(25.2651: Statistical Mechanics
Notes for Lecture 11

I. REACTION COORDINATES

Often simple chemical processes can be described in terms of a one-dimensional coordinate, which is not one of the
Cartesian coordinates in a system but a generalized coordinate, q. Such a coordinate is, in general, a function of the
Cartesian coordinates:

q= q(rla "'5rN)

In some cases, a set of reaction coordinates is required.
Examples 1: Dissociation reactions. Consider a dissociation reaction of the form

AB— A+B

A reaction coordinate for such a process is the distance r between the two atoms in the diatomic. If ry and ry are the
Cartesian positions of atoms A and atom B, respectively, then

T = |I']_ — I'2|
What set of generalized coordinates contains r explicitly? Let us transform to center-of-mass and relative coordinate:
_ MAT] + MBT2

ma +mg
r =T —I9

Then, let r = (z,y, 2) be transformed to spherical polar coordinates

('T: Y, Z) — (T7 07 ¢)
x = rsinfcos¢
y = rsinfsing
z = rcosf
Example 2: Proton transfer reactions. Consider proton transfer through a hydrogen bond according to:

A-H---A=A---H-A

which is illustrated schematically in the cartoon below:

FIG. 1.



The two heavy atoms are assumed to be of the same type (e.g. oxygen atoms). A reaction coordinate describing
this process is the difference in the two distances d; and ds:

(5:d1—d2:|1‘p—1‘1|—|1‘p—1‘2|

What generalized coordinate system contains § explicitly?
To see what coordinate system this is, consider transforming to center of mass and two relative coordinates as

follows:
R — mo(ry + r2) + mur,

2mo + my
r=7T; — Iy

1
s=rp,— §(r1 +r2)

Now the six degrees of freedom (r,ry,7.,s;,5y,5;) are transformed to 6 new degrees of freedom, which are the
spherical polar coordinates of r and the confocal elliptic coordinates for the position of the proton:

v z Yy z
[ 2 2
Tm TZ

Tz

6 =tan~

r
¢=tan"! L
Tz

1 1
p=dy+dy=|s+ §r|+|s+§r|
—ditdy= s+ or|—|s + o]
vV =a 2 = |S 21‘ S 21‘
a = tilt angle of plane containing three atoms

Then, the coordinate v is the reaction coordinate 4.

II. FREE ENERGY PROFILES

For a reaction coordinate g, we can define a probability distribution function according to

P(a) = (5(q(r1, "'arN) - Cj)
_ C;)_N / AV pdNy e~ FHERIa(E e mn)=0)

Then, we define the free energy profile, A(g), to be
A(7) = —kTInP(q)

Apart from the normalization of P(G) by the partition function, @, P(g), itself is a kind of partition function corre-
sponding to a fixed value of the reaction coordinate. Thus, defining the free energy profile in terms of the log of P(§)
is analogous to defining the global free energy A = —kT In Q.

A. Physical meaning of A(q)

Consider the free energy difference between two values of the reaction coordinate g and go, which can be written as

1 adr
P(q') d7

q dA q
A(q) — A(go) = | dq a7 = kT dq
Jo q Jo

The integrand can be written as



1 dap G [dVpdNre PH®R) L 5(q(r, . tn) = )
P(7)dg (0(¢ — "))

Now, we introduce a coordinate transformation from Cartesian coordinates to a set of generalized coordinates that
contains q:

(1, .estN) — (U1, ey Un,y Q)
where n = 3N — 1. In addition, a corresponding transformation is made on the conjugate momenta according to:
(P10 PN) — (Durs -+ Py » D)
so that, in the measure, no overall Jacobian appears:
dVpdNr = d"pudp,d"udg
Thus, we have

1 dP _ G [ d"pudpydudge” PP pend) 2:5(q — ')
P(q) dg’ (6(g—q"))

Next, the derivative with respect to ¢’ is changed to a derivative with respect to ¢:

1 dP G [ dpudpdtudge= PR Perand (g — ')

P(@)d7 (0(a—7))

Then, an integration by parts is performed, which yields

1 ap G Jd"pudpydtudg [%6*51{(”"’“’“"’)] 5g-7)

P(7)dg (6(a — 1))
_ % f dnpudpqdnudq%e_ﬂH(Pu 7Pq7an)6(q — q’)
(0(a — 7))

(9 5(q - 7))
5l —7))

OH cond
_/B<a_q>q'

=-p

where the final average is an ensemble average conditional upon the restriction that the reaction coordinate q is equal
to ¢'. Generally,

(---yeomd — {C-)dle — )
! (6(¢ —a")
Thus, the free energy difference becomes:
7 OH
Alg) - Alw) = [ dg (G
qo q
Note that the average in the above expression can also be performed with respect to Cartesian positions and momenta,
in which case the derivative can be carried out via the chain rule. If
N

2
P;
H = E =t 41U
i_12 ; (1‘1, ,I‘N)

then
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The quantity —0H/0q is the generalized force on the generalized coordinate g. Thus, let the conditional average of
this force be Fy . Then,

and
7 !
T
do

Thus, the free energy difference can be seen to be equal to the work performed against the averaged generalized force
in bringing the system from §o to @, irrespective of the values of the other degrees of freedom. Such an integration is
called thermodynamic integration.

Another useful expression for the free energy derivative can be obtained by integrating out the momenta before
performing a transformation. We begin with

1 dP % f dedNre—ﬁH(p,r) aiq/d(q(rl: 3y rN) - ql)
P(7)d7 (6(q — 7))

Now, noting that the §-function condition is independent of momenta, we can integrate out the Cartesian momenta
to yield:

1 dP B C)\ng dere_ﬂU(“"“’rN)%(5((](1'1, ___J.N) _ q/)

P(7)dd (0(g— 7))

Next, the coordinate transformation to generalized coordinates is performed:

(rla RS rN) — (uh -y Un,y q)
associated with which there is a Jacobian given by

6(1‘1, "'JrN)

J(Ula ...,Un7Q) = m

Introducing the coordinate transformation, we obtain

1 dP C,\JSVN f dnuqu(ula coey Un,y q)e_ﬁUaiqlé(q - ql)

P(7) d7 (6(g— 7))
CgN J d™udqJ (uy, ..., un, q)e_BUa%(S(q —-q)
(6(g — ")

QC):% [ d"udg [(%J(ul, ...,un,q)e_BU] g—q)
B @g—1))

Cie [ [ e 50400 g(q )
B @la—7))

B [ drudg (32 - kT2RL) ¢ AU—KT D) 5(q — )
B @(g— 1))



SR [ drudgd (s, unq) (5 = KT2L ) #Vs(g - 7)
(6(g —a))

cond
ql

oU  _dlnJ
N _m(@_q ~ ))

or

cond
ql

dA oU OlnJ
@—(a‘”m)>

III. EXAMPLE OF A DISSOCIATION REACTION

Let us again look at the dissociation reaction
AB— A+B

for which the reaction coordinate r = |r; — ry| is appropriate. The transformation to center of mass and relative
coordinate is:

MAT1 + MBr2
R= 2177872

M
r =TI —I2
The inverse of this transformation is
ma
r = R + ﬁr
mi
Iro = R - ﬁr

Next, the vector r = (x,y, z) is transformed to spherical polar coordinates according to

z = rsinf cos ¢
y = rsinfsin ¢

z=rcosb

and the derivative of the potential with respect to r can be easily worked out using the chain rule:

oU _OU or
o or or

oU  dUmy OUm
o o M ar, M

= —— [m2F1 — m1F2]

M
% = (; %,;) = 1i = (sin 6 cos ¢, sin f sin ¢, cos )
oU 1 .
5, =~ meF1—miFy] -4

The Jacobian is clearly

J =r2sin6

so that
OlnJ 2
or  r

Thus, the free energy derivative is



A 1 2kT

% = <—M [m2F1 - mng] -n — )cond

er — 2|7
which is expressed completely in terms of Cartesian quantities and can be calculated straightforwardly.

Once dA/dr" is known, it can be integrated to obtain the full free energy profile A(7'). This is another use of
thermodynamic integration.

It is always interesting to see what A(r) looks like compared to the bare potential. Suppose the dissociation reaction
is governed by a pair potential describing the interaction of the dissociating molecule with a solvent:

Urs,omrn) = o(frn —r2l) + ) fa(les — i) + a2 -5+ Y- ol —xg))

J#1,2 ,5,1#5,1,J7#1,2

The potential ug(r) might look like:

u,(r)

B r

FIG. 2.

If, at a given temperature T', the solvent assists in the dissociation process, then we might expect A(r) to have a
lower dissociation threshold and perhaps a slightly longer effective minimum bond length:



- T

FIG. 3.

If, on the other hand, at a given temperature, 7', the solvent hinders dissociation, by causing the molecule to bury
itself in a cavity, for example, then we might expect A(r) to appear as follows:



B r
FIG. 4.

with a higher dissociation threshold energy and slightly shorter effective minimum bond length. Such curves will,
of course, be temperature dependent and depend on the specific nature of the interactions with the solvent.



