(25.2651: Statistical Mechanics

Notes for Lecture 4

I. TEMPERATURE AND PRESSURE ESTIMATORS

From the classical virial theorem
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we arrived at the equipartition theorem:
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where py, ..., py are the N Cartesian momenta of the N particles in a system. This says that the microscopic function
of the N momenta that corresponds to the temperature, a macroscopic observable of the system, is given by
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The ensemble average of K can be related directly to the temperature
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K(p1,-..,pn) is known as an estimator (a term taken over from the Monte Carlo literature) for the temperature.
An estimator is some function of the phase space coordinates, i.e., a function of microscopic states, whose ensemble
average gives rise to a physical observable.

An estimator for the pressure can be derived as well, starting from the basic thermodynamic relation:
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The volume dependence of the partition function is contained in the limits of integration, since the range of integration
for the coordinates is determined by the size of the physical container. For example, if the system is confined within
a cubic box of volume V = L3, with L the length of a side, then the range of each ¢ integration will be from 0 to L. If
a change of variables is made to s; = ¢;/L, then the range of each s integration will be from 0 to 1. The coordinates
s; are known as scaled coordinates. For containers of a more general shape, a more general transformation is

S; = V_1/3I'i

In order to preserve the phase space volume element, however, we need to ensure that the transformation is a canonical
one. Thus, the corresponding momentum transformation is

™ =V'/p;
With this coordinate/momentum transformation, the phase space volume element transforms as
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Thus, the volume element remains the same as required. With this transformation, the Hamiltonian becomes
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and the canonical partition function becomes
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Thus, the pressure can now be calculated by explicit differentiation with respect to the volume, V:
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Thus, the pressure estimator is
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and the pressure is given by

For periodic systems, such as solids and currently used models of liquids, an absolute Cartesian coordinate g; is
ill-defined. Thus, the virial part of the pressure estimator . ¢;F; must be rewritten in a form appropriate for periodic
systems. This can be done by recognizing that the force F; is obtained as a sum of contributions Fj;, which is the
force on particle ¢ due to particle j. Then, the classical virial becomes
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where r;; is now a relative coordinate. r;; must be computed consistent with periodic boundary conditions, i.e., the
relative coordinate is defined with respect to the closest periodic image of particle j with respect to particle . This
gives rise to surface contributions, which lead to a nonzero pressure, as expected.



II. ENERGY FLUCTUATIONS IN THE CANONICAL ENSEMBLE

In the canonical ensemble, the total energy is not conserved. (H(x) # const). What are the fluctuations in the
energy? The energy fluctuations are given by the root mean square deviation of the Hamiltonian from its average
(H):
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Therefore, the relative energy fluctuation AE/E is given by
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Now consider what happens when the system is taken to be very large. In fact, we will define a formal limit called
the thermodynamic limit, in which N — oo and V' — oo such that N/V remains constant.
Since Cy and E are both extensive variables, Cyy ~ N and E ~ N,
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But AE/E would be exactly 0 in the microcanonical ensemble. Thus, in the thermodynamic limit, the canonical and
microcanonical ensembles are equivalent, since the energy fluctuations become vanishingly small.



III. ISOTHERMAL-ISOBARIC ENSEMBLE
A. Basic Thermodynamics

The Helmholtz free energy A(N,V,T) is a natural function of N, V and T. The isothermal-isobaric ensemble
is generated by transforming the volume V in favor of the pressure P so that the natural variables are N, P and
T (which are conditions under which many experiments are performed — “standard temperature and pressure,” for
example).

Performing a Legendre transformation of the Helmholtz free energy
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Thus,

A(N,P,T) = A(N,V(P),T) + PV = G(N, P,T)

where G(N, P,T) is the Gibbs free energy.

The differential of G is
dG = 6_G dP + 8_G dT + 6_G dN
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But from G = A + PV, we have
dG = dA + PdV + VdP
but dA = —SdT — PdV + pdN, thus
dG = —=SdT + VdP + pdN

Equating the two expressions for dG, we see that
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B. The partition function and relation to thermodynamics

In principle, we should derive the isothermal-isobaric partition function by coupling our system to an infinite thermal
reservoir as was done for the canonical ensemble and also subject the system to the action of a movable piston under
the influence of an external pressure P. In this case, both the temperature of the system and its pressure will be
controlled, and the energy and volume will fluctuate accordingly.

However, we saw that the transformation from E to T between the microcanonical and canonical ensembles turned
into a Laplace transform relation between the partition functions. The same result holds for the transformation from
V to T. The relevant “energy” quantity to transform is the work done by the system against the external pressure P
in changing its volume from V' = 0 to V, which will be PV. Thus, the isothermal-isobaric partition function can be
expressed in terms of the canonical partition function by the Laplace transform:
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where Vj is a constant that has units of volume. Thus,
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The Gibbs free energy is related to the partition function by
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This can be shown in a manner similar to that used to prove the A = —(1/8)In Q. The differential equation to start
with is
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Other thermodynamic relations follow:
Volume:
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Enthalpy:

s

H=(H(x)+ PV) = —ilnA(N,P,T)

Heat capacity at constant pressure
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The fluctuations in the enthalpy AH are given, in analogy with the canonical ensemble, by
so that

AH = \/KT2Cp
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so that, since Cp and H are both extensive, AH/H ~ 1/ V/N which vanish in the thermodynamic limit.



C. Pressure and work virial theorems

As noted earlier, the quantity —0H/OV is a measure of the instantaneous value of the internal pressure Pi¢. Let
us look at the ensemble average of this quantity
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Doing the volume integration by parts gives
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This result is known as the pressure virial theorem. It illustrates that the average of the quantity —0H/0V gives the
fixed pressure P that defines the ensemble.

Another important result comes from considering the ensemble average (PntV')
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Once again, integrating by parts with respect to the volume yields
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or

(PntV) + kKT = P(V)

This result is known as the work virial theorem. It expresses the fact that equipartitioning of energy also applies to
the volume degrees of freedom, since the volume is now a fluctuating quantity.



