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To overcome the mathematical complexity on the one
hand or the lack of rigor on the other in usual treaiments
of the virial expansion, a new derivation is presenled. This
derivation, while simple and mathematically valid, clearly
illustrates the most important features of the cluster expan-
sion derivation of the second and third virial coefficients.
Thus it is expected to be of use in statistical mechanics
courses.

1. INTRODUCTION

In presenting the problem of the classical
imperfect gas to graduate statistical mechanics
classes, I have often been annoyed that there
was no transparent way to show the various
features of the theory. To derive the virial
expansion rigorously requires mathematical com-
plexity which is usually too much for any class to
bear. On the other hand, a well-known simple
derivation of the second virial coefficient as
reviewed below, is so mathematically questionable
for large N, that one hesitates to present it. To
overcome these difficulties of mathematical com-
plexity or lack of rigor, I have developed a tech-
nique that also illustrates very nicely most of the
salient features of the cluster expansion method.

To introduce notation, let me review the
imperfect gas problem briefly. The free cnergy can
be written as

F=Fisea+F.=—kT InZigeu—kT InZ,, (1)
where Figesr and Zigea are the free energy and
partition function of the ideal gas, and F. and Z,
are the configurational free energy and partition
function. The latter is defined by

Z.= (V™)1 [ T] (14+f;)drydrse - -dry,  (2)
i<J
where
fii=f(ri;) =exp[—v(ri;) /kT]—1, 3)
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V is the volume, N is-the- number. of particles in
the.gystem, and v(r;;) is the pair potential.
The virial expansion for the pressure is

P=Pu“1+Pc= - (aFideul/aV)’_ (aFc/aV)

=(NkT/V)(1+pB+p*C+--+), (4)
;vh;re B, C,
coefficients.

In the Ursell-Mayer!? expansion one writes

.«+ are the second, third, --- virial

II (45i) =14 X firt I3 fufurt -

i<j $<j

. (8)

This expansion is integrated term by term; the -

structure and number of each kind of term is
analyzed and resummed according to Mayer’s
theorem? to get a form for Z.. This Z, is then
used in the grand partition function to develop
‘an expression for the pressure P. The analysis is
so involved mathematically that I suspect few
teachers of statistical mechanics actually present it
in class. Although most textbooks cover this
derivation, I would guess that not many students
take the trouble to go through it, and those that

" do miss much of the-physical insights because of
the mathematical complications. This condition is
indeed unfortunate since this cluster expansion is
such a classic illustration of a fundamental method
of many-body physies.

One standard oversimplified method!? of pre-
senting the imperfeot. gas problem is to truncate
the expansion (4) after the one—jf term and
write

=1+[N(NV-1)/2V]}, (6)
where '
f=/f(r)dr. )
Neglecting a term O(N°) we have
2143 (Np)], (®)
where the density is
p=N/V. (9
’fhe configurational free energy is
: vl=_—"lenZ¢=—len[1+%(Np)]]. . (10)
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Since p.is small, we expand thélogarithm and keep
‘ : .

one term, to give :
F,=—kTNj.

This result gives the correct expression for the
pressure to first order in p. However, the.derivaz
tion ‘involves a lot of hand waving. and™ eye
winking. For one thing, why drop the term of
order N in Expression (6) to get to Expression (8)
and yet keep the leading unity? Indeed, by
truncating the series after the one—f terms, one
neglects terms of order N2, N3, etc. Secondly, the
truncated expansion of the logarithm is hardly
valid since 3 (Np)f is not small, but O(N).

This derivation, even if it could be tightened up
mathematically, is not satisfying because it does
not really carry much of the flavor of the true
cluster expansion technique.

There are some methods that are not so very
complicated mathematically and that lead rigor-
ously to the virial expansion. One of these is the
Van Kampen? cluster expansion, in which one
considers Z. to be an average value. Then the
average of the product is approximated by the
product of the averages, namely,

Z.=(II (Q+f)) =TI ((1+f:)). (A1)

<j <7

This method leads quickly to the virial expansion
accurate to first order in p. It can be corrected in a
straightforward way to arrive at higher orders in p.
As nice a technique as this is, I find it a bit
difficult to justify a priori to a class that the
approximation (11) is expected to lead to the
lowest order corrections in the density. In this
method in higher order one never sees the reducible
clusters at all, which may be a blessing or a mis-
fortune, depending on your point of view.

There is also a derivation given by Landau and
Lifshitz® that seems mathematically correct and
not overwhelmingly difficult. Since this text is
easily available to most readers, I will not discuss
the derivation here. The reader can best judge its
suitability for himself.

My own derivation has the following attributes:

(a) it illustrates and overcomes the problem
associated with the fact that the expansion Eq. (5)
is a series in powers of N;



(b) it is a mathematically correct derivation;
(¢) it illustrates the ca,nceﬁatlon of the re-

ducible diagrams; and.
(d) both the second “and third virial coefficient
are derived in a simple manner.

II. DERIVATION

We integrate Eq. {5)-term by term to give us
Z, in terms of theintegrals represented diagram-
matically as

(=) =V fradr, (12)
where

dr1...n=dTydre- - -dTy, (13)

(<) =V fua fadrias, (14)

(=) = (V87 frz fudrrss, (15)

(A) =V fia foa furdris, (16)

() =V fro fos fuudriona, 17)

(<€) =V fio f1a frudriose, (18)

(L) = (V)7 fio fua fusllrr.s (19)

(=) = (V3 fiz fas foedrr..6 (20)

ete.

Each integral is defined with the appropriate
volume factors so it is of order unity. These
integrals are clearly all the possible one, two, and
three —f terms that occur in Z.. We have, up to
the three —f terms,

N! —1
2= (W Grgrm )
N!

m (VH(<)

N! N
+ =012 (Va)—1(=)
N}

m (V)~1(A)

N1

4) 12!

e (D)
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N!

(N —4) 13!

(V‘)—‘(é)
N .
tasar

. N! e
+m@<"> (=)+-- ) (21)

The multiplication factors are the number of
times each integral occurs in the Z, series. They
are easily derived by the usual combinatorial
techniques with which most statistical mechanics
students are familiar. It is -evident that this
series contains terms to all ordersin N, desplte the
fact that InZ, must be O(N).

We see how such a situation arises in the next
step of the derivation in which we use a techmque
analogous to that introduced by Opechowskt‘
his treatment of high temperature expansmns for
spm systems Since the virial expansion is a power
series in the density, we certainly expect to be
able to write the configurational free energy as a
power series in V1

o .. Nn oo . PR
F¢=NkTE,°A,.?,;. (22)

We have included an explicit factor of N since F,
is extensive; the factor of kT is for convenience.
From Eq. (1) we can write

Z,=exp(—F./kT)

=exp[—N T 4.(N*/V") ] (23)

Next expaﬁd this exponential to gi\{e
N N?
Zo=1-N (Aot  Avk Aok )

Nf, N, N :
+,E(A0+T,Al+ f,—zAﬁ—---) +ee

=14+ (~NAcHINU42+- )
V(= N4+ N )
(V)1 (— N A+ AN AR+ N Aoda) 20+ (29)
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This series is clearly a series in various powers of
N, even though F, was a well-behaved function of
order N. We can find the values for the A, by
identifying coefficients of the various powers of
V-1 in Eq. (24) with those in Eq. (21). We find

Ao=0, (25)
Ay=—[NI/N*(N—2)121](-), (26)
ya [N N
A”f_(N) , ((N—3) m Ot Ty (O
N!

+ oy (=)—%N‘A1’). (27)

‘We make use of the fact that (<) is a “reducible”
diagram, i.e., that

(<)=(=). (28)
Also note that

(=)=(=). (29)

This leads to partial cancellation of the last
three terms in Eq. (27). By expanding out the
factors in N we find

A=~ (N3)H{[NI/(N-3)BI](A)

—iIN(N-1)(=)}. 30)
In the thermodynamic limit of
N—>ow, Vow, p=N/V =const, (31)
the coefficients become
Ar=—%(-), (32)
A:=—}(A). (33)

In this limit the reducible diagram and discon-
nected diagrams disappear completely, and the
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coefficients are O(1) as we assumed in writing
Eq. (22). '

The pressure is obtained from Eq. (4). With
Eq. (22) we see the configurational contribution
to P is

© Nn+1
P¢=kT E 'nA,. —I‘,‘;_‘—_]'
=kTp(A1p+2450%++ ) (34)
or
P=(NkT/V)(1+Ap+24:08°+--+).  (35)

Thus 4, and 24,, Eqs. (32) and (33), are the
second and third virial coefficients, respectively.

The derivation does not provide a general
expression for the virial coefficients, nor does it
prove generally that reducible diagrams always
cancel, and of course, this has not been its purpose.
It does give the student a clear picture of the
various properties of the cluster expansion, so that
if he choses to examine a general treatment he
will understand its significance.

If a teacher of statistical mechanics still does
not wish to go into the discussion of the reducible
diagrams or the third virial coefficient, this
derivation also offers the possibility of truncation
of the series Eqs. (21) and (24) after just the
term in 1/V to arrive at a very easy and valid
derivation of just the second virial coefficient.
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