question 3

a)

A system in thermal contact with a reservoir can exchange energy with the reservoir. It is assumed
the sum of the system energy and the reservoir energy is fixed. But different partitions of the
energy between system and reservoir are possible with different probabilities. One can talk about
the mean energy of the system, but there will bw fluctuations about this mean. In general a
system at fixed temperature will have fluctuations in its energy and a system at fixed energy will
have fluctuations in its temperature. [6]

b)

This is the square root of the mean of the square of the deviation of the energy from its mean
value: root mean square. The point is that there will be an instantaneous deviation of the energy
from its mean: this is E −〈E〉. This quantity will sometimes be positive and sometimes negative;
indeed its mean is zero. So if we square it we get something that is positive for both positive
and negative fluctuations. It has a non-zero mean with the dimensions of energy squared. The
square root of this, σE, has the dimensions of energy: it is the ‘typical’ magnitude of an energy
fluctuation. [6]

c)

From the expression for σE we have

σ2
E =

〈
(E − 〈E〉)2

〉
.

Expand the square:

σ2
E =

〈
E2 − 2E 〈E〉 + 〈E〉2

〉

=
〈
E2
〉
− 2 〈E〉 〈E〉 + 〈E〉2

=
〈
E2
〉
− 〈E〉2 .

[4]

d)

The mean value of a quantity A is the sum of all possible values Aj multiplied by the probability
pj of the occurrence:

〈A〉 =
∑

j

Ajpj . [3]

A system at temperature T will be found in the microstate of energy Ej with a probability
pj = e−Ej/kT /Z. This is the Boltzmann probability distribution function.

And so the mean energy is

〈E〉 =
1

Z

∑

j

Ej e−Ej/kT . [3]

part d: [[6]]
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e)

By argument similar to the previous section

〈
E2
〉

=
1

Z

∑

j

E2
j e−Ej/kT . [2]

Use the ‘beta trick’: put β = 1/kT . Then since ∂
∂β

e−βEj = −Eje
−βEj we have
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Ej e−βEj = −Z 〈E〉 (P) [2]

and differentiating again:
∂2Z
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. (Q) [2]

But the derivative of the right-most expression of (P) gives
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.

Equating this with the right-most expression of (Q) gives
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Now we convert from β back to T :
∂

∂β
=

∂

∂T

/
dβ

dT

and dβ/dT = −1/kT 2. Then

∂ 〈E〉
∂β

= −kT 2 ∂ 〈E〉
∂T

= −kT 2CV .

Combine this with Eq. (R) gives
σ2

E = kT 2CV

or
σE =

√
kT 2CV . [3]

part e: [[6]]
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f)

Since CV is extensive: i.e. CV ∝ N it means that

σE ∝
√

N . [2]

So the size of the fluctuations does increase with the size of the system – and indeed tends to
infinity as N → ∞.

BUT it is the fractional fluctuations, σE/ 〈E〉, that are important. And since E, also, is extensive
it follows that

σE

〈E〉
∝

1
√

N
.

So in the thermodynamic limit (N → ∞) we see that the fractional fluctuations vanish. [2]

An exception is the fluctuation in the order parameter at the critical point of a phase transition.
Here the free energy minimum of the equilibrium state becomes anomalously broad. Then one
can have diverging fluctuations in the order parameter at negligible free energy cost. Since this
is accompanied by a diverging heat capacity, there is no contradiction with the discussion of the
previous part. [2]

part f: [[6]]

question total: [[[40]]]

Question 4

a)

Helmholtz free energy is F = E − TS. In zero external field energy E will be the ‘self energy’
term (∝ −mb) of the Weiss mean field (b ∝ m). So the E term will be proportional to m2 and it
comes out as

E = −
Nk

2
Tcm

2.

The entropy S is that of a two state system (assuming spin S = 1/2). This will be expanded as an
(even) power series in m. In accordance with the Landau prescription we terminate at the fourth
power. [4]

T is temperature

Tc is the critical temperature

N is the number of magnetic spins

m is the order parameter – magnetization normalized to the saturation magnetization

k is Boltzmann’s constant. [4]

part a: [[8]]
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b)

At high temperature there is one minimum at m = 0 so the order parameter is zero; no spontaneous
magnetization.

At low temperature there are minima at non-zero m; there is a spontaneous magnetization.

As the system is cooled through Tc the single minimum gradually evolves into the single maximum
and two minima. The magnetization gradually grows from zero. [6]

At T = Tc the free energy minimum is anomalously broad so variations in m can occur at no
energy cost: divergent fluctuations. [2]

part b [[8]]

c)

Equilibrium state found by minimizing F with respect to m. Differentiate and set equal to zero

∂F

∂m
= Nk(T − Tc)m +

1

3
NkTcm

3 = 0.

We have the trivial root at m = 0; can factorize this out. So

Nk(T − Tc) +
1

3
NkTcm

2 = 0

or

m = ±

√
3(Tc − T )

Tc

. [8]

This is plotted below
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[2]

part c [[10]]

d)

The transition is second order because m goes to zero continuously as T goes to Tc from below:
as we have shown, m ∝

√
T − Tc . part d: [[6]]

e)

Entropy is given by

S = −
∂F

∂T

so differentiating the given F :

S = −
Nk

2
m2

and since m2 is given by

m2 =
3(Tc − T )

Tc

it follows that

S =
3

2
Nk

T − Tc

Tc

. [6]

(This is an ‘extra’ (negative) contribution to S arising from the non-zero m.)

We express the heat capacity as

C = T
∂S

∂T

so the jump in heat capacity is

ΔC =
3

2
Nk

since we evaluate the derivative at T = Tc. [2]

part e: [[8]]

question total: [[[40]]]
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Question 5

Essay question – important points are:

• Classical mechanics =⇒ Liouville’s theorem =⇒ density of points in phase space ρ is
constant. [5]

• Entropy is proportional to −〈ln ρ〉. [5]

• So Liouville’s theorem =⇒ S is constant, but [5]

• Second Law says that S increases. [5]

• Discuss the nature of time evolution in phase space. [5]

• Dendritic flow gives the appearance of a reduction in ρ. [5]

• Uncertainty principle gives an ultimate resolution of regions of phase space. [5]

• Possible connection between quantum mechanics and the Second Law. [5]

question total: [[[40]]]
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