
G25.2651: Statistical Mechanics

Notes for Lecture 17

I. EXPECTATION VALUES OF OBSERVABLES

Recall the basic formula for the expectation value of an observable A:

〈A〉 =
1

Q(β)
Tr(Ae−βH)

Two important cases pertaining to the evaluation of the trace in the coordinate basis for expectation values will be
considered below:

A. Case 1: Functions only of position

If A = A(X), i.e., a function of the operator X only, then the trace can be easily evaluated in the coordinate basis:

〈A〉 =
1

Q

∫

dx〈x|A(X)e−βH |x〉

Since A(X) acts to the left on one of its eigenstates, we have

〈A〉 =
1

Q

∫

dxA(x)〈x|e−βH |x〉

which only involves a diagonal element of the density matrix. This can, therefore, be written as a path integral:

〈A〉 =
1

Q
lim

P→∞

(

mP

2πβh̄2

)P/2 ∫

dx1 · · · dxP A(x1) exp

[

−β
P
∑

i=1

(

1

2
mω2

P (xi+1 − xi)
2 +

1

P
U(xi)

)

]

However, since all points x1, .., xP are equivalent, due to the fact that they are all integrated over, we can make P
equivalent cyclic renaming of the coordinates x1 → x2, x2 → x3, etc. and generate P equivalent integrals. In each,
the function A(x1) or A(x2), etc. will appear. If we sum these P equivalent integrals and divide by P , we get an
expression:

〈A〉 =
1

Q
lim

P→∞

(

mP

2πβh̄2

)P/2 ∫

dx1 · · · dxP
1

P

P
∑

i=1

A(xi) exp

[

−β

P
∑

i=1

(

1

2
mω2

P (xi+1 − xi)
2 +

1

P
U(xi)

)

]

This allows us to define an estimator for the observable A. Recall that an estimator is a function of the P variables
x1, ..., xP whose average over the ensemble yields the expectation value of A:

aP (x1, ..., xP ) =
1

P

P
∑

i=1

A(xi)

Then

〈A〉 = lim
P→∞

〈ap〉x1,...,xP

where the average on the right is taken over many configurations of the P variables x1, ..., xP (we will discuss, in the
nex lecture, a way to generate these configurations).

The limit P → ∞ can be taken in the same way that we did in the previous lecture, yielding a functional integral
expression for the expectation value:

〈A〉 =
1

Q

∮

Dx(τ)

[

1

βh̄

∫ βh̄

0

dτA(x(τ))

]

exp

[

−
1

h̄

∫ βh̄

0

dτ

(

1

2
mẋ2 + U(x(τ))

)

]
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B. Case 1: Functions only of momentum

Suppose that A = A(P ), i.e., a function of the momentum operator. Then, the trace can still be evaluated in the
coordinate basis:

〈A〉 =
1

Q

∫

dx〈x|A(P )e−βH |x〉

However, A(P ) acting to the left does not act on an eigenvector. Let us insert a coordinate space identity I =
∫

dx|x〉〈x|
between A and exp(−βH):

〈A〉 =
1

Q

∫

dxdx′〈x|A(P )|x′〉〈x|e−βH |x〉

Now, we see that the expectation value can be obtained by evaluating all the coordinate space matrix elements of the
operator and all the coordinate space matrix elements of the density matrix.

A particularly useful form for the expectation value can be obtained if a momentum space identity is inserted:

〈A〉 =
1

Q

∫

dxdx′dp〈x|A(P )|p〉〈p|x′〉〈x′|e−βH |x〉

Now, we see that A(P ) acts on an eigenstate (at the price of introducing another integral). Thus, we have

〈A〉 =
1

Q

∫

dpA(p)

∫

dxdx′〈x|p〉〈p|x′〉〈x′|e−βH |x〉

Using the fact that 〈x|p〉 = (1/2πh̄) exp(ipx/h̄), we find that

〈A〉 =
1

2πh̄Q

∫

dpA(p)

∫

dxdx′eip(x−x′)/h̄〈x′|e−βH |x〉

In the above expression, we introduce the change of variables

r =
x + x′

2
s = x − x′

Then

〈A〉 =
1

2πh̄Q

∫

dpA(p)

∫

dr dseips/h̄〈r −
s

2
|e−βH |r +

s

2
〉

Define a distribution function

ρW(r, p) =
1

2πh̄

∫

dseips/h̄〈r −
s

2
|e−βH |r +

s

2
〉

Then, the expectation value can be written as

〈A〉 =
1

Q

∫

drdpA(p)ρW(r, p)

which looks just like a classical phase space average using the “phase space” distribution function ρW(r, p). The
distribution function ρW(r, p) is known as the Wigner density matrix and it has many interesting features. For one
thing, its classical limit is

ρW(r, p) = exp

[

−β

(

p2

2m
+ U(r)

)]

which is the true classical phase space distribution function. There are various examples, in which the exact Wigner
distribution function is the classical phase space distribution function, in particularly for quadratic Hamiltonians.
Despite its compelling appearance, the evaluation of expectation values of functions of momentum are considerably
more difficult than functions of position, due to the fact that the entire density matrix is required. However, there are
a few quantities of interest, that are functions of momentum, that can be evaluated without resorting to the entire
density matrix. These are thermodynamic quantities which will be discussed in the next section.
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II. THERMODYNAMICS FROM PATH INTEGRALS

Although general functions of momentum are difficult (though not intractable) to evaluate by path integration, cer-
tain functions of momentum (and position) can be evaluated straightforwardly. These are thermodynamic quantities
such as the energy and pressure, given respectively by

E = −
∂

∂β
ln Q(β, V )

P =
1

β

∂

∂V
ln Q(β, V )

We shall derive estimators for these two quantities directly from the path integral expression for the partition function.
However, let us work with the partition function for an ensemble of 1-particle systems in three dimensions, which is
given by

Q(β, V ) = lim
P→∞

(

mP

2πβh̄2

)3P/2 ∫

dr1 · · · drP exp

[

−β

P
∑

i=1

(

1

2
mω2

P (ri+1 − ri)
2 +

1

P
U(ri)

)

]

Using the above thermodynamic relation, the energy becomes

E = −
1

Q

∂Q

∂β

=
1

Q
lim

P→∞

(

mP

2πβh̄2

)3P/2 ∫

dr1 · · · drP exp

[

−β

P
∑

i=1

(

1

2
mω2

P (ri+1 − ri)
2 +

1

P
U(ri)

)

]

×

[

3P

2β
−

P
∑

i=1

1

2
mω2

P (ri+1 − ri)
2 +

1

P

P
∑

i=1

U(ri)

]

= lim
P→∞

〈εP (r1, ..., rP )〉

where

εP (r1, ..., rP ) =
3P

2β
−

P
∑

i=1

1

2
mω2

P (ri+1 − ri)
2 +

1

P

P
∑

i=1

U(ri)

is the thermodynamic estimator for the total energy.
Similarly, an estimator for the internal pressure can be derived using P = kT∂ ln Q/∂V . As we have done in the

past for classical systems, the volume dependence can be made explicity by introducing the change of variables:

rk = V 1/3
sk

In terms of the scaled variables sk, the partition function expression reads:

Q(β, V ) = lim
P→∞

(

mP

2πβh̄2

)3P/2

V P

∫

ds1 · · · dsP exp

[

−β

P
∑

i=1

(

1

2
mω2

P V 2/3(si+1 − si)
2 +

1

P
U(V 1/3

si)

)

]

Evaluating the derivative with respect to volume gives the internal pressure:

P =
1

βQ

∂Q

∂V

=
1

Q
lim

P→∞

(

mP

2πβh̄2

)3P/2

V P

∫

ds1 · · · dsP exp

[

−β

P
∑

i=1

(

1

2
mω2

P V 2/3(si+1 − si)
2 +

1

P
U(V 1/3

si)

)

]

×

[

P

βV
−

1

3
mω2

P V −1/3
P
∑

i=1

(si+1 − si)
2
−

1

P

P
∑

i=1

∂U

∂(V 1/3
si)

·
1

3
V −2/3

si

]
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=
1

Q
lim

P→∞

(

mP

2πβh̄2

)3P/2 ∫

dr1 · · · drP exp

[

−β

P
∑

i=1

(

1

2
mω2

P (ri+1 − ri)
2 +

1

P
U(ri)

)

]

×

[

P

βV
−

1

3V
mω2

P

P
∑

i=1

(ri+1 − ri)
2
−

1

3V P

P
∑

i=1

∂U

∂ri
· si

]

= lim
P→∞

〈pP (r1, ..., rP )〉

where

pP (r1, ..., rP ) =
P

βV
−

1

3V

P
∑

i=1

[

mω2
P (ri+1 − ri)

2 +
1

P
ri ·

∂U

∂ri

]

is the thermodynamic estimator for the pressure. Clearly, both the energy and pressure will be functions of the particle
momenta, however, because they are related to the partition function by thermodynamic differentiation, estimators
can be derived for them that do not require the off-diagonal elements of the density matrix.

III. PATH INTEGRAL MOLECULAR DYNAMICS (OPTIONAL READING)

Consider once again the path integral expression for the one-dimensional canonical partition function (for a finite
but large value of P ):

Q(β) =

(

mP

2πβh̄2

)P/2 ∫

dx1 · · · dxP exp

[

−β

P
∑

i=1

(

1

2
mω2

P (xi+1 − xi)
2 +

1

P
U(xi)

)

]

(1)

(the condition xP+1 = x1 is understood). Recall that, according to the classical isomorphism, the path integral
expression for the canonical partition function is isomorphic to the classical configuration integral for a certain P -
particle system. We can carry this analogy one step further by introducing into the above expression a set of P
momentum integrations:

Q(β) =

∫

dp1 · · · dpP dx1 · · · dxP exp

[

−β

P
∑

i=1

(

p2
i

2m′
+

1

2
mω2

P (xi+1 − xi)
2 +

1

P
U(xi)

)

]

(2)

Note that these momentum integrations are completely uncoupled from the position integrations, and if we were to
carry out these momentum integrations, we would reproduce Eq. (1) apart from trivial constants. Written in the form
Eq. (2), however, the path integral looks exactly like a phase space integral for a P -particle system. We know from
our work in classical statistical mechanics that dynamical equations of motion can be constructed that will generate
this partition function. In principle, one would start with the classical Hamiltonian

H =

P
∑

i=1

[

p2
i

2m′
+

1

2
mω2

P (xi+1 − xi)
2 +

1

P
U(xi)

]

derive the corresponding classical equations of motion and then couple in thermostats. Such an approach has certainly
been attempted with only limited success. The difficulty with this straightforward approach is that the more “quan-
tum” a system is, the large the paramester P must be chosen in order to converge the path integral. However, if P
is large, the above Hamiltonian describes a system with extremely stiff nearest-neighbor harmonic bonds interacting
with a very weak potential U/P . It is, therefore, almost impossible for the system to deviate far harmonic oscillator
solutions and explore the entire available phase space. The use of thermostats can help this problem, however, it is
also exacerbated by the fact that all the harmonic interactions are coupled, leading to a wide variety of time scales
associated with the motion of each variable in the Hamiltonian. In order to separate out all these time scales, one
must somehow diagonalize this harmonic interaction. One way to do this is to use normal mode variables, and this is
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a perfectly valid approach. However, we will explore another, simpler approach here. It involves the use of a variable
transformation of the formed used in previous lectures to do the path integral for the free-particle density matrix.

Consider a change of variables:

u1 = x1

uk = xk − x̃k k = 2, ..., P

where

x̃i =
(k − 1)xk+1 + x1

k

The inverse of this transformation can be worked out in closed form:

x1 = u1

xk = u1 +

P
∑

l=k

(k − 1)

(l − 1)
ul

and can also be expressed as a recursive inverse:

x1 = u1

xk = uk +
k − 1

k
xk+1 +

1

k
x1

The term k = P here can be used to start the recursion. We have already seen that this transformation diagonalized
the harmonic interaction. Thus, substituting the transformation into the path integral gives:

Q(β) =

∫

dp1 · · · dpP du1 · · · duP exp

[

−β

P
∑

i=1

(

p2
i

2m′

i

+
1

2
miω

2
P u2

i +
1

P
U(xi(u1, ..., uP ))

)

]

The parameters mi are given by

m1 = 0

mi =
i

i − 1
m

Note also that the momentum integrations have been changed slightly to involve a set of parameters m′

i. Introducing
these parameters, again, only changes the partition function by trivial constant factors. How these should be chosen
will become clear later in the discussion. The notation xi(u1, ..., uP ) indicates that each variable xi is a generally a
function of all the new variables u1, ..., uP .

A dynamics scheme can now be derived using as an effective Hamiltonian:

H =

P
∑

i=1

[

p2
i

2m′

i

+
1

2
miω

2
P u2

i +
1

P
U(xi(u1, ..., uP ))

]

which, when coupled to thermostats, yields a set of equations of motion

m′

iüi = −miω
2
P ui −

1

P

∂U

∂ui
− η̇iu̇i

Qη̈i = miu̇
2
i −

1

β
(3)

These equations have a conserved energy (which is not a Hamiltonian):

H ′ =
P
∑

i=1

[

1

2
m′

iu̇
2
i +

1

2
miω

2
P u2

i +
1

P
U(xi(u1, ..., uP )) +

1

2
Qη̇2

i +
1

β
ηi

]

Notice that each variable is given its own thermostat. This is done to produce maximum ergodicity in the trajectories.
In fact, in practice, the chain thermostats you have used in the computer labs are employed. Notice also that the
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time scale of each variable is now clear. It is just determined by the parameters {mi}. Since the object of using such
dynamical equations is not to produce real dynamics but to sample the phase space, we would really like each variable
to move on the same time scale, so that there are no slow beads trailing behind the fast ones. This effect can be
produced by choosing each parameter m′

i to be proportional to mi: m′

i = cmi. Finally, the forces on the u variables
can be determined easily from the chain rule and the recursive inverse given above. The result is

1

P

∂U

∂u1
=

1

P

P
∑

i=1

∂U

∂xi

1

P

∂U

∂ui
=

1

P

[

(k − 2)

(k − 1)

∂U

∂uk−1
+

∂U

∂xk

]

where the first (i = 1) of these expressions starts the recursion in the second equation.
Later on, when we discuss applications of path integrals, we will see why a formulation such as this for evaluating

path integrals is advantageous.

IV. PATH INTEGRALS FOR N-PARTICLE SYSTEMS

If particle spin statistics must be treated in a given problem, the formulation of the path integral is more complicated,
and we will not treat this subject here. The extension of path integrals to N -particle systems in which spin statistics
can safely be ignored, however, is straightforward, and we will give the expressions below.

The partition function for an N -particle system in the canonical ensemble without spin statistics can be formulated
essentially by analogy to the one-particle case. The partition function that one obtains is

Q(N, V, T ) = lim
P→∞

[

N
∏

I=1

(

mIP

2πβh̄2

)3P/2 ∫

dr
(1)
I · · · dr

(P )
I

]

exp

[

−β

P
∑

i=1

(

N
∑

I=1

1

2
mIω

2
P (r

(i+1)
I − r

(i)
I )2 +

1

P
U(r

(i)
1 , ..., r

(i)
N )

)]

Thus, it can be seen that the N -particle potential must be evaluated for each imaginary time discretization, however,
there is no coupling between separate imaginary time slices due arising from the potential. Thus, interactions occur
only between particles in the same time slice. From a computational point of view, this is advantageous, as it allows
for easily parallelization over imaginary time slices.

The corresponding energy and pressure estimators for the N -particle path integral are given by

εP ({r(1), ..., r(P )) =
3NP

2β
−

P
∑

i=1

N
∑

I=1

1

2
mIω

2
P

(

r
(i)
I − r

(i+1)
I

)2

+
1

P

P
∑

i=1

U(r
(i)
1 , ..., r

(i)
N )

pP ({r(1), ..., r(P )) =
NP

βV
−

1

3V

P
∑

i=1

N
∑

I=1

[

mIω
2
P

(

r
(i)
I − r

(i+1)
I

)2

+
1

P
r
(i)
I · ∇

r
(i)

I

U

]
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