
PH4211 Outline Solutions 2005 
Question 1 
 
a)  N: number of particles. k: Boltzmann’s constant. Tc: critical temperature. s: number 
of nearest neighbours. εaa, εbb, εab: energy of  aa, bb and ab bond. [1] 
 
Structure of eqn for Fm: first term is energy of system, found by counting bonds and 
their energies. Second term is entropy – has entropy of mixing form. Eqn for Tc – this 
compares energy of an ‘unlike’ bond with the arithmetic mean for the two types of 
‘like’ bonds.  [2] 
 
Helmholtz free energy is minimised at constant T and V. I.e. the system is being 
considered at specified T and V.  [1] 
 
b)  If the parameter is positive then aa and bb bonds are favoured over ab bonds at 
T = 0. Then get phase separation at low temperatures.  If the parameter is negative 
then ab bonds are favoured over aa and bb bonds. In that case the low temperature 
phase will be a ‘superlattice’ structure.  [2] 
 
c)  Upper curve is high temperature case and lower curve is lower temperature case. 
  [2] 
 
d)  The curve corresponds to a homogeneous system. In regions where the curve is 
concave it is possible to lower the free energy by dropping below the curve – when 
the chord falls below the curve.  
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By dropping below the (homogeneous) curve the system of initial concentration x0 
can lower its free energy from F0 to F1. This happens when the system becomes 
inhomogeneous, comprising regions of concentration x1 and regions of x2.  
 
Lowest free energy would correspond to double tangent drawn on curve. 
Conservation of numbers of particles gives mol-fractions of each phase in terms of the 
lever rule.  [4] 
 
e)  Phase separation transition found from minima in Fm curve, so differentiate Fm and 
set equal to zero: 
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Set this equal to zero: 
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as required.  [2] 
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f)  Substitute in values. For x = 0.01, T = 0.427 Tc = 128 mK. [2] 
 
Symmetry of phase curve about x = ½ implies that the same transition temperature 
will apply for a concentration x = 1 – 0.01 = 0.99.  [1] 
 
Symmetry of the curve is a consequence of the regular solution model/assumption. So 
if the concentrations x = 0.01 and x = 0.99 have different transition temperatures, this 
means that the curve is not symmetric and so may be our specimen is not a regular 
solution. (In reality there are crystallographic transformations to consider – but the 
students are not expected to know that!)  [1] 
 
 
Question 2 
a) 
 ferromagnet ferroelectric  
Order parameter Magnetisation Polarisation [2]
Cons / non-cons Non-conserved Non-conserved [2]
symmetry rotational / time rev. inversion [2]
Cont / discrete continuous discrete [2]
order 2nd order 1st or 2nd order [2]
 
b)  looks like 
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the mean field approximation we take the field to be the same at each site, being the 
mean value. Then ∝b S  and so b is proportional to the magnetisation so we can 
write λ=b M .  [4] 
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where 2
c 0T M Nλ= k . Here Tc is the critical temperature. [1] 
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The transition is second order – the magnetisation goes to zero continuously at the 
critical point.  [1] 
 
 
Question 3 
 
a)  Law of corresponding states: equation of state takes similar ‘universal’ form if p, 
V, T are scaled by their values at the critical point.  [2] 
 
If the variables of the van der Waals equation are scaled in this way then the equation 
of state does indeed take on a universal form – the a and b parameters vanish (but 
behaviour not in quantitative agreement with reality). [1] 
 
On assumption that the law of interaction between molecules takes a universal form: 
( ) (V r f r )ε σ=  – here f is a universal function and ε and σ scaling parameters, 

different for different molecules, then in terms of reduced variables the partition 
function, and thus all thermodynamic properties, would have universal form. This is 
independent of the van der Waals equation of state.     [2] 



 
b)    Apart from the heliums, the data do fall reasonably well on a single curve – this 
supports the law of corresponding states.  
 
The data do not fall on the van der Waals curve so this is not a good model for 
describing the data. Thus corresponding states is not reliant on van der Waals.  
  [2] 
 
Van der Waals is a mean field theory; thus the mean field β critical exponent of ½. If 
the data exhibit a β critical exponent of ⅓, this is an indication of the inapplicability of 
mean field theory.   [3] 
 
c)  In the vicinity of the critical point the helium data should fall on the common 
curve of the other data. This is because the critical behaviour is universal, not 
depending on quantum effects.   [3] 
 
Thus the β critical exponent of for the helium data is expected to be ⅓. [2] 
 
d)  This is (essentially) the wavelength corresponding to the momentum 
corresponding to the kinetic energy (of a free particle) kT. It represents the ‘quantum 
size’, the extent of delocalisation of a particle due to quantum effects. [2] 
 
The importance of this quantity is that when the mean inter-particle spacing is 
comparable to or less than Λ then quantum effects are important. Then it is not 
adequate to use classical mechanics in discussing such systems. This is true for the 
helium liquids (and to a marginal extent to liquid neon – as can be seen in the data). 
  [2] 
 
Data on right hand side are for liquids – there density is high, so if quantum effects 
are important it will be there.  Data on left hand side are for gas. There density is low 
so quantum effects are not significant; data fall on universal curve. [1] 
 
 
Question 4 
 
a)  A Brownian particle stationary in the centre of mass frame of the fluid experiences 
random impacts from all directions; it experiences a random force of mean value zero. 
A Brownian particle moving with respect to the centre of mass frame of the fluid 
experiences impacts from the front which are more energetic than the ones from 
behind. These have a greater momentum transfer.  So in addition to the random force 
there will be a mean force depending on the velocity of the Brownian particle (with 
respect to the centre of mass frame of the fluid). Simple argument shows force 
proportional to the velocity.  [5] 
 
b) Simple application of Newton’s law Mv F= , and using F f v µ= − . [2] 
 



c)   
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Now take average: 
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First term is mean transient response; this dies to zero at long times. In second term 
v(0) is uncorrelated with f(t) so this term vanishes. So we are left with 
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Assumption of short correlation time: ( ) ( ) ( )2
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= ∫ t . This assumption forces u1 = u2 when the integral is done: 
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So at long times the equilibrium value is 
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Now equipartition gives 2v kT M= so that 
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d)  Left hand side is a dissipation coefficient. Right hand side involves fluctuations. 
So this is an equation relating fluctuations and dissipation. Generalisation called the 
fluctuation-dissipation theorem.                                                                                  [2] 
  
 



e)  By direct analogy M → L (not needed), v(t) → I(t), 1/µ → R, f(t) → V(t). [2] 
 
Then 
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f)  Can observe as the hiss (as opposed to the hum) from a loudspeaker when there is 
no input connected to a hi-fi amplifier.  [2] 
 
 
Question 5 
 
a)  Ensemble: a collection of identically-prepared systems that can be used for 
probabilistic calculations. The systems are envisaged as all manifesting the same 
macrostate, while being in different microstates. [4] 
 
b)  Boltzmann regarded a gas as being an ensemble of single particles. Gibbs regarded 
the gas as being one element of the ensemble. To Gibbs the ensemble was a collection 
of boxes of the gas. Boltzmann view breaks down when the interactions between the 
particles becomes significant. The Gibbs approach is the more general and it does not 
suffer from this limitation. Thus for Boltzmann the ensemble is real; for Gibbs it is 
imaginary.  [4] 
 
c)   Phase space is a space of (generalised) position and momentum coordinates. A 
microstate is specified as a point in phase space and its time evolution is specified as a 
curve in phase space. According to the Boltzmann view a gas of N particles would be 
specified by N  points in a 6-dimensional phase space.  According to the Gibbs view 
the gas would be specified by a single point in 6N-dimensional phase space. An 
ensemble would then be represented by a collection of points in the phase space. [4] 
 
d)  Assumption that goes into Liouville’s theorem is that the dynamics are governed 
by Classical (Hamiltonian)mechanics – although an analogous result may be obtained 
in quantum mechanics.  Restriction on the flow of points in phase space is that no two 
curves can intersect.  [2] 
 
e)  Boltznann’s H theorem: Essentially Boltzmann’s H theorem says that the density 
of points in phase space decreases as time evolves. Strictly it is specified in terms of 

lnρ ρ which, when integrated gives the mean value of lnρ – connection with entropy. 
  [2] 
 
The paradox is that while Liouville’s theorem states that ρ remains constant, the H 
theorem states that ρ decreases.   [2] 
 



Paradox may be resolved by considering the dendritic nature of the flow in phase 
space and coarse-graining: 
 

evolves to which
appears as

               1                                          2                                                       3 
 
Initial state represented by picture 1. Some time later this has evolved to picture 2. 
The density of points in the enclosed ‘volume’ has remained the same – in accordance 
with Liouville’s theorem. One erects a grid; the reasoning is that one cannot 
practically discern detail in phase space on a scale finer than the grid. Thus one 
considers the mean density in each cell– called coarse-graining. And then the 
apparent density is as in picture 3; the density ρ appears to have reduced and the 
volume occupied appears to have increased. Ultimately the Uncertainty Principle 
would provide an appropriate scale for coarse-graining.     [2] 
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