G25.2651: Statistical Mechanics

Notes for Lecture 8

I. INTRODUCTION TO SPIN

The path integral formulation of quantum statistical mechanics is particularly useful for situations in which particle
spin statistics can be largely ignored. In the quantum ideal gases, we have a situation in which the spin statistics
determine all of the interesting behavior! The fully quantum treatment of the ideal gas will be the subject of the next
several lectures.

The spin degree of freedom of a particle is a purely quantum mechanical aspect (with no classical analog). In
quantum mechanics, spin is analogous to an angular momentum. It is described by a Hermitian operator S =
(Sz,Sy,Sz), where the components satisfy angular momentum type commutation relations:

S, S,] = ihS, Sy, S.] = ihS, [S., S,] = ihS,

The spin operators for a spin-s particle are represented by (2s + 1) x (2s + 1) matrices (which define different
representations of the group SU(2)). For example, for a spin-1/2 particle, such as an electron, the three spin operators

are
_hf0 1 R0 —i _Rh{f1 o0
S’”‘§(1 0) Sy_i(i 0) 52_5(0 —1)

which can be shown to satisfy the above commutation relations. Since the three components of spin to do not commute,
we choose, by convention, to work in a basis in which S, is diagonal. Thus, there will be (2s + 1) eigenvalues given
by —sh,...,sh. In the example of the spin-1/2 particle, we see that the allowed spin eigenvalues (denoted m) are
m = —hbar/2 and m = h/2. The corresponding eigenstates are just

m = h/2) = [x12) = ((1)> Im = —h/2) = [x-12) = (?)

which are denoted the “spin-up” and “spin-down” states, respectively. Note that the operator S% = S2 + SZ + 82 is
also diagonal so that the spin-up and spin-down eigenstates of S, are also eigenstate of S2, both having the eigenvalue
s(s + l)hz. Thus, given a Hamiltonian H for a system, if H is independent of spin, then the eigenstates of H must
also be eigenstates of S? and S, since all three can be simultaneously diagonalized.

What happens in quantum mechanics when we have systems of identical particles of a given type of spin? Consider
the simple example of a system of two identical spin-1/2 particles. Suppose we perform a measurement which is able
to determine that one of the particles has an S, eigenvalue of m,% and the other myh such that m, # m;. Is the
state vector of the total system just after this measurement

|me; M) or | ;Mg )

where, in the first state, particles 1 and 2 have S, eigenvalues m,h and myh, respectively, and, in the second state, it
is the reverse of this? The answer is that neither state is the correct state vector since the measurement is not able
to assign the particular spin states of each particle. In fact, the two state |m,;mp) and |mp;m,) are not physically
equivalent states. Two states |¢p) and [¢') can only be physicall equivalent if there is a complex number « such that

) = aly’)

and there is no such number connecting |mg; mp) and |mp; m,). However, it is possible to construct a new state vector
| ¥ (Mg, mp)) such that |¥(myp,m,)) is physically equivalent to | (mg,ms)). Let

[¥(ma,mp)) = Clma;mp) + C'[mp;ma)
If we require that

|\I»’(ma, mb)) = a|lP(mb7 ma))



then
Clma;mep) + C'lmy;ma) = o (Clmp;ma) + C'|ma; my))
from which we see that
C =al' C'=aC
or
C' = a*C'
from which @ = £1 and C = +£C". This gives us two possible physical states of the system

[¥5(mq, mp)) X |ma;msp) + [mp;ma)

|\I’A(ma=mb)> X |ma;mb> - |mb;ma>

which are symmetric and antisymmetric, respectively, with respect to an exchange of the particle spin eigenvalues.
The analog in ordinary one-dimensional quantum mechanics would be the case of two identical particles moving along
the z axis. If a measurement performed on the system determined that a particle was at position x = a and the other
was at ¢ = b, then the state of the system after the measurement would be one of the two following possibilities:

[Ts(a,b)) o< |a by + |ba)

|Wa(a,b)) o |ab) —[ba)

The standard postulates of quantum mechanics now need to supplemented by an additional postulate that allows us
to determine which of the two possible physical states a system will assume. The new postulate states the following;:
In nature, particles are of two possible types — those that are always found in symmetric (S) states and those that
are always found in antisymmetric (A) states. The former of these are known as bosons and the latter are known as
fermions. Moreover, fermions possess only half-integer spin, s=1/2,3/2,5/2,..., while bosons possess only integer spin,
s=0,1,2,....

Suppose a system is composed of N identical fermions or bosons with coordinate labels ry,...,rx and spin labels
$1,...,8n. Let us define, for each particle, a combined lable x; = r;, s;. Then, for a given permutation P(1), ..., P(N)
of the particle indices 1,..,INV, the wave function will be totally symmetric if the particles are bosons:

Ug(X1,...,XN) = ¥B(Xp(1), -, XP(N))
For fermions, as a result of the Pauli exclusion principle, the wave function is antisymmetric with respect to an
exchange of any two particles in the systems. Therefore, in creating the given permutation, the wave function will
pick up a factor of -1 for each exchange of two particles that is performed:
Up (X1, XN) = (—1)NQX‘I’F(XP(1), cey XP(N))

where Ney is the total number of exchanges of two particles required in order to achieve the permutation P(1), ..., P(N).
An N-particle bosonic or fermionic state can be created from a state ®(xy, ..., xx) which is not properly symmetrized
but which, nevertheless, is an eigenfunction of the Hamiltonian

H® = E®
Noting that there will be N! possible permutations of the N particle labels in an N-particle state, the bosonic state
Up(x1,...,xn) is created from ®(xy,...,xn) according to

NI
1
Up(x1,--,XN) = N ZPa‘I’(Xla 0 XN)
Ta=1

where Pypha creates 1 of the N! possible permutations of the indices. The fermionic state is created from

N!
1 a
lI’F(Xla "'7XN) = ﬁ Z (_l)Nex( ) Pa(I'(xl, ---7XN)
Ta=1

where Ney() is the number of exchanges needed to create permutation a.
This simple difference in the symmetry of the wavefunction leads to stark contrasts in the properties of fermonic
and bosonic systems. With these quantum mechanical rules in mind, let us work out what these properties are.



II. SOLUTION OF THE N-PARTICLE EIGENVALUE PROBLEM

The Hamiltonian for an ideal gas of IV particles is

The eigenvalue problem for the Hamiltonian is in the form of the time-independent Schrédinger equation for the
(unsymmetrized) eigenfunctions

2
—h— ZV?@(Xl, ...,XN) = E(I)(Xl, ...,XN)

First, we notice that the equation is completely separable in the N particle coordinate/spin labels xi, ..., Xy,
meaning that the Hamiltonian is of the form

Note, further, that H is independent of spin, hence, the eigenfunctions must also be eigenfunctions of S? and S..
Therefore, the solution can be written as

N
q)oqml,...,aNmN (X17 L) XN) = H ¢(1imi (Xi)
i=1

where ¢q,m;(X;) is a single particle wave function characterized by a set of spatial quantum numbers «; and S,
eigenvalues m;. The spatial quantum numbers a; are chose to characterized the spatial part of the eigenfunctions
in terms of appropriately chosen observables that commute with the Hamiltonian. Note that each single-particle
function @q,m, (x;) can be further decomposed into a product of a spatial function 9, (r;) and a spin eigenfunction
Xm; (8,), where

Xm(8) = (8|Xm) = Oms
Substituting this ansatz in to the wave equation yields a single-particle wave equation for each single particle function:

h
- %Vz '(pai (rz) = Eq; ¢C¥i (rl)

Here, €4, is a single particle eigenvalue, and the N-particle eigenvalue is, therefore, given by

N
Eau---,OtN = § :Eai
=1

We will solve the single-particle wave equation in a cubic box of side L for single particle wave functions that satisfy
periodic boundary conditions:

Vai (i, Yir 2i) = Ya; (@i + L,Yi5 2i) = Yo, (%4,Ys + Ly 2i) = Yo, (Tis yis 2i + L)
Note that the momentum operator P; commutes with the corresponding single-particle Hamiltonian
[Pi, hi] =0

This means that the the momentum eigenvalue p; is a good number for characterizing the single particle states
Ya; = ¥p,- In fact, the solutions of the single-particle wave equation are of the form



Ui (x5) = CeiPems/
provided that the single particle eigenvalues are given by

i

= om

The constant C is an overall normalization constant on the single-particle states to ensure that [ d®r;|¢;(r;)|? = 1.
Now, we apply the periodic boundary condition. Consider the boundary condition in the z-direction. The condition

wpi (w’ia Yi, zl) = 'L/}pi (wl + LJ Yi, ZZ)
leads to

ez’pmizi/h — eipmi (z;+L)/h

. L Pz, L
1= meiL/h = I)w—l ) Qi rri =
e COS 5 + 2 sin 5

L
Pac 2mng,

h

or

which will be satisfied if

where n,; is an integer, 0,£1, £2,.... Thus, the momentum p,; can take on only discrete values, i.e., it is quantized,
and is given by

27h
Dy; = T”yl

27h
Dz = Tnz,

where n; is a vector of integers n; = (n,,,ny,;,n.;). This vector of integers can be used in place of p; to characterize
the single-particle eigenvalues and wave functions. The single-particle energy eigenvalues will be given by

S p; 212h?
T om T mlL2

and the single-particle eigenfunctions are given by
Yn, (r;) = Ce?mmiri/L

Finally, the normalization constant C' is determined by the condition

L L L
/d37'i|¢m (x)” = |C|2/ dxz'/ dyi/ dze—2miniri/Le2mingri/L
0 0 0

L L L
|C|2/ d.’ll'@/ dyl/ dzl = |C|2L3 =1
0 0 0
C = 1
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Therefore, the complete solution for the single-particle eigenvalues and eigenfunctions is

1y

(xi[n; m;) = Gnym, (x3) = Wez’”"’ X mi (54)
_ 2n2h® .,
En = gz 1M

and the total energy eigenvalues are given by

271'2h2
Eﬂ],...,nN = Z |Ilz|2

i=1

Another way to formulate the solution of the eigenvalue problem is to consider the single particle eigenvalue and
eigenfunction for a given vector of integers n:

1 2min-r/L
n(r) = —e
Yn(r) N
2m2h? 9
mlIL2 [n|

En =

and ask how many particles in the N-particle system occupy this state. Let this number be fu;,. fam is called an
occupation number and it tells just how many particles occupy the state characterized by a vector of integers n. Since
there are an infinite number of possible choices for n, there is an infinite number of occupation numbers. However,
they must satisfy the obvious restriction

2.2 fom =N

m n

where

Na

and

Z

runs over the (2s+ 1) possible values of m for a spin-s particle. These occupation numbers can be used to characterize
the total energy eigenvalues of the system. The total energy eigenvalue will be given by

E{fnm} = Z Z Enfam

m=—s

III. AN IDEAL GAS OF DISTINGUISHABLE QUANTUM PARTICLES

As an illustration of the use of occupation numbers in the evaluation of the quantum partition function, let us
consider the simple case of Boltzmann statistics (ignoring spin statistics or treating the particles as distinguishable).
The canonical partition function Q (N, V,T) can be expressed as a sum over the quantum numbers ny, ..., ny for each

particle:
QN V,T) =" Ze BBny,...ny

n; ns

_ZZ Ze Beny g=Beny ... g Beny

n; ng

- (%: e,@sn1> gg eﬁsn2> ... (nZN: eﬁan>
(%)



In terms of occupation numbers, the partition is

QN V,T) = Y g({f})e # Lnn/n
{r}
where g({f}) is a factor that tells how many different physical states can be represented by a given set of occupation
numbers { f}. For Boltzmann particles, exchanging the momentum labels of two particles leads to a different physical

state but leaves the occupation numbers unchanged. In fact the counting problem is merely one of determining how
many different ways can N particles be placed in the different physical states. This is just

N!
o) = [

For example, if there are just two states, then the occupation numbers must be N7 and Ny where N7 + Ny = N. The
above formula gives
N! N!

Ny, Ny) = =
90N, N2) = BT = NI — )

which is the expected binomial coefficient.
The partition function therefore becomes

N!
Q(N7 V7 T) = Z He*faann
{5} [l fnl 5,

which is just the multinomial expansion for

Q(N,V,T) (Ze n)N

Again, if there were two states, then the partition function would be

!
(e*ﬁEl _}_efﬂEz)N — Z N e N1Be1 o —Nafbea
N1IN!
N1,N2,N1+Na=N

using the binomial theorem.
Therefore, we just need to be able to evaluate the sum

E e—BEn — § :e—2w2ﬁh2\n|2/mL2
n n

But we are interested in the thermodynamic limit, where L — oo. In this limit, the spacing between the single-particle
energy levels becomes quite small, and the discrete sum over n can, to a very good approximation, be replaced by an
integral over a continuous variable:

§ 6727r23f'12|n|2/mL2 — /d3n6727r26h2\n\2/mL2

Since the single-particle eigenvalues only depend on the magnitude of n, this becomes

3/2
47T/ dnnz —27 ,Bh2|n| /mL2 — V( m ) — (K)
27 Bh? A3

where A is the thermal deBroglie wavelength.
Hence,

Q(N,V,T) = (%)N

which is just the classical result. Therefore, we see that an ideal gas of distinguishable particles, even when treated
fully quantum mechanically, will have precisely the same properties as a classical ideal gas. Clearly, all of the quantum
effects are contained in the particle spin statistics. In the next few lectures we will see just how profound an effect
the spin statistics can have on the equilibrium properties.



IV. GENERAL FORMULATION FOR FERMIONS AND BOSONS

For systems of identical femions and identical bosons, an exchange of particles does not change the physical state.
Therefore the factor g({fam}) is just 1 for both of kinds of systems. Moreover, the occupation number of a state
characterized by n for a system of identical bosons can be any number between 0 and N:

fam =0,1,2, .., N

For fermions, the Pauli exclusion principle forbids two identical particles from occupying the same quantum state.
This restricts the occupation numbers to be either 0 or 1:

Jfam = 0,1
Given these possibilities for the occupation numbers, the canonical partition function can be formulated:
QI V,T) = 3 e PLwLnfomen = 3 T[[[e #/nen
{fmm} {fam} n m

Note that the sum over occupation numbers must be performed subject to the restriction
2D fam =N
m n

a condition that makes the evaluation of Q(N,V,T) extremely difficult. Therefore, it seems that the canonical
ensemble is not the best choice for carrying out the calculation. No worry, there are other ensembles from which to
choose, and of these, it turns out that the grand canonical ensemble is significantly easier to work with. Recall that
in the grand canonical ensemble, p, V and T are the control variables and the partition function is given by

Z(/‘% V7T) = CNQ(Na v, T)

* 3 e e

0 {faom} m n

NgERRNgE
S

2
Il

Note that the inner sum over occupation numbers is still subject to the restriction ) > = fam = N. However, there
is a final sum over all possible values that N, the number that restricts the sum over occupation numbers, can take on.
Therefore, if we let the sum over occupation numbers be unrestricted, then they could sum to any value they liked.
This would be equivalent to performing an unrestricted sum over occupation numbers without performing the final
sum over NN, since in the course of summing, unrestricted, over occupation numbers, we would obtain every possible
value of N as required by the final sum over N. This is the main advantage of using this ensemble for bosonic and
fermonic systems. Thus, the grand canonical partition function becomes

,u,VT Z HHeﬁ(# en)fn

{fam} m n

Note also that the sum of products is just

Z Z Z .. eBlu—e1) f1 Blu—e2) fo o B(n—es)fs ... — Z eBlu—e)f1 Z ePlu—e)f2 Z ePlu—e1)fs

fi f2 fs f1 f2 f3

“TIII S eftesminm

m n {fam}

For bosons, each individual sum is just the sum of a geometric series. Hence,

N’VT HH]_—@/@(N €n)



whereas, for fermions, each individual sum contains only two terms corresponding to fn = 0 and f, = 1. Thus, for

fermions:
Z(p, V,T) = HH(I%—@B(” E“))

Note that the summands are independent of the quantum number m so that we may perform the product over m
values trivially with the result

Z(p,V,T) =

g
1
rn[ 1-— eﬁ(HEn)]

for bosons and

Z(p,V,T) =

n

I (1 n eﬁ(u—sn))] g

for fermions, where g = (2s + 1) is the number of eigenstates of S, (also known as the spin degeneracy).
At this point, let us recall the procedure for calculating the equation of state in the grand canonical ensemble. The
free energy in this ensemble is PV/kT given by

PV

ﬁ = an(CavaT)

and the average particle number is given by

The fugacity ¢ must be eliminated in favor of (V) using the second equation and substituted into the first equation
to yield the equation of state. Recall that, for the classical ideal gas,

Z((,V,T) =¥V

PV _ V¢
KT X3
0 V¢
Ny=(C=IhZ=—=
(N) = (gelnZ =
Eliminating ¢ in favor (V) is trivial in this case, leading to the classical ideal gas equation
PV = (N)YkT
For the ideal gas of identical fermions, the equations one must solve are
PV !
o =nZ(,V,T) = [1;[ (1+ge—/35n)] :ggln (1+§e‘ﬁsn)
3| (e Ben
(N) = (el 2 = g; TiteFm
and for bosons, they are
g
PV 1
_ _ (o Ben
=7 =2V, T) = ll;[ l—Ceﬁsn] = gznjln (1 — ¢e Pen)

0

It is not difficult to see that the problem of solving for ¢ in terms of (V) is highly non-trivial for both systems. The
next two lectures will be devoted to just this problem and exploring the rich behavior that the quantum ideal gases
exhibit.



