
G25.2651: Statistical Mechanics

Notes for Lecture 24

I. THE HARMONIC BATH HAMILTONIAN

In the theory of chemical reactions, it is often possible to isolate a small number or even a single degree of freedom in
the system that can be used to characterize the reaction. This degree of freedom is coupled to other degrees of freedom
(for example, reactions often take place in solution). Isomerization or dissociation of a diatomic molecule in solution
is an excellent example of this type of system. The degree of freedom of paramount interest is the distance between
the two atoms of the molecule – this is the degree of freedom whose detailed dynamics we would like to elucidate.
The dynamics of the “bath” or environment to which is couples is less interesting, but still must be accounted for in
some manner. A model that has maintained a certain level of both popularity and success is the so called “harmonic
bath” model, in which the environment to which the special degree(s) of freedom couple is replaced by an effective
set of harmonic oscillators. We will examine this model for the case of a single degree of freedom of interest, which
we will designate q. For the case of the isomerizing or dissociating diatomic, q could be the coordinate r − 〈r〉, where
r is the distance between the atoms. The particular definition of q ensures that 〈q〉 = 0. The degree of freedom q is
assumed to couple to the bath linearly, giving a Hamiltonian of the form

H =
p2

2m
+ φ(q) +

∑

α

[

p2
α

2mα
+

1

2
mαω2

α

(

xα +
gα

mαω2
α

q

)2
]

where the index α runs over all the bath degrees of freedom, ωα are the harmonic bath frequencies, mα are the
harmonic bath masses, and gα are the coupling constants between the bath and the coordinate q. p is a momentum
conjugate to q, and m is the mass associated with this degree of freedom (e.g., the reduced mass µ in the case of a
diatomic). The coordinate q is assumed to be subject to a potential φ(q) as well (e.g., an internal bond potential).
The form of the coupling between the system (q) and the bath (xα) is known as bilinear.

Below, using a completely classical treatment of this Hamiltonian, we will derive an equation for the detailed
dynamics of q alone. This equation is known as the generalized Langevin equation (GLE).

II. DERIVATION OF THE GLE

The GLE can be derived from the harmonic bath Hamiltonian by simply solving Hamilton’s equations of motion,
which take the form

q̇ =
p

m

ṗ = −
∂φ

∂q
−

∑

α

gαxα −
∑

α

g2
α

mαω2
α

q

ẋα =
pα

mα

ṗα = −mαω2
αxα − gαq

This set of equations can also be written as second order differential equation:

mq̈ = −
∂φ

∂q
−

∑

α

gαxα −
∑

α

g2
α

mαω2
α

q

mαẍα = −mαω2
αxα − gαq

In order to derive an equation for q, we solve explicitly for the dynamics of the bath variables and then substitute into
the equation for q. The equation for xα is a second order inhomogeneous differential equation, which can be solved
by Laplace transforms. We simply take the Laplace transform of both sides. Denote the Laplace transforms of q and
xα as
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q̃(s) =

∫ ∞

0

dt e−stq(t)

x̃α =

∫ ∞

0

dt e−stxα(t)

and recognizing that
∫ ∞

0

dt e−stẍα(t) = s2x̃α(s) − sxα(0) − ẋα(0)

we obtain the following equation for x̃α(s):

(s2 + ω2
α)x̃α(s) = sxα(0) + ẋα(0) −

gα

mα
q̃(s)

or

x̃α(s) =
s

s2 + ω2
α

xα(0) +
1

s2 + ω2
α

ẋα(0) −
gα

mα

q̃(s)

s2 + ω2
α

xα(t) can be obtained by inverse Laplace transformation, which is equivalent to a contour integral in the complex
s-plane around a contour that encloses all the poles of the integrand. This contour is known as the Bromwich contour.
To see how this works, consider the first term in the above expression. The inverse Laplace transform is

1

2πi

∮

ds
sest

s2 + ω2
α

=
1

2πi

∮

ds
sest

(s + iωα)(s − iωα)

The integrand has two poles on the imaginary s-axis at ±iωα. Integration over the contour that encloses these poles
picks up both residues from these poles. Since the poles are simple poles, then, from the residue theorem:

1

2πi

∮

ds
sest

(s + iωα)(s − iωα)
=

1

2πi

[

2πi

(

iωαeiωαt

2iωα
+

−iωαe−iωαt

−2iωα

)]

= cosωαt

By the same method, the second term will give (sin ωαt)/ωα. The last term is the inverse Laplace transform of a
product of q̃(s) and 1/(s2 + ω2

α). From the convolution theorem of Laplace transforms, the Laplace transform of a
convolution gives the product of Laplace transforms:

∫ ∞

0

dt e−st

∫ t

0

dτ f(τ)g(t − τ) = f̃(s)g̃(s)

Thus, the last term will be the convolution of q(t) with (sin ωαt)/ωα. Putting these results together, gives, as the
solution for xα(t):

xα(t) = xα(0) cosωαt +
ẋα(0)

ωα
sin ωαt −

gα

mαωα

∫ t

0

dτq(τ) sin ωα(t − τ)

The convolution term can be expressed in terms of q̇ rather than q by integrating it by parts:

gα

mαωα

∫ t

0

dτ q(τ) sin ωα(t − τ) =
gα

mαω2
α

[q(t) − q(0) cosωαt] −
gα

mαω2
α

∫ t

0

dτ q̇(τ) cos ωα(t − τ)

The reasons for preferring this form will be made clear shortly. The bath variables can now be seen to evolve according
to

xα(t) = xα(0) cosωαt +
ẋα(0)

ωα
sin ωαt +

gα

mαω2
α

∫ t

0

dτ q̇(τ) cos ωα(t − τ) −
gα

mαω2
α

[q(t) − q(0) cosωαt]

Substituting this into the equation of motion for q, we find

mq̈ = −
∂φ

∂q
−

∑

α

gα

[

xα(0) cosωαt +
pα(0)

mαωα
sin ωαt +

gα

mαω2
α

q(0) cosωαt

]

−
∑

α

g2
α

mαω2
α

∫ t

0

dτ q̇(τ) cos ωα(t−τ)+
∑

α

g2
α

mαω2
α

q(t)−
∑

α

g2
α

mαω2
α

q(t)

We now introduce the following notation for the sums over bath modes appearing in this equation:
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1. Define a dynamic friction kernel

ζ(t) =
∑

α

gα

mαω2
α

cosωαt

2. Define a random force

R(t) = −
∑

α

gα

[(

xα(0) +
gα

mαω2
α

q(0)

)

cosωαt +
pα(0)

mαωα
sinωαt

]

Using these definitions, the equation of motion for q reads

mq̈ = −
∂φ

∂q
−

∫ t

0

dτ q̇(τ)ζ(t − τ) + R(t) (1)

Eq. (1) is known as the generalized Langevin equation. Note that it takes the form of a one-dimensional particle subject

to a potential φ(q), driven by a forcing function R(t) and with a nonlocal (in time) damping term −
∫ t

0 dτ q̇(τ)ζ(t−τ),
which depends, in general, on the entire history of the evolution of q. The GLE is often taken as a phenomenological
equation of motion for a coordinate q coupled to a general bath. In this spirit, it is worth taking a moment to discuss
the physical meaning of the terms appearing in the equation.

III. PROPERTIES OF THE GLE

Below we discuss the physical meaning of the terms appearing the GLE

A. The random force term

Within the context of a harmonic bath, the term “random force” is something of a misnomer, since R(t) is completely
deterministic and not random at all!!! We will return to this point momentarily, however, let us examine particular
features of R(t) from its explicit expression from the harmonic bath dynamics. Note, first of all, that it does not
depend on the dynamics of the system coordinate q (except for the appearance of q(0)). In this sense, it is independent
or “orthogonal” to q within a phase space picture. From the explicit form of R(t), it is straightforward to see that
the correlation function

〈q̇(0)R(t)〉 = 0

i.e., the correlation function of the system velocity q̇ with the random force is 0. This can be seen by substituting
in the expression for R(t) and integrating over initial conditions with a canonical distribution weighting. For certain
potentials φ(q) that are even in q (such as a harmonic oscillator), one can also show that

〈q(0)R(t)〉 = 0

Thus, R(t) is completely uncorrelated from both q and q̇, which is a property we might expect from a truly random
process. In fact, R(t) is determined by the detailed dynamics of the bath. However, we are not particularly interested
or able to follow these detailed dynamics for a large number of bath degrees of freedom. Thus, we could just as well
model R(t) by a completely random process (satisfying certain desirable features that are characteristic of a more
general bath), and, in fact, this is often done. One could, for example, postulate that R(t) act over a maximum time
tmax at discrete points in time k∆t, giving N = tmax/∆t values of Rk = R(k∆t), and assume that Rk takes the form
of a gaussian random process:

Rk =

N
∑

j=1

[

aje
2πijk/N + bje

−2πijk/N
]

where the coefficients {aj} and {bj} are chosen at random from a gaussian distribution function. This might be
expected to be suitable for a bath of high density, where strong collisions between the system and a bath particle are
essentially nonexistent, but where the system only sees feels the relatively “soft” fluctuations of the less mobile bath.
For a low density bath, one might try modeling R(t) as a Poisson process of very strong collisions.

Whatever model is chosen for R(t), if it is a truly random process that can only act at discrete points in time, then
the GLE takes the form of a stochastic (based on random numbers) integro-differential equation. There is a whole
body of mathematics devoted to the properties of such equations, where heavy use of an Itô calculus is made.
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B. The dynamic friction kernel

The convolution integral term

∫ t

0

dτ q̇(τ)ζ(t − τ)

is called the memory integral because it depends, in general, on the entire history of the evolution of q. Physically
it expresses the fact that the bath requires a finite time to respond to any fluctuation in the motion of the system
(q). This, in turn, affects how the bath acts back on the system. Thus, the force that the bath exerts on the system
presently depends on what the system coordinate q did in the past. However, we have seen previously the regression
of fluctuations (their decay to 0) over time. Thus, we expect that what the system did very far in the past will no
longer the force it feels presently, i.e., that the lower limit of the memory integral (which is rigorously 0) could be
replaced by t− tmem, where tmem is the maximum time over which memory of what the system coordinate did in the
past is important. This can be interpreted as a indicating a certain decay time for the friction kernel ζ(t). In fact,
ζ(t) often does decay to 0 in a relatively short time. Often this decay takes the form of a rapid initial decay followed
by a slow final decay, as shown in the figure below:
Consider the extreme case that the bath is capable of responding infinitely quickly to changes in the system coordinate
q. This would be the case, for example, if there were a large mass disparity between the system and the bath
(m >> mα). Then, the bath retains no memory of what the system did in the past, and we could take ζ(t) to be a
δ-function in time:

ζ(t) = 2ζ0δ(t)

Then

∫ t

0

dτ q̇(τ)ζ(t − τ) =

∫ t

0

dτ q̇(t − τ)ζ(τ) = 2ζ0

∫ t

0

dτ δ(τ)q̇(t − τ) = ζ0q̇(t)

and the GLE becomes

mq̈ = −
∂φ

∂q
− ζ0q̇ + R(t)

This simpler equation of motion is known as the Langevin equation and it is clearly a special case of the more
generalized equation of motion. It is often invoked to describe brownian motion where clearly such a mass disparity
is present. The constant ζ0 is known as the static friction and is given by

ζ0 =

∫ ∞

0

dt ζ(t)

In fact, this is a general relation for determining the static friction constant.
The other extreme is a very sluggish bath that responds slowly to changes in the system coordinate. In this case,

we may take ζ(t) to be a constant ζ ≡ ζ(0), at least, for times short compared to the response time of the bath. Then,
the memory integral becomes

∫ t

0

dτ q̇(τ)ζ(t − τ) ≈ ζ(q(t) − q(0))

and the GLE becomes

mq̈ = −
∂

∂q

(

φ(q) +
1

2
ζ(q − q0)

2

)

+ R(t)

where the friction term now manifests itself as an extra harmonic term added to the potential. Such a term has
the effect of trapping the system in certain regions of configuration space, an effect known as dynamic caging. An
example of this is a dilute mixture of small, light particles in a bath of heavy, large particles. The light particles can
get trapped in regions of space where many bath particles are in a sort of spatial “cage.” Only the rare fluctuations
in the bath that open up larger holes in configuration space allow the light particles to escape the cage, occasionally,
after which, they often get trapped again in a new cage for a similar time interval.
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C. Relation between the dynamic friction kernel and the random force

From the definitions of R(t) and ζ(t), it is straightforward to show that there is a relation between them of the
form

〈R(0)R(t)〉 = kTζ(t)

This relation is known as the second fluctuation dissipation theorem. The fact that it involves a simple autocorrelation
function of the random force is particular to the harmonic bath model. We will see later that a more general form of
this relation exists, valid for a general bath. This relation must be kept in mind when introducing models for R(t)
and ζ(t). In effect, it acts as a constraint on the possible ways in which one can model the random force and friction
kernel.

IV. MORI-ZWANZIG THEORY: A MORE GENERAL DERIVATION OF THE GLE

A derivation of the GLE valid for a general bath can be worked out. The details of the derivation are given in the
book by Berne and Pecora called Dynamic Light Scattering. The system coordinate q and its conjugate momentum
p are introduced as a column vector:

A =

(

q
p

)

and, in addition, one introduces statistical projection operators P and Q that project onto subspaces in phase space
parallel and orthogonal to A. These operators take the form

P = 〈...AT〉〈AA
T〉−1

Q = I − P

These operators are Hermitian and satisfy the property of idempotency:

P 2 = P

Q2 = Q

Also, note that

PA = A

QA = 0

The time evolution of A is given by application of the classical propagator:

A(t) = eiLt
A(0)

Note that the evolution of A is unitary, i.e., it preserves the norm of A:

|A(t)|2 = |A(0)|2

Differentiating both sides of the time evolution equation for A gives:

dA

dt
= eiLtiLA(0)

Then, an identity operator is inserted in the above expression in the form I = P + Q:

dA

dt
= eiLt(P + Q)iLA(0) = eiLtPiLA(0) + eiLtQiLA(0)

The first term in this expression defines a frequency matrix acting on A:
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eiLtPiLA(0) = eiLt〈iLAA
T〉〈AA

T〉−1
A

= 〈iLAA
T〉〈AA

T〉−1eiLt
A

= 〈iLAA
T〉〈AA

T〉−1
A(t)

≡ iΩA(t)

where

Ω = 〈LAA
T〉〈AA

T〉−1

In order to evaluate the second term, another identity operator is inserted directly into the propagator:

eiLt = ei(P+Q)Lt

Consider the difference between the two propagators:

eiLt − eiQLt

If this difference is Laplace transformed, it becomes

(s − iL)−1 − (s − iQL)−1

which can be simplified via the general operator identity:

A−1 − B−1 = A−1(B − A)B−1

Letting

A = (s − iL)

B = (s − iQL)

we have

(s − iL)−1 − (s − iQL)−1 = (s − iL)−1(s − iQL− s + iL)(s − iQL)−1

= (s − iL)−1iPL(s − iQL)−1

or

(s − iL)−1 = (s − iQL)−1 + (s − iL)−1(s − iQL − s + iL)(s − iQL)−1

Now, inverse Laplace transforming both sides gives

eiLt = eiQLt +

∫ t

0

dτ eiL(t−τ)iPLeiQLτ

Thus, multiplying fromthe right by QiLA gives

eiLtQiLA = eiQLtQiLA +

∫ t

0

dτ eiL(t−τ)iPLeiQLτQiLA

Define a vector

F(t) = eiQLtQiLA(0)

so that

eiLtQiLA = F(t) +

∫ t

0

dτ 〈iLF(τ)AT〉〈AA
T〉−1

A(t − τ)
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Because F(t) is completely orthogonal to A(t), it is straightforward to show that

QF(t) = F(t)

Then,

〈iLF(τ)AT〉〈AA
T〉−1

A = 〈iLQF(τ)AT〉〈AA
T〉−1

A

= −〈QF(τ)(iLA)T〉〈AA
T〉−1

A

= −〈Q2
F(τ)(iLA)T〉〈AA

T〉−1
A

= −〈QF(τ)(QiLA)T〉〈AA
T〉−1

A

= −〈F(τ)FT(0)〉〈AA
T〉−1

A

Thus,

eiLtQiLA = F(t) −

∫ t

0

dτ 〈F(τ)FT(0)〉〈AA
T〉−1

A(t − τ)

Finally, we define a memory kernel matrix:

K(t) = 〈F(τ)FT(0)〉〈AA
T〉−1

Then, combining all results, we find, for dA/dt:

dA

dt
= iΩ(t)A −

∫ t

0

dτ K(τ)A(t − τ) + F(t)

which equivalent to a generalized Langevin equation for a particle subject to a harmonic potential, but coupled to a
general bath. For most systems, the quantities appearing in this form of the generalized Langevin equation are

iΩ =

(

0 1/m
−mω2 0

)

K(t) =

(

0 0
0 ζ(t)/m

)

F(t) =

(

0
R(t)

)

It is easy to derive these expressions for the case of the harmonic bath Hamiltonian when φ(q) = mω2q2/2.
For the case of a harmonic bath Hamiltonian, we had shown that the friction kernel was related to the random

force by the fluctuation dissipation theorem:

〈R(0)R(t)〉 = 〈R(0)eiLtR(0)〉 = kTζ(t)

For a general bath, the relation is not as simple, owing to the fact that F(t) is evolved using a modified propagator
exp(iQLt). Thus, the more general form of the fluctuation dissipation theorem is

〈R(0)eiQLtR(0)〉 = kTζ(t)

so that the dynamics of R(t) is prescribed by the propagator exp(iQLt). This more general relation illustrates the
difficulty of defining a friction kernel for a general bath. However, for the special case of a stiff harmonic diatomic
molecule interacting with a bath for which all the modes are soft compared to the frequency of the diatomic, a very
useful approximation results. One can show that

〈R(0)eiQLtR(0)〉 ≈ 〈R(0)eiLconstR(0)〉

where iLcons is the Liouville operator for a system in which the diatomic is held rigidly fixed at some particular bond
length (i.e., a constrained dynamics). Since the friction kernel is not sensitive to the details of the internal potential of
the diatomic, this approximation can also be used for diatomics with stiff, anharmonic potentials. This approximation
is referred to as the rigid bond approximation (see Berne, et al, J. Chem. Phys. 93, 5084 (1990)).
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V. EXAMPLE: VIBRATIONAL DEPHASING AND ENERGY RELAXATION

Recall that the Fourier transform of a time correlation function can be related to some kind of frequency spectrum.
For example, the Fourier transform of the velocity autocorrelation function of a particular degree of freedom q of
interest

Cvv(t) =
〈q̇(0)q̇(t)〉

〈q̇2〉

where v = q̇, gives the relevant frequencies contributing to the dynamics of q, but does not give amplitudes. This
“frequency” spectrum I(ω) is simply given by

I(ω) =

∫ ∞

0

dt eiωtCvv(t)

That is, we take the Laplace transform of Cvv(t) using s = −iω. Since Cvv(t) carries information about the relevant
frequencies of the system, the decay of Cvv(t) in time is a measure of how strongly coupled the motion of q is to the
rest of the bath, i.e., how much of an overlap there is between the relevant frequencies of the bath and those of q.
The more of an overlap there is, the more mixing there will be between the system and the bath, and hence, the more
rapidly the motion of the system will become vibrationally “out of phase” or decorrelated with itself. Thus, the decay
time of Cvv(t), which is denoted T2 is called the vibrational dephasing time.

Another measure of the strength of the coupling between the system and the bath is the time required for the
system to dissipate energy into the bath when it is excited away from equilibrium. This time can be obtained by
studying the decay of the energy autocorrelation function:

Cεε =
〈ε(0)ε(t)〉

〈ε2〉

where ε(t) is defined to be

ε(t) =
1

2
mq̇2 + φ(q) − kT

The decay time of this correlation function is denoted T1.
The question then becomes: what are these characteristic decay times and how are they related? To answer this,

we will take a phenomenological approach. We will assume the validity of the GLE for q:

mq̈ = −
∂φ

∂q
−

∫ t

0

dτ q̇(τ)ζ(t − τ) + R(t)

and use it to calculate T1 and T2.
Suppose the potential φ(q) is harmonic and takes the form

φ(q) =
1

2
mω2q2

Substituting into the GLE and dividing through by m gives

q̈ = −ω2q −

∫ t

0

dτ q̇(t − τ)γ(τ) + f(t)

where

γ(t) =
ζ(t)

m
f(t) =

R(t)

m

An equation of motion for Cvv(t) can be obtained directly by multiplying both sides of the GLE by q̇(0) and averaging
over a canonical ensemble:

〈q̇(0)q̈(t)〉 = −ω2〈q̇(0)q(t)〉 −

∫ t

0

dτ 〈q̇(0)q̇(t − τ)〉γ(τ) + 〈q̇(0)f(t)〉
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Recall that

〈q̇(0)f(t)〉 =
1

m
〈q̇(0)R(t)〉 = 0

and note that

〈q̇(0)q̈(t)〉 =
d

dt
〈q̇(0)q̇(t)〉 =

dCvv

dt

also
∫ t

0

dτ 〈q̇(0)q̇(τ)〉 = 〈q̇(0)q(t)〉 − 〈q̇(0)q(0)〉 = 〈q̇(0)q(t)〉

Thus,

〈q̇(0)q(t)〉 =

∫ t

0

dτ Cvv(τ)

Combining these results gives an equation for Cvv(t)

d

dt
Cvv(t) = −

∫ t

0

dτ
(

ω2 + γ(t − τ)
)

Cvv(τ)

d

dt
Cvv(t) = −

∫ t

0

dτ K(t − τ)Cvv(τ)

which is known as the memory function equation and the kernel K(t) is known as the memory function or memory
kernel. This type of integro-differential equation is called a Volterra equation and it can be solved by Laplace
transforms.

Taking the Laplace transform of both sides gives

sC̃vv(s) − Cvv(0) = −C̃vv(s)K̃(s)

However, it is clear that Cvv(0) = 1 and also

K̃(s) =
ω2

s
+ γ̃(s)

Thus, it follows that

sC̃vv(s) − 1 =

(

ω2

s
+ γ̃(s)

)

C̃vv(s)

C̃vv(s) =
s

s2 + sγ̃(s) + ω2

In order to perform the inverse Laplace transform, we need the poles of the integrand, which will be determined by
the solutions of

s2 + sγ̃(s) + ω2 = 0

which we could solve directly if we knew the explicit form of γ̃(s).
However, if ω is sufficiently larger than γ̃(0), then it is possible to develop a perturbation solution to this equation.

Let us assume the solutions for s can be written as

s = s0 + s1 + s2 + · · ·

Substituting in this ansatz gives

(s0 + s1 + s2 + · · ·)2 + (s0 + s1 + s2 + · · ·)γ̃(s0 + s1 + s2 + · · ·) + ω2 = 0

Since we are assuming γ̃ is small, then to lowest order, we have
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s2
0 + ω2 = 0

so that s0 = ±ıω. The first order equation then becomes

2s0s1 + s0γ̃(s0) = 0

or

s1 = −
γ̃(s0)

2
= −

γ̃(±iω)

2

Note, however, that

γ̃(±iω) =

∫ ∞

0

dt γ(t)e±iωt

=

∫ ∞

0

dt [γ(t) cosωt ± iγ(t) sinωt]

≡ γ′(ω) ± iγ′′(ω)

Thus, stopping the first order result, the poles of the integrand occur at

s ≈ ±i (ω + γ′′(ω)) −
γ′(ω)

2
≡ ±iΩ −

γ′(ω)

2

Define

s+ = iΩ −
γ′(ω)

2

s− = −iΩ−
γ′(ω)

2

Then

C̃vv(s) ≈
s

(s − s+)(s − s−)

and Cvv(t) is then given by the contour integral

Cvv(t) =
1

2πi

∮

sest ds

(s − s+)(s − s−)

Taking the residue at each pole, we find

Cvv(t) =
s+es+t

(s+ − s−)
+

s−es−t

(s− − s+)

which can be simplified to give

Cvv(t) = e−γ′(ω)t/2

[

cosΩt −
γ′(ω)

2Ω
sinΩt

]

Thus, we see that the GLE predicts Cvv(t) oscillates with a frequency Ω and decays exponentially. From the expo-
nential decay, we can directly read off the time T2:

1

T2
=

γ′(ω)

2
=

ζ ′(ω)

2m

That is, the value of the real part of the Fourier (Laplace) transform of the friction kernel evaluated at the renormalized
frequency divided by 2m gives the vibrational dephasing time! By a similar scheme, one can easily show that the
position autocorrelation function Cqq(t) = 〈q(0)q(t)〉 decays with the same dephasing time. It’s explicit form is

Cqq(t) = e−γ′(ω)t/2

[

cosΩt +
γ′(ω)

2Ω
sin Ωt

]
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The energy autocorrelation function Cεε(t) can be expressed in terms of the more primitive correlation functions
Cqq(t) and Cvv(t). It is a straightforward, although extremely tedious, matter to show that the relation, valid for the
harmonic potential of mean force, is

Cεε(t) =
1

2
C2

vv(t) +
1

2
C2

qq(t) +
1

ω2
Ċ2

qq(t)

Substituting in the expressions for Cqq(t) and Cvv(t) gives

Cεε(t) = e−γ′(ω)t × (oscillatory functions of t)

so that the decay time T1 can be seen to be

1

T1
= γ′(ω) =

ζ ′(ω)

m

and therefore, the relation between T1 and T2 can be seen immediately to be

1

T2
=

1

2T1

The incredible fact is that this result is also true quantum mechanically. That is, by doing a simple, purely classical
treatment of the problem, we obtained a result that turns out to be the correct quantum mechanical result!

Just how big are these times? If ω is very large compared to any typical frequency relevant to the bath, then the
friction kernel evaluated at this frequency will be extremely small, giving rise to a long decay time. This result is
expect, since, if ω is large compared to the bath, there are very few ways in which the system can dissipate energy into
the bath. The situation changes dramatically, however, if a small amount of anharmonicity is added to the potential of
mean force. The figure below illustrates the point for a harmonic diatomic molecule interacting with a Lennard-Jones
bath. The top figure shows the velocity autocorrelation function for an oscillator whose frequency is approximately 3
times the characteristic frequency of the bath, while the bottom one shows the velocity autocorrelation function for
the case that the frequency disparity is a factor of 6.
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FIG. 1.
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