G25.2651: Statistical Mechanics

Notes for Lecture 10

I. THE LOCAL DENSITY APPROXIMATION

In modern density functional theory, the total energy E of a system of electrons subject to an external potential
(usually taken to be the interaction between the electrons and positively charged nuclei in a molecule), is expressed
as a functional of the electron density p(r). This functional is given by

Elp] = T[p] + Wp] + V[p]

where T'[p] is the kinetic energy, W{p] is the electron-electron repulsion, and V[p] is the external potential. Expressions
for T[p] and W[p] are not known exactly and, therefore, approximations are required. A popular approximation is
known as the local density approximation, which entails deriving expressions for these energies using an ideal electron
gas and replacing the dependence of the energy term on the constant density p = N/V with the spatially varying
density p(r). The physical assumption is that, in most systems, the spatial variations of the density are gradual enough
that the system locally is well approximated by a constant density and, hence, ideal gas expressions are approximately
valid.

II. AN APPROXIMATE KINETIC ENERGY DENSITY FUNCTIONAL

Recall from the last lecture that the total energy of the ideal fermion gas is given by
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where g is the spin degeneracy, which, for electrons, is 2. Since the Fermi energy is given by
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the total energy E becomes
E = CFVp5/3
where Cf is a collection of constants. The main thing to note here is the dependence of E on the density, i.e. F o p°/3.

Since the only energy present in an ideal gas is kinetic energy, F is a kinetic energy T'. By dividing by the volume V,
we obtain a kinetic energy density ¢ given by

t(p) = Crp*’®

The total kinetic energy is trivially given by integrating both sides over all space:

T =/ dr t(p)

However, now imagine replacing the constant density p in ¢(p) with a spatially varying density p(r) in a real electronic
system. Then, T becomes a functional of p(r) and is given by

75l = [ dr tlp(e) = Ce [ 5700

This is an example of a local density functional.



IIT. AN EXCHANGE ENERGY DENSITY FUNCTIONAL

In Hartree-Fock theory, the electron-electron repulsion W{p] is often written as

Wil =y [ drar 505D 4 B+ Bl
where Ey and E. are the exchange and correlation energies, respectively. The first term is just the classical Coulomb
energy for two charge densities p(r) and p(r'), while the exchange and correlation energies contain all of the quantum
mechanical information about the electrons. It is possible to obtain a simple closed-form local density expression for
the exchange energy using the ideal electron gas.
In Hartree-Fock theory, the exchange energy is given by
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where p; (r,r') is the one-particle density matrix. For an ideal gas, this density matrix is given by
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where @n., (r, s) are the single-particle eigenfunctions
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and (fam) is the zero-temperature average occupation number

(fam) = (e — €n)

Substituting in these expressions for the single-particle eigenfunctions and occupation number gives for the density
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Since xm(8) = dms, the spin sum gives
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where g = 2 for electrons. Thus, we obtain for the density matrix
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Taking the thermodynamic limit, turning the sum into an integral, gives
pP1 (I‘, r’) = %/ dn o(EF _ En)ef27rin-r/Le27rin.r/L

Defining s = r —r’, and choosing the axes of the n coordinate system such that s lies along the n, axis, the integral
can be expressed in spherical polar coordinates as
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The step function requires
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Thus, the density matrix becomes
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Since p; only depends on s = |r —r'|, it is useful to introduce the transformation
]‘ ! !
Rzi(r-i-r) s=r—r

into the integral for K. The Jacobian of the transformation is 1, hence, the expression for K becomes
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where, in the last line, the s integration is written in terms of spherical polar coordinates for s. Next, we change
variables to
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Performing this transformation gives
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The z integral can be worked out (with much pain) and shown to be just 1/4. Thus, we find the exchange energy is
given by
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Since ep o p?/3, the exchange energy is proportional to p*/3. Hence, we can write K in the form

K=-

K = —eZCpr4/3

where Cy is a collection of constants.
Now defining an exchange energy density ex(p) = K/V, we find

ex(p) = —e*Cep*’®



Of course, the total exchange energy K = E, can be obtained trivially by integrating over the containing volume

E, :/ dr ex(p)

However, imagine replacing the constant density p = N/V by the spatially varying density p(r) for a real electronic
system. Then, Ey becomes a functional of the density, given by

Bl = [ drex(pte) = -G, [ g0

If the kinetic and exchange energy functionals are combined and E, is taken to be approximately 0, then we arrive
at a well known energy functional

Elp] = Cr [ dr p(r) + 1 dr dr'w —2Cy [ dr p*3(x) + [ dr p(r)Vexs(r)
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known as the Thomas-Fermi functional. Here, Ve (r) is the external potential, usually taken to be Vet (r) = —Ze/r,
i.e. the Coulomb potential of a nucleus of charge Ze.

The Thomas-Fermi functional was one of the first functionals invented in the early days of density functional theory.
By minimizing this functional over all densities subject to the condition that

/ dr p(r) =N

where N is the number of electrons, an approximate ground state electronic density can be obtained. While the
Thomas-Fermi theory works reasonably well for atoms with large Z, it cannot predict the existence of molecules.
Systematic improvements of the functional do somewhat better, however, it was not until the exact formulation of
density functional theory by Hohenberg and Kohn that the true power of density functional theory could be realized.



