(25.2651: Statistical Mechanics
Notes for Lecture 14

I. THE HARMONIC OSCILLATOR — EXPANSION ABOUT THE CLASSICAL PATH

It will be shown how to compute the density matrix for the harmonic oscillator:
H=_—+ 1m(,u2X 2
2m = 2

using the functional integral representation. The density matrix is given by
z(Bh)=z'

1 [on 1o, 1
p(z,z';8) = /(0)_ Dzx(T) exp l_ﬁ/o dr (Em;irz + §mw2$2)]

As we saw in the last lecture, paths in the vicinity of the classical path on the inverted potential give rise to the
dominant contribution to the functional integral. Thus, it proves useful to expand the path z(7) about the classical
path. We introduce a change of path variables from z(7) to y(7), where

z(1) = za(7) + y(7)
where z¢ () satisfies
MmEe = mw2arcl
subject to the conditions
za(0) = =, za(Bh) = o'

so that y(0) = y(Bh) = 0.
Substituting this change of variables into the action integral yields

pR T 1
S = dr |=mi? + —mwzmz]
0 |2 2
s T , 1 A
= dr §m(:i:c1 +9)% + imwz(wcl + y)z]
0 L

AR 11 1 AR T 1
= dr |=mi? + —mw?z? | + / dr |=mgy® + —mw?y?
0 2 2 o 2 2

Bh
+ / dr [maay + mw’zay]
0

An integration by parts makes the cross terms vanish:

Bh Bh
dr [m."bc]g) + mmecly] = mj:dy|€h + / dr [—mﬁicl + mw2mcl] y=20
0 0

where the surface term vanishes becuase y(0) = y(8h) = 0 and the second term vanishes because xcl satisfies the
classical equation of motion.
The first term in the expression for S is the classical action, which we have seen is given by

AR 1 1 mw '
L2 Lo 22| _ 2 2 DY,
/0 dr [2mxcl + 51w wcl] Ssmh (Fhe) [(x + z #)cosh(Bhw) 23:3:]

Therefore, the density matrix for the harmonic oscillator becomes



p(z,z'; B) = Iy]exp [—251#&&)) ((:1:2 + z ?)cosh(Bhw) — 2.173:')]

where I[y] is the path integral

v(BR)=0 1 (5% /m e’
Iy:/ Dy(71) exp ——/ ( 2—|——y)
[v] 010 (1) Rl 3 5

Note that I[y] does not depend on the points z and z' and therefore can only contribute an overall (temperature
dependent) constant to the density matrix. This will affect the thermodynamics but not any averages of physical
observables. Nevertheless, it is important to see how such a path integral is done.

In order to compute I[y] we note that it is a functional integral over functions y(7) that vanish at 7 = 0 and 7 = Sh.
Thus, they are a special class of periodic functions and can be expanded in a Fourier sine series:

(r) = Z Cp Sin(wy, T)

where

nm

Bh

Thus, we wish to change from an integral over the functions y(7) to an integral over the Fourier expansion coefficients
¢n- The two integrations should be equivalent, as the coefficients uniquely determine the functions y(7). Note that

Wnp =

o
y(r) = Z WnCn, €OS(W,T)
n=1
Thus, terms in the action are:
Bh 1 " m [e SIN] Bh
; dTE?J =5 nzz:lnlzz:l CnCp! WnWn! | dr cos(wn,T) cos(wpT)

Since the cosines are orthogonal between 7 = 0 and 7 = i, the integral becomes
) dTEZf = %; chwh / dr cos® (wn7) Z Cp / dr [5 t3 cos(2wnr)] = _mf ;c%w%

Similarly,

A mBh 5 ~—
2, 2 2 2
—mw Yy’ = w E c,
/0 2 4~

The measure becomes

oo
dey,
Dy(t) — e ———
y(®) };[1 Var/mpPw?
which, is not an equivalent measure (since it is not derived from a determination of the Jacobian), but is chosen
to give the correct free-particle (w = 0) limit, which can ultimately be corrected by attaching an overall factor of
\/m/2nBh>.
With this change of variables, I[y] becomes

mﬂ(w +w?) ]

[e’s} 0o de [e’s} 1/2
T P ]
[y] ngl o 47r/mﬂw% p 4 ookt w2 + w?

The infinite product can be written as



00 7r2n2/,32h2 B 00 ﬂ2h2w2 -1
711;[1 [wz +7r2n2/62h2] B Ll:[1 <1+ 2n? )]

the product in the square brackets is just the infinite product formula for sinh(8hw)/(8hw), so that I[y] is just

Bhw

Tyl = sinh(Bhw)

Finally, attaching the free-particle factor y/m/ 2w 8h?, the harmonic oscillator density matrix becomes:

mw mw

P@,28) =\ | 2 hsmn (Fhe) P [—m

((:v2 + 2 ?)cosh(Bhw) — 23:1:')]
Notice that in the free-particle limit (w — 0), sinh(Shw) ~ Bhw and cosh(Bhw) ~ 1, so that

ploi'i) [ e [~ (e - o)

which is the expected free-particle density matrix.

II. THE STATIONARY PHASE APPROXIMATION
Consider the simple integral:

oo
I = lim dz e~ M @)

A—o0 — o

Assume f(z) has a global minimum at x = z, such that f'(x¢) = 0. If this minimum is well separated from other
minima of f(z) and the value of f(z) at the global minimum is significantly lower than it is at other minima, then
the dominant contributions to the above integral, as A — oo will come from the integration region around zo. Thus,
we may expand f(z) about this point:

f(@) = f(zo) + f'(x0)(2x — 20) + %f”(ﬂfo)(m —x0)? + -

Since f'(zo) = 0, this becomes:

£(@) & flzo) + 31" (o) @ — 7o)’

Inserting the expansion into the expression for I gives

I = lim e~ (@) /00 dg e— 21" (zo)(@—20)*

A—00

27{' 1/2
= 1 JE— _’\f(xo)
freet [)\ f”(mo)] €

Corrections can be obtained by further expansion of higher order terms. For example, consider the expansion of f(zx)
up to fourth order:

7(&) & (o) + 5 (@0} = w0)? + 51" (@) (& = 20)° + 52 f (z0) (@ = 0)*

Substituting this into the integrand and further expanding the exponential would give, as the lowest order nonvanishing
correction:

I= lim e_’\f(xo)/ dx ez 1" @) (@=20)* |1 _ %f(iv)(mo)(m — z0)*

A—00 — oo



This approximation is known as the stationary phase or saddle point approximation. The former may seem a little
out-of-place, since there is no phase in the problem, but that is because we formulated it in such a way as to anticipate
its application to the path integral. But this is only if A is taken to be a real instead of an imaginary quantity.

The application to the path integral follows via a similar argument. Consider the path integral expression for the
density matrix:

z(Bh)=xz’

plaa'sp) = [ DlgjerSeleln
z(0)=z
We showed that the classical path satisfying
me = 6—U
cl = o o

z(0) =z z(Bh) = '

is a stationary point of the Euclidean action Sg[z], i.e., Sg[za] = 0. Thus, we can develop a stationary phase or
saddle point approximation for the density matrix by introducing an expansion about the classical path according to

a(r) = 2a(T) + y(1) = za(r) + Y cnn(7)

where the correction y(7), satisfying y(0) = y(8h) = 0 has been expanded in a complete set of orthonormal functions
{én(7)}, which are orthonormal on the interval [0, 8] andsatisfy ¢,(0) = ¢,(8h) = 0 as well as the orthogonality
condition:

Bh
/0 dr ¢n(7_)¢m (T) = Omn

Setting all the expansion coefficients to 0 recovers the classical path. Thus, we may expand the action S[z] (the “E”
subscript will henceforth be dropped from this discussion) with respect to the expansion coefficients:

Slz] = S[za] + Z g—i

. 1 %8
(e}=0 ) — dcjey

Cich + -
{c}=0

Since

AR
Slz] = / dr [§m$2 + U(.’L’(T)):|
0
the expansion can be worked out straightforwardly by substitution and subsequent differentiation:
Bh

B 2
Slz]= [ dr %m (a':d + ancnén) + U(za + Xn:cnqﬁn)

0

as _ o [ L
6_c]- = ; dr m(mcl + ; Cn¢n)¢j +U' <37c1 + ; cn(bn) ¢J]
2

ac; = /Oﬁh dr [m:bd(ﬁj + U'($c1)¢j]

{c}=0

Bh
maad; o + / dr [~mia + U (va)] 6;
0
=0

»*S ARy
Do /0 [m¢j¢k +U" (5801 + ch¢n]> ¢j¢k]
J n



02S
8Cj 8ck

8h
— / dr [m(ﬁj(ﬁk + Ull(wcl)¢j¢k]
0

{c}=0
Gh
_ /0 dr [~méjdi +U" (wa ()5

Bh d2
= [ o) |-y + 0" a(r)| et
0 T
where the fourth and eighth lines are obtained from an integration by parts. Let us write the integral in the last line
in the suggestive form:

2

= (G4l —may + U a()Is) = A

%S
8Cj 8Ck

{c}=0

which emphasizes the fact that we have matrix elements of the operator —md?/dr? + U" (za1(7)) with respect to the
basis functions. Thus, the expansion for S can be written as

1
S[z] = S[za] + 3 ZijAjka + -
]’

and the density matrix becomes
de; _ 1By~ .. ciDjkck/h
.z ZN/II I _ e Sa(@,@'iB) g T2 2 CiikCE
Pl 2’5 ) - V2rh

where Sq(z,z';8) = S[za]. N is an overall normalization constant. The integral over the coefficients becomes a
generalized Gaussian integral, which brings down a factor of 1/vdetA:

1

z,2'; B) = Ne~Sa(@'s)
plz,z'; B) AN

1

— Ne—Salz.z'p)
Vdet (=ms + U (za(r)))

where the last line is the abstract representation of the determinant. The determinant is called the Van Vieck-Pauli-
Morette determinant,.

If we choose the basis functions ¢, (7) to be eigenfunctions of the operator appearing in the above expression, so
that they satisfy

d2
s + U aa(n)] 6n(r) = M)
Then,
Aji = Njdje = Aj(2,2"; B)dji

and the determinant can be expressed as a product of the eigenvalues. Thus,

) 1
pla,a'; ) = Nem 5@ ] —eoeet
1;[ VA, 25 B)

The product must exclude any 0-eigenvalues.

Incidentally, by performing a Wick rotation back to real time according to g = —it/h, the saddle point or stationary
phase approximation to the real-time propagator can be derived. The derivation is somewhat tedious and will not be
given in detail here, but the result is

Uz, a';t) = ehSal@at) 1 e /2
Vdet (—m & — U (za(®)))




where z(t) satisfies
_ U
O |,_,

za(0) =2z =zq(t) =2

mie

and v is an integer that increases by 1 each time the determinant vanishes along the classical path. v is called the
Maslov index. It is important to note that because the classical paths satisfy an endpoint problem, rather than an
initial value problem, there can be more than one solution. In this case, one must sum the result over classical paths:

U(z,z';t) = Z e Sa(e,a'st)—inv /2 1
. d2 "
classical paths \/det (—mw -U (-'L'cl (t)))

with a similar sum for the density matrix.



