
G25.2651: Statistical Mechanics

Notes for Lecture 21

I. TIME-DEPENDENT PERTURBATION THEORY

A. The interaction picture

Consider a quantum system described by a time-dependent Hamiltonian of the form

H(t) = H0 + H1(t)

In the language of perturbation theory, H0 is known as the unperturbed Hamiltonian and describes a system of interest
such as a molecule or a condensed-phase sample such as a pure liquid or solid or a solution. H1(t) is known as the
perturbation, and it often describes an external system, such as a laser field, that will be used to probe the energy
levels and other properties of H0.

We now seek a solution to the time-dependent Schrödinger equation

H(t)|Ψ(t)〉 = (H0 + H1(t)) |Ψ(t)〉 = ih̄
∂

∂t
|Ψ(t)〉 (1)

subject to an initial state vector |Ψ(t0)〉. In order to solve the equation, we introduce a new state vector |Φ(t)〉 related
to |Ψ(t)〉 by

|Ψ(t)〉 = e−iH0(t−t0)|Φ(t)〉 (2)

The new state vector |Φ(t)〉 is an equally valid representation of the state of the system. In Chapter 10, we introduced
the concept of pictures in quantum mechanics and discussed the difference between the Schrödinger and Heisenberg
pictures. Eqn. (2) represents yet another picture of quantum mechanics, namely the interaction picture. Like the
Schrödinger and Heisenberg pictures, the interaction picture is a perfectly valid way of representing a quantum
mechanical system. The interaction picture can be considered as “intermediate” between the Schröginer picture,
where the state evolves in time and the operators are static, and the Heisenberg picture, where the state vector is
static and the operators evolve. However, as we will see shortly, in the interaction picture, both the state vector and
the operators evolve in time, however, the time-evolution is determined by the perturbation H1(t). Eqn. (2) specifies
how to transform between the Schrödinger and interaction picture state vectors. The transformation of operators
proceeds in an analogous fashion. If A denotes an operator in the Schrödinger picture, its representation in the
interaction picture is given by

AI(t) = eiH0(t−t0)/h̄Ae−iH0(t−t0)/h̄ (3)

which is equivalent to an equation of motion of the form

dAI(t)

dt
=

1

ih̄
[AI(t), H0] (4)

Substitution of Eqn. (2) into the time-dependent Schrödinger equation yields

(H0 + H1(t)) e−iH0(t−t0)/h̄|Φ(t)〉 = H0e
−iH0(t−t0)/h̄|Φ(t)〉 + e−iH0(t−t0)/h̄ih̄

∂

∂t
|Φ(t)〉

H1(t)e
−iH0(t−t0)/h̄|Φ(t)〉 = e−iH0(t−t0)/h̄ih̄

∂

∂t
|Φ(t)〉

eiH0(t−t0)/h̄H1(t)e
−iH0(t−t0)/h̄|Φ(t)〉 = ih̄

∂

∂t
|Φ(t)〉 (5)

According to Eqn. (3), the exp[iH0(t− t0)/h̄]H1(t) exp[−iH0(t− t0)/h̄] is the interaction-picture representation of the
perturbation Hamiltonian, and we will denote this operator as HI(t). Thus, the time-evolution of the state vector in
the interaction picture is given a Schrödinger equation of the form

HI (t)|Φ(t)〉 = ih̄
∂

∂t
|Φ(t)〉 (6)

The initial condition to Eqn. (6), |Φ(t0)〉 is, according to Eqn. (2), also |Ψ(t0)〉. In the next section, we will develop
an iterative solution to Eqn. (6), which will reveal a rich structure of the propagator for time-dependent systems.
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B. Iterative solution for the interaction-picture state vector

The solution to Eqn. (6) can be expressed in terms of a unitary propagator UI(t; t0), the interaction-picture prop-
agator, which evolves the initial state |Φ(t0)〉 according to

|Φ(t)〉 = UI(t; t0)|Φ(t0)〉 = UI(t; t0)|Ψ(t0)〉 (7)

Substitution of Eqn. (7) into Eqn. (6) yields an evolution equation for the propagator UI(t; t0):

HI(t)UI(t; t0) = ih̄
∂

∂t
UI(t; t0) (8)

The initial condition on Eqn. (8) is UI(t0; t0) = I . In developing a solution to Eqn. (8), we assume that HI(t) is a
small perturbation, so that the solution can take the form of a sum of powers of HI(t).

A solution of this form can be generated by recognizing that Eqn. (8) can be solved formally in terms of an integral
equation:

UI(t; t0) = UI(t0; t0) −
i

h̄

∫ t

t0

dt′ HI(t
′)UI(t

′; t0)

= I −
i

h̄

∫ t

t0

dt′ HI(t
′)UI (t

′; t0) (9)

It is straightforward to verify this form solution for UI(t; t0). Computing the time derivative of both sides gives

ih̄
∂

∂t
UI(t; t0) = −ih̄

i

h̄

∂

∂t

∫ t

t0

dt′ HI(t
′)UI(t

′; t0)

= HI(t)UI(t; t0) (10)

Thus, Eqn. (9) is a valid expression of the solution. The implicit nature of the integral equation means that an
iterative procedure based on the assumption that HI(t) is a small perturbation can be easily developed. We start
with a zeroth-order solution by setting HI (t) = 0 in Eqn. (9), which gives the trivial result

U
(0)
I (t; t0) = I (11)

This solution is now fed back into the right side of Eqn. (9) to develop a first-order solution:

U (1)(t; t0) = I −
i

h̄

∫ t

t0

dt′ HI(t
′)U

(0)
I (t′; t0)

= I −
i

h̄

∫ t

t0

dt′ HI(t
′) (12)

The first order solution is fed back into the right side of Eqn. (9) to develop a second-order solution:

U (2)(t; t0) = I −
i

h̄

∫ t

t0

dt′ HI(t
′)U

(1)
I (t′; t0)

= I −
i

h̄

∫ t

t0

dt′ HI(t
′) +

(

i

h̄

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′ HI(t
′)HI (t

′′) (13)

and so forth, such that the kth-order solution is always generated from the (k − 1)st-order solution according to the
recursion formula:

U (k)(t; t0) = I −
i

h̄

∫ t

t0

dt′ HI(t
′)U

(k−1)
I (t′; t0) (14)

Thus, the third-order solution is given by
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U (2)(t; t0) = I −
i

h̄

∫ t

t0

dt′ HI(t
′) +

(

i

h̄

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′ HI(t
′)HI (t

′′)

−

(

i

h̄

)3 ∫ t

t0

dt′
∫ t′

t0

dt′′
∫ t′′

t0

dt′′′ HI(t
′)HI(t

′′)HI(t
′′′) (15)

The exact solution is then just a sum of the solutions obtained at each order:

UI(t; t0) =

∞
∑

k=0

(−1)
k

(

i

h̄

)k ∫ t

t0

dt′
∫ t′

t0

dt′′ · · ·

∫ t(k−1)

t0

dt(k) HI(t
′)HI (t

′′) · · ·HI(t
(k)) (16)

Having seen how to generate a solution for the propagator in the interaction picture to arbitrarily high orders in
the perturbation, the time evolution of the state vector |Φ(t)〉 in the interaction picture can be determined from

|Φ(t)〉 = UI(t; t0)|Φ(t0)〉 (17)

and from this expression, the time evolution of the original state vector |Ψ(t)〉 in the Schrödinger picture can be
determined

|Ψ(t)〉 = e−iH0(t−t0)/h̄|Φ(t)〉

= e−iH0(t−t0)/h̄UI(t; t0)|Φ(t0)〉

= e−iH0(t−t0)/h̄UI(t; t0)|Ψ(t0)〉

≡ U(t; t0)|Ψ(t0)〉 (18)

where we have used the fact that |Φ(t0)〉 = |Ψ(t0)〉 and, in the last line, the full propagator in the Schrödinger picture
is identified as

U(t; t0) = e−iH0(t−t0)/h̄UI(t; t0) (19)

From Eqn. (19), the structure of the full propagator for the time-dependent system reveals itself. Let us use Eqn.
(19) to generate the first few lowest order terms in the propagator. Substituting Eqn. (11) into Eqn. (19) yields the
lowest order contribution to U(t; t0):

U (0)(t; t0) = e−iH0(t−t0)/h̄ = U0(t; t0) (20)

Thus, at zeroth order, Eqn. (20) implies that the system is to be propagated using the unperturbed propagator
U0(t; t0) as if the perturbation did not exist. At first order, we obtain

U (1)(t; t0) = e−iH0(t−t0)/h̄ −
i

h̄
e−iH0(t−t0)/h̄

∫ t

t0

dt′ HI (t
′)

= e−iH0(t−t0)/h̄ −
i

h̄
e−iH0(t−t0)/h̄

∫ t

t0

dt′e−iH0(t′−t0)/h̄H1(t
′)e−iH0(t′−t0)/h̄

= e−iH0(t−t0)/h̄ −
i

h̄

∫ t

t0

dt′ e−iH0(t−t′)/h̄H1(t
′)e−iH0(t′−t0)/h̄

= U0(t; t0) −
i

h̄

∫ t

t0

dt′ U0(t; t
′)H1(t

′)U0(t
′; t0) (21)

where, in the second line, the definition of HI(t) in terms of the original perturbation Hamiltonian H1(t) has been
used. What Eqn. (21) says is that at first order, the propagator is composed of two terms. The first term is simply the
unperturbed propagation from t0 to t. In the second term, the system undergoes unperturbed propagation from t0 to
t′ and at t′, the perturbation H1(t

′) is allowed to act. From t′ to t, the system undergoes unperturbed propagation.
Finally, we need to integrate over all possible intermediate times t′.

In a similar manner, it can be shown that up to second order, the full propagator is given by

U (2)(t; t0) = U0(t; t0) −
i

h̄

∫ t

t0

d′ U0(t; t
′)H1(t

′)U0(t
′; t0)

+

(

i

h̄

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′ U0(t; t
′)H1(t

′)U0(t
′; t′′)H1(t

′′)U0(t
′′; t0) (22)
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Thus, at second order, the new term involves unperturbed propagation from t0 to t′′, action of H1(t
′′) at t′′, unper-

turbed propagation from t′′ to t′, action of H1(t
′) at t′ and, finally, unperturbed propagation from t′ to t. Again, the

intermediate times t′ and t′′ must be integrated over. The picture on the left side of the equation indicates that the
perturbation causes the system to undergo some undetermined dynamical process between t0 and t. The terms on
the right show how that process is broken down in terms of the action of the perturbation H1 at specific intermediate
times. At the kth order, the perturbation Hamiltonian H1 acts on the system at k specific instances in time. Because
of the limits of integration, these time instances are ordered chronologically.

The specific ordering of the instances in time when H1 acts on the unperturbed system raises an important point.
At each order the expansion for UI(t; t0), the order in which the operators HI(t

′), HI(t
′′), etc. are multiplied is

important. The reason for this is that the operator HI(t) does not commute with itself at different instances in time

[HI (t), HI(t
′)] 6= 0 (23)

Thus, in order to remove any possible ambiguity when specifying the order in which operators are to be applied in a
time series, we introduce the time-ordering operator, T . The purpose of T is to take a product string of time-dependent
operators A(t1)B(t2)C(t3) · · ·D(tn) which act at different instances in time t1, t2,...,tn and order the operators in the
product such that they act chronologically in time from the earliest time to the latest time. For example, the action
of T on two operators A(t1) and B(t2) is

T (A(t1)B(t2)) =

{

A(t1)B(t2) t2 < t1
B(t2)A(t1) t1 < t2

(24)

Let us now apply the time-ordering operator to the second-order term. First write the double integral as a sum of
two terms generated simply interchanging the names of the dummy variables t′ and t′′:

∫ t

t0

dt′
∫ t′

t0

dt′′ HI(t
′)HI (t

′′) =
1

2

[

∫ t

t0

dt′
∫ t′

t0

dt′′ HI(t
′)HI (t

′′) +

∫ t

t0

dt′′
∫ t′′

t0

dt′ HI(t
′′)HI(t

′)

]

(25)

The same region can be covered by choosing t′ ∈ [t0, t] and t′′ ∈ [t′, t]. With this choice, Eqn. (25) becomes

∫ t

t0

dt′
∫ t′

t0

dt′′ HI(t
′)HI(t

′′) =
1

2

[

∫ t

t0

dt′
∫ t′

t0

dt′′ HI(t
′)HI(t

′′) +

∫ t

t0

dt′
∫ t

t′
dt′′ HI(t

′′)HI(t
′)

]

(26)

In the first term on the right side of Eqn. (26), t′′ < t′ and HI(t
′′) acts first, followed by HI (t

′). In the second term,
t′ < t′′ and HI(t

′) acts first followed by HI(t
′′). The two terms can, thus, be combined with both t′ and t′′ lying in

the interval [t0, t] if the time-ordering operator is applied:

∫ t

t0

dt′
∫ t′

t0

dt′′ HI(t
′)HI(t

′′) =
1

2

∫ t

t0

dt′
∫ t

t0

dt′′ T (HI(t
′)HI (t

′′)) (27)

The same analysis can be applied to each order in Eqn. (16), recognizing that the number of possible time orderings
of a product of k operators is k!. Thus, Eqn. (16) can be rewritten in terms of the time-ordering operator as

UI(t; t0) =
∞
∑

k=0

(−1)k

(

i

h̄

)k
1

k!

∫ t

t0

dt1

∫ t

t0

dt2 · · ·

∫ t

t0

dtkT (HI(t1)HI(t2) · · ·HI(tk)) (28)

The sum in Eqn. (28) resembles the power-series expansion of an exponential, and, indeed, we can write the sum
symbolically as

UI(t; t0) = T

[

exp

(

−
i

h̄

∫ t

t0

dt′ HI(t
′)

)]

(29)

which is known as a time-ordered exponential. Eqn. (29) is really a symbolic representation of Eqn. (28), in which
it is understood that the time-ordering operator acts to order the operators in each term of the expansion of the
exponential.

Given the formalism of time-dependent perturbation theory, we now seek to answer the following question: If the
system is initially in an eigenstate of H0 with energy Ei, what is the probability as a function of time t that the
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system will undergo a transition to a new eigenstate of H0 with energy Ef? From the statement of the question, it is
clear that the initial state vector |Ψ(t0)〉 is simply the eigenstate of H0 with energy Ei

|Ψ(t0)〉 = |Ei〉 (30)

The amplitude as a function of time that the system will undergo a transition to the eigenstate |Ef 〉 is obtained by
propagating this initial state out to time t with the propagator U(t; t0) and then taking the overlap of the resultant
state with the eigenstate |Ef 〉:

Afi(t) = 〈Ef |U(t; t0)|Ei〉 (31)

and the probability is just the square magnitude of this complex amplitude:

Pfi(t) = |〈Ef |U(t; t0)|Ei〉|
2

(32)

Consider, first, the amplitude at zeroth order in perturbation theory. At this order, U(t; t0) = U0(t; t0), and the
amplitude is simply

A
(0)
fi (t) = 〈Ef |e

−iH0(t−t0)/h̄|Ei〉

e−iEi(t−t0)/h̄〈Ef |Ei〉 (33)

which clearly vanishes if Ei 6= Ef . Thus, at zeroth order, the only possibility is the trivial one in which no transition
occurs.

The lowest nontrivial order is first order, where the transition amplitude is given by

A
(1)
fi (t) = 〈Ef |U

(1)(t; t0)|Ei〉

= −
i

h̄

∫ t

t0

dt′ 〈Ef |U0(t; t
′)H1(t

′)U0(t
′; t0)|Ei〉

= −
i

h̄

∫ t

t0

dt 〈Ef |e
−iH0(t−t′)/h̄H1(t

′)e−iH0(t′−t0)/h̄|Ei〉

= −
i

h̄

∫ t

t0

dt′ e−iEf (t−t′)/h̄e−iEi(t
′
−t0)/h̄〈Ef |H1(t

′)|Ei〉

= −
i

h̄
e−iEf t/h̄eiEit0/h̄

∫ t

t0

dt′ ei(Ef−Ei)t
′/h̄〈Ef |H1(t

′)|Ei〉 (34)

Define a transition frequency ωfi by

ωfi =
Ef − Ei

h̄
(35)

Then, taking the absolute square of the last line of Eqn. (34), we obtain the probability at first-order

P
(1)
fi (t) =

1

h̄2

∣

∣

∣

∣

∫ t

t0

dt′ eiωfit
′

〈Ef |H1(t
′)|Ei〉

∣

∣

∣

∣

2

(36)

At first order, the probability depends on the matrix element of the perturbation between the initial and final
eigenstates. Thus far, the formalism we have derived is valid for any perturbation Hamiltonian H1(t). If we consider
the use of an external perturbation to probe the eigenvalue spectrum of H0, then the specific type of probe determines
the form of H1(t), as we saw in the first section and will explore in the next subsection.

C. Fermi’s Golden Rule

In the first section, we saw how to formulate the Hamiltonian of a material system coupled to an external electro-
magnetic field. Moreover, we obtained solutions for the electromagnetic field in the absence of sources or physical
boundaries, namely, solutions of the free-field wave equations. In this chapter, we will focus primarily on weak fields.
We will also focus on a class of experiments in which the wavelength of electromagnetic radiation is taken to be long
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compared to the size of the sample under investigation. In this case, the spatial dependence of the electromagnetic
field can also be neglected, since cos(k·r−ωt+ϕ0) = Re exp(ik·r−iωt+ϕ0), and exp(ik·r) ≈ 1 in the long-wavelength
limit. In this case, it is sufficient to consider H1(t) to be of the general form

H1(t) = −VF (ω)e−iωt (37)

where V is a Hermitian operator. (Although we could use sin and cos to express the perturbation, the form in Eqn.
(37) is a particularly convenient one, and since we will be seeking probabilities of transitions, the results we obtain
will be real in the end.)

Again, the question we seek to answer is given this form for the perturbation, what is the probability that the
material system will be excited from an initial eigenstate |Ei〉 with energy Ei to a final state |Ef 〉 with energy Ef?
However, since the perturbation is periodic in time, what we really seek to know is if the perturbation is applied over
a long time interval, what is the probability per unit time or rate at which transitions will occur. Thus, in order to
make the calculation somewhat easier, let us consider a time interval T and choose t0 = −T/2 and t = T/2. At first

order, the transition rate R
(1)
fi (T ) is just the total probability P

(1)
fi (T ) divided by the interval length T :

R
(1)
fi (T ) =

P
(1)
fi (T )

T
=

1

T h̄2 |F (ω)|2

∣

∣

∣

∣

∣

∫ T/2

−T/2

ei(ωfi−ω)tdt

∣

∣

∣

∣

∣

2

|〈Ef |V|Ei〉|
2

(38)

For finite T , the integral can be carried out explicitly yielding

∫ T/2

−T/2

ei(ωfi−ω)tdt =
sin(ωfi − ω)T/2

(ωfi − ω)/2
(39)

Thus, the transition rate can be expressed as

R
(1)
fi (T ) =

1

h̄2 T |F (ω)|2|〈Ef |V|Ei〉|
2 sin2(ωfi − ω)T/2

[(ωfi − ω)T/2]2
(40)

In the limit of T very large, this expression becomes highly peaked only if ωfi = ω. Otherwise, as T → ∞, the
expression vanishes. The condition ωfi = ω is equivalent to the condition Ef = Ei + h̄ω, which is a statement of
energy conservation. Since h̄ω is the energy quantum of the electromagnetic field, the transition can only occur if the
energy of the field is exactly “tuned” for the the transition, and this “tuning” depends on the frequency of the field.
In this way, the frequency of the field can be used as a probe of the allowed transitions, which then serves to probe
the eigenvalue structure of H0.

Now, let us consider the T → ∞ more carefully. We shall denote the rate in this limit simply as Rfi. In this limit,
the integral becomes

lim
T→∞

∫ T/2

−T/2

e−i(ωfi−ω)tdt =

∫

∞

−∞

ei(ωfi−ω)tdt

= 2πδ(ωfi − ω)

= 2πh̄δ(Ef − Ei − h̄ω) (41)

Therefore, the expression for the rate in this limit can be written as

Rfi(ω) = lim
T→∞

P
(1)
fi (T )

T
= lim

T→∞

1

T h̄2

∣

∣

∣

∣

∣

∫ T/2

−T/2

ei(ωfi−ω)tdt

∣

∣

∣

∣

∣

2

|F (ω)|2 |〈Ef |V|Ei〉|
2

= lim
T→∞

1

T h̄2

[

∫ T/2

−T/2

e−i(ωfi−ω)tdt

] [

∫ T/2

−T/2

ei(ωfi−ω)tdt

]

|F (ω)|2 |〈Ef |V|Ei〉|
2 (42)

where we have dropped the “(1)” superscript (it is understood that the result is derived from first-order perturbation
theory), and indicate explicitly the dependence on the frequency ω. When one the first integral is replaced by the
δ-function, the remaining integral becomes simply T , which cancels the T in the denominator. Thus, the expression
for the rate is finally

Rfi(ω) =
2π

h̄
|F (ω)|2 |〈Ef |V|Ei〉|

2
δ(Ef − Ei − h̄ω) (43)
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which is known as Fermi’s Golden Rule. It states that, to first-order in perturbation theory, the transition rate
depends only the square of the matrix element of the operator V between initial and final states and includes, via
the δ-function, an energy-conservation condition. We will make use of the Fermi Golden Rule expression to analyze
the application of an external monochromatic field to an ensemble of systems in order to derive expressions for the
observed frequency spectra.
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