G25.2651: Statistical Mechanics

Notes for Lecture 9

I. DISTRIBUTION FUNCTIONS IN CLASSICAL LIQUIDS AND GASES (CONT’D)
A. General correlation functions

A general correlation function can be defined in terms of the probability distribution function p(™(ry,...,r,) ac-
cording to
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Another useful way to write the correlation function is
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i.e., the general n-particle correlation function can be expressed as an ensemble average of the product of d-functions,
with the integration being taken over the variables r}, ..., r'y.

B. The pair correlation function

Of particular importance is the case n = 2, or the correlation function g(®(ry,ry) known as the pair correlation
function. The explicit expression for g(®) (ry,ry) is
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In general, for homogeneous systems in equilibrium, there are no special points in space, so that ¢ should depend
only on the relative position of the particles or the difference r; — ry. In this case, it proves useful to introduce the
change of variables
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Then, we obtain a new function §?), a function of r and R:
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In general, we are only interested in the dependence on r. Thus, we integrate this expression over R and obtain a
new correlation function §(r) defined by
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For an isotropic system such as a liquid or gas, where there is no preferred direction in space, only the maginitude

or r, |[r| = r is of relevance. Thus, we seek a choice of coordinates that involves r explicitly. The spherical-polar
coordinates of the vector r is the most natural choice. If r = (z,y, z) then the spherical polar coordinates are

x =rsinfcos¢

y =rsinfsin¢

x =rcosf
dr = r? sin Odrdfde

where 6 and ¢ are the polar and azimuthal angles, respectively. Also, note that
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Thus, the function g(r) that depends only on the distance r between two particles is defined to be
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Integrating g(r) over the radial dependence, one finds that
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The function g(r) is important for many reasons. It tells us about the structure of complex, isotropic systems, as
we will see below, it determines the thermodynamic quantities at the level of the pair potential approximation, and
it can be measured in neutron and X-ray diffraction experiments. In such experiments, one observes the scattering of
neutrons or X-rays from a particular sample. If a detector is placed at an angle 6 from the wave-vector direction of
an incident beam of particles, then the intensity I(#) that one observes is proportional to the structure factor
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where k is the vector difference in the wave vector between the incident and scattered neutrons or X-rays (since
neutrons and X-rays are quantum mechanical particles, they must be represented by plane waves of the form exp(ik-r)).



By computing the ensemble average (see problem 4 of problem set #5), one finds that S(k) = S(k) and S(k) is given
by
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Thus, if one can measure S(k), g(r) can be determined by Fourier transformation.

C. Thermodynamic quantities in terms of g(r)
In the canonical ensemble, the average energy is given by
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In order to compute the average energy, therefore, one needs to be able to compute the average of the potential (U).
In general, this is a nontrivial task, however, let us work out the average for the case of a pairwise-additive potential
of the form
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i.e., U is a sum of terms that depend only the distance between two particles at a time. This form turns out to be an
excellent approximation in many cases. U therefore contains N (N — 1) total terms, and (U) becomes
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The second line follows from the fact that all terms in the first line are the exact same integral, just with the labels
changed. Thus,
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Once again, we change variables to r = r; —ry and R = (r; + r2)/2. Thus, we find that
2
(U) = 2V2 /drdRu rg¥(r,R)
2V2 /dru /ng(z) r,R)

- / dru(r)g(r)
N2 o]

=37 /0 dramr?u(r)g(r)
Therefore, the average energy becomes
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Thus, we have an expression for E in terms of a simple integral over the pair potential form and the radial distribution

function. It also makes explicit the deviation from “ideal gas” behavior, where E = 3NkT'/2.

By a similar procedure, we can develop an equation for the pressure P in terms of g(r). Recall that the pressure is
given by
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The volume dependence can be made explicit by changing variables of integration in Zy to
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Using these variables, Zn becomes
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Carrying out the volume derivative gives
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Let us consider, once again, a pair potential. We showed in an earlier lecture that
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where F;; is the force on particle ¢ due to particle j. By interchaning the ¢ and j summations in the above expression,
we obtain
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However, by Newton’s third law, the force on particle ¢ due to particle j is equal and opposite to the force on particle
j due to particle i:
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Thus,
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The ensemble average of this quantity is
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As before, all integrals are exactly the same, so that
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Then, for a pair potential, we have
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where u'(r) = du/dr, and r12 = |r12|. Substituting this into the ensemble average gives
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As in the case of the average energy, we change variables at this point to r = r; —ry and R = (ry +1r3)/2. This gives
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Therefore, the pressure becomes
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which again gives a simple expression for the pressure in terms only of the derivative of the pair potential form and
the radial distribution function. It also shows explicitly how the equation of state differs from the that of the ideal
gas P/kT = p.

From the definition of g(r) it can be seen that it depends on the density p and temperature T: g(r) = g(r;p,T).
Note, however, that the equation of state, derived above, has the general form
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which looks like the first few terms in an expansion about ideal gas behavior. This suggests that it may be possible to
develop a general expansion in all powers of the density p about ideal gas behavior. Consider representing g(r; p,T")
as such a power series:
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Substituting this into the equation of state derived above, we obtain
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This is known as the virial equation of state, and the coefficients Bj2(T') are given by

Bj2(T) = 6kT/ dr 4mr3u/ (r)g; (r; T)

are known as the virial coefficients. The coefficient By (T) is of particular interest, as it gives the leading order deviation
from ideal gas behavior. It is known as the second virial coefficient. In the low density limit, g(r; p,T) = go(r;T) and
By (T) is directly related to the radial distribution function.



