G25.2651: Statistical Mechanics

Notes for Lecture 6

I. THE FUNDAMENTAL POSTULATES OF QUANTUM MECHANICS

The fundamental postulates of quantum mechanics concern the following questions:

[y

. How is the physical state of a system described?

2. How are physical observables represented?

3. What are the results of measurements on quantum mechanical systems?
4. How does the physical state of a system evolve in time?
5

. The uncertainty principle.

A. The physical state of a quantum system

The physical state of a quantum system is represented by a vector denoted

12 (1))

which is a column vector, whose components are probability amplitudes for different states in which the system might
be found if a measurement were made on it.

A probability amplitude « is a complex number, the square modulus of which gives the corresponding probability
Py

P, = |04|2

The number of components of |¥(¢)) is equal to the number of possible states in which the system might observed.
The space that contains |¥(t)) is called a Hilbert space H. The dimension of # is also equal to the number of states
in which the system might be observed. It could be finite or infinite (countable or not).

|¥(t)) must be a unit vector. This means that the inner product:

(@) =1
In the above, if the vector |¥(t)), known as a Dirac “ket” vector, is given by the column

(1
(0P
[B(t) = | -

then the vector (¥(¢)|, known as a Dirac “bra” vector, is given by

(@] = @1 3 )

so that the inner product becomes
(TOT@) =Y [il* =1
i

We can understand the meaning of this by noting that ;, the components of the state vector, are probability
amplitudes, and |+;|? are the corresponding probabilities. The above condition then implies that the sum of all the
probabilities of being in the various possible states is 1, which we know must be true for probabilities.



B. Physical Observables

Physical observables are represented by linear, hermitian operators that act on the vectors of the Hilbert space. If
A is such an operator, and |¢) is an arbitrary vector in the Hilbert space, then A might act on |¢) to produce a vector
|¢'), which we express as

Alg) = [4)

Since |¢) is representable as a column vector, A is representable as a matrix with components
A Ap Az e
A= Ay Axp Ay -
The condition that A must be hermitian means that
At =4

or

Ay = Aj;

C. Measurement

The result of a measurement of the observable A must yield one of the eigenvalues of A. Thus, we see why A is
required to be a hermitian operator: Hermitian operators have real eigenvalues. If we denote the set of eigenvalues of
A by {a;}, then each of the eigenvalues a; satisfies an eigenvalue equation

A|a,) = ai|ai)

where |a;) is the corresponding eigenvector. Since the operator A is hermitian and a; is therefore real, we have also
the left eigenvalue equation

(a;|A = {aila;

The probability amplitude that a measurement of A will yield the eigenvalue a; is obtained by taking the inner
product of the corresponding eigenvector |a;) with the state vector |¥(¢)), (a;|¥(¢)). Thus, the probability that the
value a; is obtained is given by

Po, = [{as (1))

Another useful and important property of hermitian operators is that their eigenvectors form a complete orthonormal
basis of the Hilbert space, when the eigenvalue spectrum is non-degenerate. That is, they are linearly independent,
span the space, satisfy the orthonormality condition

(ailaj) = &
and thus any arbitrary vector |¢) can be expanded as a linear combination of these vectors:
lg) = Zci|az’>
i

By multiplying both sides of this equation by (a;| and using the orthonormality condition, it can be seen that the
expansion coefficients are

¢ = {ai|9)

The eigenvectors also satisfy a closure relation:



I'= Z|ai><az’|

%

where I is the identity operator.
Averaging over many individual measurements of A gives rise to an average value or expectation value for the
observable A, which we denote {A) and is given by

(4) = (T(B)[A[¥(D))

That this is true can be seen by expanding the state vector |¥(t)) in the eigenvectors of A:
= ai(t)]as)
i

where a; are the amplitudes for obtaining the eigenvalue a; upon measuring A4, i.e., a; = (a;|¥(t)). Introducing this
expansion into the expectation value expression gives

Za t)(a;|A|a;)
= Za Yoja;(t
= Zaz|az

The interpretation of the above result is that the expectation value of A is the sum over possible outcomes of
a measurement of A weighted by the probability that each result is obtained. Since |a;|? = |(a;|¥(¢)}|? is this
probability, the equivalence of the expressions can be seen.

Two observables are said to be compatible if AB = BA. If this is true, then the observables can be diagonalized
simultaneously to yield the same set of eigenvectors. To see this, consider the action of BA on an eigenvector |a;) of
A. BAla;) = a;B|a;). But if this must equal AB|a;), then the only way this can be true is if Bla;) yields a vector
proportional to |a;) which means it must also be an eigenvector of B. The condition AB = BA can be expressed as

AB—-BA=0
[4,B] =0

where, in the second line, the quantity [4, B] = AB — BA is know as the commutator between A and B. If [4, B] = 0,
then A and B are said to commute with each other. That they can be simultaneously diagonalized implies that one
can simultaneously predict the observables A and B with the same measurement.

As we have seen, classical observables are functions of position z and momentum p (for a one-particle system).
Quantum analogs of classical observables are, therefore, functions of the operators X and P corresponding to position
and momentum. Like other observables X and P are linear hermitian operators. The corresponding eigenvalues z
and p and eigenvectors |z) and |p) satisfy the equations

X|z) = z|z)
Plp) = plp)

which, in general, could constitute a continuous spectrum of eigenvalues and eigenvectors. The operators X and P
are not compatible. In accordance with the Heisenberg uncertainty principle (to be discussed below), the commutator
between X and P is given by

[X,P] = ihI

and that the inner product between eigenvectors of X and P is

1 B
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Since, in general, the eigenvalues and eigenvectors of X and P form a continuous spectrum, we write the orthonormality
and closure relations for the eigenvectors as:



(z]2') = 6(z — 2') {plp") = d(p — p')
6) = [ dolz)(ele) 6= [ dblp)6le)

1= [ daloal 1= [ doip)o

The probability that a measurement of the operator X will yield an eigenvalue z in a region dz about some point is
P(z,t)dz = [(z|T(1))*dz

The object (x| ¥ (t)) is best represented by a continuous function ¥(z,t) often referred to as the wave function. It is a
representation of the inner product between eigenvectors of X with the state vector. To determine the action of the

operator X on the state vector in the basis set of the operator X, we compute

(@] X0 (1)) = 2¥(z, 1)

The action of P on the state vector in the basis of the X operator is consequential of the incompatibility of X and P
and is given by

(@l L) = & w(a, 0

Thus, in general, for any observable A(X, P), its action on the state vector represented in the basis of X is

(z|]A(X,P)|2(t) = A (a:, ?%) U(xz,t)

D. Time evolution of the state vector
The time evolution of the state vector is prescribed by the Schrédinger equation
i |w(0) = HIB(0)
where H is the Hamiltonian operator. This equation can be solved, in principle, yielding
[T (t)) = e /M| (0))
where |¥(0)) is the initial state vector. The operator
U(t) = eiHth

is the time evolution operator or quantum propagator. Let us introduce the eigenvalues and eigenvectors of the
Hamiltonian H that satisfy

H|E;) = E;|E;)

The eigenvectors for an orthonormal basis on the Hilbert space and therefore, the state vector can be expanded in
them according to

(1) = Y alt)E)

where, of course, ¢;(t) = (E;|¥(t)), which is the amplitude for obtaining the value E; at time ¢ if a measurement of
H is performed. Using this expansion, it is straightforward to show that the time evolution of the state vector can be
written as an expansion:



| (t)) = e~ B(0))
— o—iHt/n Z |E:)(E;|®(0))

= 3" e | B (B (0))

i

Thus, we need to compute all the initial amplitudes for obtaining the different eigenvalues E; of H, apply to each the
factor exp(—iE;t/h)|E;) and then sum over all the eigenstates to obtain the state vector at time ¢.

If the Hamiltonian is obtained from a classical Hamiltonian H(z,p), then, using the formula from the previous
section for the action of an arbitrary operator A(X, P) on the state vector in the coordinate basis, we can recast the
Schrodiner equation as a partial differential equation. By multiplying both sides of the Schrédinger equation by (z],
we obtain

(ol HOX, P) (1) = i (1)

h o 0

If the classical Hamiltonian takes the form

Hep) = L+ U@)

then the Schrédinger equation becomes

[ h? 82

., 0
T om 922 + U(ZL‘):| U(z,t) = lhaql(x,t)

which is known as the Schrédinger wave equation or the time-dependent Schrodinger equation.
In a similar manner, the eigenvalue equation for H can be expressed as a differential equation by projecting it into
the X basis:

(z|H|E;) = Ei{z|E;)
H (a:, ?%) Yi(x) = Ei(z)
[ h? 92

 2m 0x?

n U(w)] $4(z) = Exi(o)

where v;(z) = (z|E;) is an eigenfunction of the Hamiltonian.

E. The Heisenberg uncertainty principle

Because the operators X and P are not compatible, [X,P] # 0, there is no measurement that can precisely
determine both X and P simultaneously. Hence, there must be an uncertainty relation between them that specifies
how uncertain we are about one quantity given a definite precision in the measurement of the other. Presumably, if
one can be determined with infinite precision, then there will be an infinite uncertainty in the other. Recall that we
had defined the uncertainty in a quantity by

AA = /(%) — (A
Thus, for X and P, we have

Az = /(X7 = (X)?
Ap= /(P?) - (PY?

These quantities can be expressed explicitly in terms of the wave function ¥(z,t) using the fact that



(X) = (@) X|¥(¢) /da; t)|z){z| X | (¢) /da:lll z,t)z¥(z,t)

and
(X2) = ()| X2 (1)) = /‘I’*(mat)$2‘1’($at)
Similarly,
(P = (W(1)|P|T () /da: )|z (z| P9 (t) /dm L W (z, 1)
and

0
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(P?) = (T(t)|P*|T(t) /dm\Il (z,t) ( n? 8x2)111(:1:,t)
Then, the Heisenberg uncertainty principle states that
AzAp 2 h

which essentially states that the greater certainty with which a measurement of X or P can be made, the greater will
be the uncertainty in the other.

F. The Heisenberg picture

In all of the above, notice that we have formulated the postulates of quantum mechanics such that the state vector
| (t)) evolves in time but the operators corresponding to observables are taken to be stationary. This formulation of
quantum mechanics is known as the Schrodinger picture. However, there is another, completely equivalent, picture in
which the state vector remains stationary and the operators evolve in time. This picture is known as the Heisenberg
picture. This particular picture will prove particularly useful to us when we consider quantum time correlation
functions.

The Heisenberg picture specifies an evolution equation for any operator A, known as the Heisenberg equation. It
states that the time evolution of A is given by

dA 1
— = _[AH
dt ih[’]

While this evolution equation must be regarded as a postulate, it has a very immediate connection to classical
mechanics. Recall that any function of the phase space variables A(z,p) evolves according to

dA
— ={AH
dt { Y }
where {...,...} is the Poisson bracket. The suggestion is that in the classical limit (% small), the commutator goes over

to the P01sson bracket. The Heisenberg equation can be solved in principle giving
A(t) = eiHt/h gg=itit/n
= UM (t)AU (1)

where A is the corresponding operator in the Schrédinger picture. Thus, the expectation value of A at any time ¢ is
computed from

(A1) = (T]AD)|T)

where |¥) is the stationary state vector.
Let’s look at the Heisenberg equations for the operators X and P. If H is given by

2

P
H= - +U(X)



then Heisenberg’s equations for X and P are

X 1 P

= - _[X.H =—
dt ih[’ ] m
dP 1 oU
-~ JPHl=_=
dt ih[’ ] 0X

Thus, Heisenberg’s equations for the operators X and P are just Hamilton’s equations cast in operator form. Despite
their innocent appearance, the solution of such equations, even for a one-particle system, is highly nontrivial and has
been the subject of a considerable amount of research in physics and mathematics.

Note that any operator that satisfies [A(t), H] = 0 will not evolve in time. Such operators are known as constants of
the motion. The Heisenberg picture shows explicitly that such operators do not evolve in time. However, there is an
analog with the Schrédinger picture: Operators that commute with the Hamiltonian will have associated probabilities
for obtaining different eigenvalues that do not evolve in time. For example, consider the Hamiltonian, itself, which it
trivially a constant of the motion. According to the evolution equation of the state vector in the Schrodinger picture,

[W(@) = D e M E)(E;|%(0))
i
the amplitude for obtaining an energy eigenvalue E; at time ¢ upon measuring H will be
(Bj| (1)) = Y e HM(B; | Bi)(E;|%(0))
i
=) e TG (Ei|R(0))
- BB B(0)
Thus, the squared modulus of both sides yields the probability for obtaining E;, which is

(B [T ()]* = [(E;2(0)”

Thus, the probabilities do not evolve in time. Since any operator that commutes with H can be diagonalized simul-
taneously with H and will have the same set of eigenvectors, the above arguments will hold for any such operator.



